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Abstract

Sponges (phylum Porifera) had been considered as an enigmatic phylum, prior to the

analysis of their genetic repertoire/tool kit. Already with the isolation of the first adhe-

sion molecule, galectin, it became clear that the sequences of the sponge cell surface

receptors and those of the molecules forming the intracellular signal transduction path-5

ways, triggered by them, share high similarity to those identified in other metazoan

phyla. These studies demonstrated that all metazoan phyla, including the Porifera,

originate from one common ancestor, the Urmetazoa. The sponges evolved during a

time prior to the Ediacaran-Cambrian boundary (542 million years ago (myr)). They

appeared during two major “snowball earth events”, the Sturtian glaciation (710 to10

680 myr) and the Varanger-Marinoan ice ages (605 to 585 myr). During this period the

aqueous milieu was silica rich due to the silicate weathering. The oldest sponge fossils

(Hexactinellida) have been described from Australia, China and Mongolia and were

assessed to have existed coeval with the diverse Ediacara fauna. Only little younger

are the fossils discovered in the Sansha section in Hunan (Early Cambrian; China). It15

has been proposed that only the sponges had the genetic repertoire to cope with the

adverse conditions, e.g. temperature-protection molecules or proteins protecting them

against ultraviolet radiation. The skeletal elements of the Hexactinellida (model or-

ganisms Monorhaphis chuni and Monorhaphis intermedia or Hyalonema sieboldi) and

Demospongiae (models Suberites domuncula and Geodia cydonium), the spicules,20

are formed enzymatically by the anabolic enzyme silicatein and the catabolic enzyme

silicase. Both, the spicules of Hexactinellida and of Demospongiae, comprise a central

axial canal and an axial filament which harbors the silicatein. After intracellular forma-

tion of the first lamella around the channel and the subsequent extracellular apposition

of further lamellae the spicules are completed in a net formed of collagen fibers.25

The data summarized here substantiate that with the finding of silicatein a new aera

in the field of bio/inorganic chemistry started. For the first time strategies could be

formulated and experimentally proven that allow the formation/synthesis of inorganic
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structures by organic molecules. These findings are not only of importance for the

further understanding of basic pathways in the body plan formation of sponges but

also of eminent importance for applied/commercial processes in a sustainable use of

biomolecules for novel bio/inorganic materials.

1 Introduction5

The origin of the first ancestor of all metazoan phyla remained enigmatic until the first

sequences coding for informative proteins from a sponge (phylum Porifera) had been

identified by application of molecular biological techniques (Pfeifer et al., 1993). Before,

it had been speculated that the sponges are metazoans that are composed of individ-

ually reacting and acting cells (see: Pechenik, 2000). With the identification of the10

first sponge sequence, a galectin, it became overt that these animals have the genetic

toolkit to allow their cells to differentiate from omnipotent via pluripotent to finally deter-

mined somatic cells (reviewed in: Pilcher, 2005; Müller, 2006); most of the functional

analyses were performed with the sponges Suberites domuncula and Geodia cydo-

nium (see: Müller et al., 2004). With the first cell-matrix adhesion molecule, an integrin15

(Pancer et al., 1997), it could be substantiated that the sponges represent organisms

that are composed of cells expressing cell surface molecules allowing their cross talks

and in turn also divisions/restrictions of their physiological functions (Müller and Müller,

2003). The individuality of a sponge specimen and the morphogenetic arrangement of

its cells according to a defined body plan was underscored by the discovery of apop-20

totic as well as organizer-specific axis-forming molecules in S. domuncula (reviewed

in: Wiens et al., 2004; Müller, 2005; Wiens and Müller, 2006). The next challenge was

to identify those factors which allowed the evolution of the phylogenetically oldest ani-

mals, the sponges. One of the key elements, allowing the emergence of these animals

was silicon, which comprises both morphogenetic and also structural properties.25
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2 Role of silicon and silicate

Most skeletal structures in Metazoa are composed of calcium-salts, e.g. calcite or ap-

atite. However, as identified in vertebrates, silica deposition is seen prior to the ossifica-

tion process forming apatite bones (Carlisle, 1986). The morphogenetic role of silicon

is not restricted to this crown taxon, but has also been identified already in sponges5

(Krasko et al., 2000). In S. domuncula this element causes the expression of those

genes which are required for the formation of the skeletal elements. Silicon/silicate has

been used in the two sponge classes, Hexactinellida and Demospongiae, as a start-

ing substrate for the enzymatic synthesis of their silica-based spicules which are the

key structures, allowing the formation/arrangement of the differentiated cells within an10

individual according to a body plan.

Silicon/silicate is in general precipitated passively onto inorganic matrices, e.g. Ro-

man glasses (Fig. 1A), or on organic matrices like in diatoms (Fig. 1B). In contrast

to those processes, the formation of “polymerized”/condensated silicate is guided in

siliceous sponges by an enzyme, termed silicatein (Cha et al., 1999). This finding is15

already amazing and surprising; however, almost not to anticipate was the fact that

the silicate-based spicules are the structural basis for the formation of two meters

large and highly elaborated sponges, e.g. the hexactinellidan sponges Monorhaphis

chuni (Fig. 1C) or other Monorhaphis species (Fig. 1D) and also Demospongiae, e.g.

Lubomirskia baicalensis (Fig. 1E; Carlisle, 1986). The question arises when and in20

which environment did the sponges appear/evolve.

3 Evolution during the Proterozoic: evolution of sponges in the silicon ocean

Macroevolution reflects the mechanisms during which evolutionary novelties are

brought about. This process might be an unbroken continuation of microevolution or

could be independent of microevolutionary processes (see Mayer, 2001). Neverthe-25

less, through macroevolutionary changes new anatomical, developmental innovations
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were introduced which surely reflect genetic innovations. One striking example for the

evolution of a new biotic kingdom in a drastically changing environment, with all its de-

pendent physical and chemical living conditions, is the appearance of Metazoa. They

emerged from their hypothetical ancestor, the Urmetazoa (Müller et al., 2001).

It is surprising that 542 million years ago (myr), near the Ediacaran-Cambrian bound-5

ary, a rapid appearance of different animal types occurred; this event was called “Cam-

brian Explosion”. Exciting examples of these emergences were the so-called Edi-

acaran biota (Knoll and Caroll, 1999). The development and divergence of the major

animal clades were surely driven by the genetic tool kits available at that time. The

major, or perhaps even only, phylum existing at the border from Late Neoproterozoic10

to Cambrian (approximately 543 MA) which did not become extinct are the sponges.

Consequently, sponges were also termed “living fossils” (Müller, 1998); they repre-

sent the evolutionary oldest, still extant taxon which testifies the developmental level

of the animals that lived in the Neo-Proterozoic eon (1000 to 520 MA); Figs. 2 and 3.

This must be especially mentioned since two major “snowball earth events” occurred,15

the Sturtian glaciation (710 to 680 myr) and the Varanger-Marinoan ice ages (605 to

585 myr), which very likely caused the covering of the earth by a continuous ice layer.

It was proposed that as consequence of these ice ages most organisms went extinct

(Hoffman et al., 1998); perhaps more than 85% (Mayr, 2001).

The primordial earth surface comprised initially insoluble silicates and carbonates as20

well as, to a small extent, phosphates. During the silicate weathering-carbonate precip-

itation cycle, prior or simultaneously with the glaciations, a dissolution of these surface

rocks composed of insoluble silicates (CaSiO3) resulted in formation of soluble calcium

carbonate (CaCO3) and soluble silica (SiO2), under consumption of atmospheric CO2

(Walker, 2003). The resulting soluble minerals leached into the waters of the rivers,25

lakes and oceans. There, they were again re-precipitated into new composites, as

part of the sedimentary rocks. Such processes depend upon temperature, pH and

atmospheric carbon dioxide. Passively, the minerals are transformed diagenetically to

secondary structures.
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In contrast to passive re-precipitation, biogenic deposition of minerals by metazoans

is first seen in sponges. The oldest sponge fossils (Hexactinellida) have been de-

scribed from Australia, China and Mongolia (from more than 540 MA) (Gehling and

Rigby 1996; Li et al., 1998; Brasier et al., 1997). Hence, the Hexactinellida are the

oldest group of sponges as documented there and later in fossil records of the Sansha5

section in Hunan (Early Cambrian, China; Steiner et al., 1993). There, in both lower

and upper levels of the Niutitang Formation, more or less completely preserved sponge

fossils, e.g. Solactiniella plumata (Figs. 4A-a to 4A-c), have been discovered (Steiner

et al., 1993). The occurrence of almost intact sponge fossils also in the basal part of

this formation is real (Rigby and Guang, 1996) and is stratigraphically equivalent to10

the Chengjiang assemblage in Yunnan (China). So far the base of the Niutitang For-

mation has been correlated with the Tommotian black shales, “Badaowan” Member.

However, the transgression that deposited the black shale of the Niutitang Formation

and the “Badaowan” Member was a diacronous event, which first became evident in

the basin environment, Hunan/SE – Guizhon/S-Anhui, and progressed across the plat-15

form, Yunnan/Sichuan (Steiner, 1994). Therefore, the base of the Niutitang Formation,

which contains basinal phosphate concretions and cherts, may be correlated with the

Tommotian or even the Nemakit-Daldynian. The important point is that the sponges at

the Sansha section definitely occur at lower levels than the famous, diverse fauna at

Chengjiang. Except for one questionable demosponge, all the sponges described from20

the Sansha section can be attributed to the Hexactinellida.

Very likely the oldest isolated spicules were also found in China, observed in thin sec-

tioned material from the Dengying Formation, “Shibantan” Member, Hubei Province

(Steiner et al., 1993). These spicules are mainly monaxial spicules, but some are

also rather definite “crosses”, the evidence of triaxones from hexactinellids. The25

“Shibantan” Member in Hubei is of Late Proterozoic age and stratigraphically equiv-

alent with the Ediacara (South Australia), which is famous because of its exceptionally

preserved Vendian fossils. The Ediacara fauna has normally been considered to be-

gin at about 600 MA, although new stratigraphic data place the base of the Ediacara
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fauna at ≈565 MA, and suggest that it ranges up to the Precambrian/Cambrian bound-

ary (Grotzinger et al., 1996). Still, the Ediacara-type Vendian fossils are the oldest

megafossils, which may, at least partly, be interpreted as metazoans, although this in-

terpretation is still controversial (Seilacker, 1989; Morris, 1993, 1994; Retallack, 1994).

It is justified to call the Porifera the oldest organismic group in the Earth history, which5

can now be proven as definitely belonging to the animal kingdom, and which further-

more has survived successfully until present times. In contrast, to the marine Hex-

actinellida and Demospongiae, the freshwater demosponges are much younger; one

of the first fossil freshwater sponges, Spongilla gutenbergiana, had been described

from the Middle Eocene (Lutetian); (Müller et al., 1982; Figs. 4B-a to 4B-c).10

The earliest evidence of the Demospongiae and the Calcarea is the presence of iso-

lated spicules in thin sections of rocks from Early Cambrian (Atdabatian) Archaeocyath

mounds of the Flinders Ranges (South Australia). The Calcarea documented from the

Flinders Ranges, Archaeocyath mounds, are both isolated spicules and also more or

less complete rigid skeletons of small calcaronean sponges sitting on Archaeocyaths.15

The spicules are of the triaene, equal-angular type characteristic of the modern Cal-

carea, but quite different from those typical of the Paleozoic Heteractinellida. Very sim-

ilar, perhaps identical, spicules from the Early Cambrian of Sardinia were described as

Sardospongia triradiata and attributed to the Heteractinellida (Mostler, 1985). The com-

plete calcarean sponge Gravestockia pharetronensis (Reitner, 1992) from the Flinders20

Ranges possessed a rigid calcitic skeleton with affinity to the modern Pharetronida. As

one of the earliest families of the Demosponges the Geodiidae have been described

on the basis of their sterrasters (Reitner and Mehl, 1995).

Those taxa that survived the “snowball earth” episodes must have had the genetic

repertoire to cope with the adverse conditions, meaning: (i) proteins to protect against25

adverse temperature, (ii) possibility to survive food restriction and (iii) – not to forget

– also the protection machinery against ultraviolet radiation. During the pre-Sturtian

period atmospheric CO2 had been consumed and removed from the atmosphere re-

sulting in extreme temperature amplitudes. In sponges, cryoprotective proteins exist,
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e.g. galactose-specific lectins (Pfeifer et al., 1993; Wiens et al., 2003) which display

cryoprotective protein-membrane activity, or, interestingly, also ßγ-crystallins, proteins

which contain only low amounts of water and hence are resistant to adverse protein

folding (Krasko et al., 1997). Food restriction was probably compensated by the es-

tablishment of a symbiotic relationship with microorganisms (Breter et al., 2004), such5

as gram-positive (Thakur et al., 2005) and gram-negative bacteria (Wiens et al., 2005)

as well as fungi (Perovic-Ottstadt et al., 2004a). This eukaryotic-prokaryotic “labor-

division” allowed the sponges a flexible and rapid adaptation to the changing environ-

ment. It is furthermore amazing that sponges have an unexpected variety of protection

systems against mutagens, including also ultraviolet radiation. Several protection sys-10

tems against radiation have been described; e.g. the (6-4) photolyase system (Krasko

et al., 2003b) or the SOS-response-like mechanism (Krasko et al., 1998), and there is

an extensive literature on protection systems against environmental stress (e.g. Efre-

mova et al., 2002). Perhaps the greatest fortune for the sponges was their ability

to utilize silicic acid as substrate for their skeleton. When sponges emerged, the in-15

soluble silicate minerals were converted to monomeric, soluble silicate providing the

sponges with an advantageous basis for survival and diversification, with respect to

the number of the species and their abundance. Early assumptions postulated that

those taxa which survived mass extinction, e.g. the Foraminifera, became ecological

and morphologically generalized species (Cifelli, 1969). Furthermore, the number of20

species, the diversity of the biota, increased rapidly after each period of extinction (Fu-

tuyama, 1986). Hence, the sponges (survivor taxon) became the beneficiaries of the

glaciation crises and received the chance to colonize those habitats which had been

de-populated.

The urmetazoans/sponges had already the basic genetic toolkit for all deriving meta-25

zoans which emerged during “Cambrian Explosion” (Figs. 2 and 3). This statement

implies that the genetic repertoire of the sponges, which survived the glaciations, gives

the frame, potentials/potentialities but also the limits of the body plan construction,

seen in higher “crown” groups and which exist in the present day animal phyla. The
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“crown” taxa utilized the pre-existing molecules and pathways for their diversification

of patterning and for an increase in the genetic network complexity. It can be postu-

lated that during the progress of evolution the degree of entropy decreased, whereas

the complexity increased. This progressive “perfection” might be detrimental to the

stability and survival of most of the species which are evolutionary younger.5

The oxygen level in the atmosphere and the water during early Proterozoic was lower

than at present (Hayes, 1994). It had been postulated that with the rise of oxygen the

synthesis of collagen became possible (Towe, 1981); sponges contain and express

collagen genes (Garrone, 1998). The ability to form these extracellular fibrils had been

considered to be a crucial prerequisite for the origin of multicellular animals and the10

establishment of a metazoan body plan (Towe, 1981). Until now, no experimental

evidence for an existence of a primordial, blood oxygen-transporting system in sponges

has been found. Therefore, we assume that most of the oxygen required by these

animals to allow intermediary metabolism is provided by diffusion. Perhaps oxygen is

partly transported/generated via the tyrosinases (Breter et al., 2004). However, this15

apparent disadvantage was surely of benefit for the sponges to survive the oxygen

deficiency in waters because of an ice cover during the glaciations.

4 Unique formation and degradation of biomaterial (biosilica) in sponges: sili-

catein and silicase

Sponges are sessile filter-feeding organisms; their body is composed of an epithelial20

layer which surrounds a mesohyl compartment. This is reticulated in a highly organized

manner by a canal system. The main structural and functional novelties, which evolved

during the major evolutionary transitions to the Porifera and Cnidaria, are summarized

in Fig. 3. The characteristic trait of the sponges are the spicules (the sclerocytes) which

stabilize the sponge bodies and provide the platform on which the body plan can de-25

velop (reviewed in: Müller et al., 2004). In the center of the spicules is a hollow canal

of varying diameter around which the silica is deposited under formation of concentric
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layers (Uriz et al., 2000). This axial canal harbors an organic filament called axial fila-

ment; this filament is composed of silicatein (Fig. 5). Interestingly enough, the spicules

with the axial canal can be identified in fossil sponges with all their characteristic fea-

tures (Fig. 4A-c). The inorganic silica phase of the siliceous spicules contains 6–13%

water, yielding an approximate formula of (SiO2)2−5·H2O (reviewed in: Sanford, 2003).5

High resolution magnetic resonance microimaging studies revealed that this water is

largely present in a “mobile” form at least in certain freshwater sponges (Müller et al.,

2006b). In addition, spicules contain trace amounts of other elements, mainly S, Al, K,

and Ca, but also Cl, Fe, Na, Zn, and Cu (reviewed in: Uriz et al., 2003a, b; Sanford,

2003).10

One major breakthrough in the understanding of spicule formation came after the

discovery of the key enzyme involved in spiculogenesis. The group of Morse discov-

ered that the organic filament in the central canal of spicules is composed of a cathep-

sin L-related enzyme, which they termed silicatein (Shimizu et al., 1998; Cha et al.,

1999); Fig. 5. They cloned two of the proposed three isoforms of silicateins, the α-15

and β-forms, from the marine demosponge Tethya aurantium (Cha et al., 1999). Then

these molecules were cloned also from other sponges, among them the marine sponge

S. domuncula and the freshwater sponge L. baicalensis (Schröder et al., 2004b; Wiens

et al., 2006).

The S. domuncula cDNA encoding silicatein was isolated and characterized; the pre-20

dicted translation product of 330 amino acids has a calculated size of Mr 36 306. As

outlined before, silicatein is a new member of the cathepsin subfamily (Cha et al., 1999;

Müller et al., 2003, 2005). The three amino acids Cys, His and Asn, which form the

catalytic triad of cysteine proteases, are present in the sponge cathepsin at the char-

acteristic sites: Cys125, His164 and Asn184. Silicatein contains a Ser residue instead of25

Cys. Furthermore, the silicatein comprises one cluster of characteristic hydroxy amino

acids (serine). We could demonstrate that silicatein occurs in the axial filament in sev-

eral isoforms (Schröder et al., 2004b). By two-dimensional gel electrophoretic analysis

of the axial filament (silicatein) we could demonstrate that in this compartment silicatein
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undergoes stepwise phosphorylation.

A further enzyme of potential interest for application in nanobiotechnology is the sili-

case. This enzyme is able to depolymerize amorphous silica (Schröder et al., 2003a).

The cDNA encoding the silicase has been identified in primmorphs from S. domuncula,

applying the technique of differential display of transcripts. The expression of the sil-5

icase gene is strongly upregulated in response to higher silicon concentrations in the

incubation assays (Schröder et al., 2003b), like the expression of silicatein. The de-

duced polypeptide has a Mr of 43 131. Silicase is a member of the family of car-

bonic anhydrases. An alignment of the sponge silicase sequence with the human

carbonic anhydrase II shows that most of the amino acids which are characteristic for10

the eukaryotic-type carbonic anhydrase signature are also present in the sponge sili-

case (Schröder et al., 2003b). The recombinant silicase was found to display besides

carbonic anhydrase activity the ability to dissolve amorphous silica under the formation

of free silicic acid (Schröder et al., 2003b).

Carbonic anhydrases are a family of zinc metal enzymes (Sly and Hu, 1995). In the15

S. domuncula silicase the three conserved His residues which bind the zinc ion are

found in the deduced protein at aa181, aa183 and aa206. The proposed mode of action

of the silicase to depolymerize amorphous silica follows the reaction mechanism known

for other zinc-dependent enzymes involved in ester hydrolysis. The zinc ion is a Lewis

acid that interacts with water, a Lewis base. The zinc-bound hydroxide ion formed20

by splitting the water molecule mediates a nucleophilic attack at one of the silicon

atoms linked by oxygen bond(s). In the next step the zinc-complex binds, within the

polymeric silicate, to one silicon atom under cleavage of the oxygen linkage. Through

consumption of H2O, the silicic acid product is released and the zinc-bound hydroxide

is regenerated allowing the start of the next catalytic cycle. The enzyme has been25

expressed in E. coli using the glutathione S-transferase (GST) fusion system (Schröder

et al., 2003b).

Recent studies have shown that during spicule formation in primmorphs of S. do-

muncula, the expression of both, silicatein and silicase, is seen at those sites within the
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3-D-cell aggregates where the growth/building of these siliceous structures starts (Eck-

ert et al., 2006). The role of the silicateins as synthesizing enzymes also in vivo was

elucidated by in situ hybridization studies (Schröder et al., 2004a). In a recent study

immunofluorescence analyses have been applied to demonstrate that in primmorphs

silicatein is associated with the fibrous structures in primmorphs that represent the pri-5

mordial spicules. In parallel with the application of anti-silicatein it could be shown that

also the silica catabolic enzyme (silicase) is localized at the same structures within the

primmorphs. This result had been supported also by immunofluorescence studies of

sections through tissue samples. Like silicatein(s) also silicase belongs to a protein

family known from triploblasts, the carbonic anhydrases (Schröder et al., 2003a).10

5 Hexactinellida: first approaches to understand spicule formation

The monophyletic group of Hexactinellida is, according to the form and organization

of its spicules, divided into two subclasses, Hexasterophora and Amphidiscophora.

In the latter subclass amphidiscs are the (main) microscleres that never fuse. One

member of this subclass is the family Monorhaphididae which includes also the three15

species – Monorhaphis chuni, M. dives and M. intermedia. Since the discovery of these

sponges during the first German Deep Sea Expedition (RV “Valdivia”) and the first

descriptions of these animals by Chun (1900) and Schulze (1904), only little additional

information has been added about the form and construction of their skeletal systems.

Nothing has been published about the synthesis of their giant spicules. Worldwide20

M. chuni has been documented only in few sampling sites, suggesting a distribution

in the deep sea in the Indian Ocean and in the West Pacific. One outstanding feature

of Monorhaphis is the anchoring spicule which can reach lengths of up to 3 m with a

maximum diameter of 8.5 mm (Schulze, 1904). M. chuni thus produces the largest

biosilica structure known on Earth. Polished cross sections confirm the existence of up25

to 500 highly regular concentric rings which are arranged around a 150µm thick, less

structured core (Schulze, 1904). In the middle of this core, a square axial channel with
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an approx. 2µm thick proteinaceous filament is visible, which runs through the entire

spicule from one end to the other (Figs. 6A, C and D). The silica layers are composed

of smaller granules and spheres within a network of (perhaps) proteinaceous material

(Fig. 5B).

An additional hexactinellid Hyalonema sieboldi (Müller et al., 2006c) likewise pos-5

sesses long stalk spicules that attach them to the substratum; the animals live in a

depth of more than 600 fathoms (1000 m); (Wyville Thomson, 1874). The long stalk

spicules are composed of distinct siliceous layers which are also superposed in a strat-

ified pattern around a central axial filament (Schulze, 1904). It could be demonstrated

that these giant spicules from the root-tuft of H. sieboldi transmit light with high effi-10

ciency. Surprisingly, however, the blue light with a wavelength between 400 and 600 nm

is filtered out. Data elaborated in our group suggest that the spicules from H. sieboldi

act as optical absorbent in a novel photoreception system (Müller et al., 2006c).

Very recently, Aizenberg et al. (2005) published a detailed structural analysis of the

spicule formation in the hexactinellid Euplectella. They demonstrated structural hierar-15

chies of the spicule synthesis starting from the nanometer-sized particles of silica to the

final mature spicules. The compositions of the proteins which are associated with and

found in the spicules have not been described. Ehrlich et al. (2005) dissolved the basal

spicules of the hexactinellid H. sieboldi in alkaline solution for 14 days and showed that

the abundant structural protein, associated with the spicules might be collagen.20

Recently, we performed microscopic analyses of the spicules from M. chuni with

major emphasis of the large-sized giant spicules (giant basal spicules or basalia; size

of 1 m) and also the large comitalia (size of around 60 mm). The focus of the study

was put on the organic components of these spicules, including the collagen fibrils

which surround these spicules. Furthermore, electron microprobe analysis data had25

been given which show a regionally different composition of sodium and potassium

within the spicules. With respect to the organic components, it should be highlighted

that after dissolution of the spicules several proteins could been visualized; (i) one of

them cross-reacted with antibodies raised against silicatein, while (ii) others displayed
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proteolytic activity (to be published).

After having substantiated, by application of molecular biological techniques, that

also Hexactinellida have at least one gene coding for collagen (the cDNA was isolated

from the hexactinellid Aphrocallistes vastus) a schematic outline of the spicule growth

both in longitudinal and axial direction could be given (Fig. 7). In the center of the5

spicules the axial canal is filled with an axial filament which comprises a protein com-

position highly similar to the one described for demosponges. After formation of a first

silica layer, assumed to be the result of silicatein or of a silicatein-related protein, the

next layer is formed through centrifugal and centripetal synthesis of a silicatein(-related)

protein. In analogy to Demospongiae (Schröder et al., 2006) it is adopted that the10

silicatein(-related) protein is associated with a lectin which form a tube-like cage around

the existing silica lamella. After deposition of newly formed silica clusters followed by a

solid silica lamella the existing proteins are hydrolyzed by protease(s). In continuation

a third lamella of silica is formed. The model also proposes that collagen guides the

silicatein(-related) protein/lectin associates concentrically along the spicules.15

6 Demospongiae: silica deposition during spicule formation

The morphology of sponge spicules had been analyzed recently using the marine de-

mosponge S. domuncula (reviewed in: Müller et al., 2006a). From this species prim-

morphs had been prepared and applied for the analysis of spicule formation. Prim-

morphs, a special type of 3-D-cell aggregates, containing proliferating and differenti-20

ating cells, allow during incubation in medium supplemented with silicic acid to study

the differentiation of archaeocytes to sclerocytes. The spicules were analyzed by elec-

tron microscopical procedures, e.g. scanning electron microscopy (SEM) analysis of

spicules, transmission microscopical analysis (TEM) and electron immunogold label-

ing. The skeleton of S. domuncula is composed of only two types of megascleres,25

monactinal tylostyles and a smaller fraction of diactinal oxeas. The spicules reach up

to 450µm in length and diameters of 5 to 7µm (Figs. 8A to C); they grow through
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apposition of lamellar silica layers. While the two ends of the oxeas are pointed, the

tylostyles have one pointed end and one swollen knob. All spicules have an axial canal

of 0.3 to 1.6µm in width in the center. As shown in SEM images (Figs. 8A to C) the

central canal is surrounded by lamellated layers approximately 0.3 to 1µm thick. To

monitor the location and distribution of silicatein in and around the spicules, polyclonal5

antibodies were raised against purified filaments from spicules in rabbits (Müller et al.,

2005). Immunofluorescence studies with cryosections through tissue revealed that the

surfaces of the spicules in the tissue (Fig. 8D) and of isolated spicules (Figs. 6E and F)

are surrounded by silicatein. From these studies we conclude that silicatein is not only

present in the axial filament of the spicules, but is also located on their surface.10

Based on our studies, it had been deduced that the process of spicule formation

should be divided into the following phases; the initial intracellular steps and the extra-

cellular final and shaping phase (Müller et al., 2006a; Eckert et al., 2006).

(i) The intracellular phase in the sclerocytes: Silica is taken up actively by a

Na
+

/HCO
−

3
[Si(OH)4] cotransporter. Very likely during the transport through the en-15

doplasmic reticulum and the Golgi complex, silicatein undergoes phosphorylation and

is transported into vesicles where it forms rods, the axial filaments (Fig. 8A). After as-

sembly to filaments the first layer(s) of silica is (are) formed. Silica deposition occurs in

two directions; first from the axial canal to the surface (centrifugal orientation) and sec-

ond from the mesohyl to the surface of the spicule (centripedal). Finally the spicules20

are released into the extracellular space where they grow in length and diameter by

appositional growth (Fig. 8B).

(ii) Extracellular phase (appositional growth): Silicatein is present also in the extra-

cellular space. It came surprising that also there the silicatein molecules are organized

to larger entities. The immunogold electron microscopical analysis showed that the25

silicatein molecules are arranged along strings, which are organized in parallel to the

surfaces of the spicules (Schröder et al., 2006). In the presence of Ca
2+

, silicatein

associates with galectin and allows the appositional growth of the spicules (Fig. 8B).

Since the surface of a new siliceous spicule is also covered with silicatein, the appo-
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sitional growth/thickening of a spicule hence proceeds from two directions (centrifugal

and centripetal).

(iii) Extracellular phase (shaping): In the next step, the galectin-containing strings are

organized by collagen fibers to net-like structures. It is very likely that collagen, which

is released by the specialized cells, the collencytes, provides the organized platform for5

the morphogenesis of the spicules (Fig. 8B). The longitudinal growth of the spicules can

be explained by the assumption that at the tips of the spicules, the galectin/silicatein

complexes are incorporated into deposited biosilica under formation and elongation of

the axial canal.

7 Change in a paradigm10

In 1828 Wöhler succeeded to copy nature by producing an organic compound from

inorganic reactants. He synthesized urea from the inorganic ammonium cyanate, es-

tablishing the first rules in organic chemistry. However, to copy organic (bio)synthetic

reactions comprehensively, the existence of enzymes had to be discovered, an im-

portant step which dates back to Pasteur (1857). He discovered that lactic acid is15

a fermentation product, and thus proved the basis for the discipline biochemistry. The

causal-analytical understanding of organic reactions in biological systems became pos-

sible after the deciphering of the genetic code and the subsequent elucidation and

application of molecular biological, recombinant techniques. However, it took until re-

cently when first strategies had been formulated and experimentally proven, to outline20

the biosynthesis of inorganic structures formed in uni- and multicellular organisms. At

present, in a self-accelerating progress, the matrices (templates), e.g. collagen, and

the organic catalysts (enzymes), e.g. silicatein, required for the synthesis of those in-

organic structures and skeletal elements have been illuminated with the help of inor-

ganic/organic chemists, biochemists, molecular biologists and material scientists, to25

establish the discipline “bio-inorganic material science”. The first opportunities have

been touched in biomedicine and electronics providing us with a first indication about
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the power and potential of this new technology (Wang and Wang, 2006).
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I. M., and Schröder, H. C.: Molecular mechanism of spicule formation in the demosponge

Suberites domuncula: Silicatein – collagen – myotrophin, Progress Molec. Subcell. Biol., 33,

195–221, 2003.

Müller, W. E. G., Wiens, M., Adell, T., Gamulin, V., Schröder, H. C., and Müller, I. M.: The Bau-25
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Schröder, H. C.: Siliceous spicules in marine demosponges (example Suberites domuncula),

Micron, 37, 107–120, 2006a.

403

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/385/2007/bgd-4-385-2007-print.pdf
http://www.biogeosciences-discuss.net/4/385/2007/bgd-4-385-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


BGD

4, 385–416, 2007

The unique skeleton

of siliceous sponges

W. E. G. Müller et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Müller, W. E. G., Kaluzhnaya, O. V., Belikov, S. I., Rothenberger, M., Schröder, H. C., Reiber, A.,
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Schröder, H. C., Krasko, A., Le Pennec, G., Adell, T., Wiens, M., Hassanein, H., Müller, I.

M., and Müller, W. E. G.: Silicase, an enzyme which degrades biogenous amorphous silica:

Contribution to the metabolism of silica deposition in the demosponge Suberites domuncula,5

Prog. Mol. Subcell. Biol., 33, 250–268, 2003b.

Schröder, H. C., Perović-Ottstadt, S., Rothenberger, M., Wiens, M., Schwertner, H., Batel,

R., Korzhev, M., Müller, I. M., and Müller, W. E. G.: Silica transport in the demosponge

Suberites domuncula: fluorescence emission analysis using the PDMPO probe and cloning

of a potential transporter, Biochemical J., 381, 665–673, 2004a.10
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Thakur, N. L., Perović-Ottstadt, S., Batel, R., Korzhev, M., Diehl-Seifert, B., Müller, I. M., and30

Müller, W. E. G.: Innate immune defense of the sponge Suberites domuncula against gram-

positive bacteria: induction of lysozyme and AdaPTin, Mar. Biology, 146, 271–282, 2005.

Towe, K. M.: Environmental conditions surrounding the origin and early evolution of life, Pre-

405

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/385/2007/bgd-4-385-2007-print.pdf
http://www.biogeosciences-discuss.net/4/385/2007/bgd-4-385-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


BGD

4, 385–416, 2007

The unique skeleton

of siliceous sponges

W. E. G. Müller et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

cambrian Res. 16, 1–10, 1981.

Uriz, M. J., Turon, X., and Beccero, M. A.: Silica deposition in demosponges, Progr. Molec.

Subcell. Biol., 33, 163–193, 2003a.

Uriz, M. J., Turon, X., and Becerro, M. A.: Silica deposition in Demospongiae: spiculogenesis

in Crambe crambe, Cell & Tissue Res., 301, 299–309, 2000.5

Walker, G.: Snowball Earth: The Story of the Great Global Catastrophe that Spawned Life as

we Know it, Crown Publishers, New York, 2003.

Wiens, M. and Müller, W. E. G.: Cell death in Porifera: molecular players in the game of

apoptotic cell death in living fossils, Can. J. Zool./Rev. Can. Zool., 84, 307–321, 2006.

Wang, X. and Wang, Y.: An introduction to the study on natural characteristics of sponge10

spicules and bionic applications, Adv. Earth Sci., 21, 37–42, 2006.

Wiens, M., Mangoni, A., D’Esposito, M., Fattorusso, E., Korchagina, N., Schröder, H. C.,
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Fig. 1. Non-enzymatic precipitation of silica (A and B) and enzymatic formation of biosilica

by sponges (C to E). (A) Romanic vase (150 years AC) showing opalescence [silicon-based

inorganic films] on the surface of the glass (size: 7 cm). (B) Lithography from Haeckel (1899)

showing the diverse forms of diatoms (non-enzymatic silica formation). (C) A giant spicule

from Monorhaphis chuni (height: 1.3 m). (D) A Hyalonema species (Hexactinellida), collected

by Doflein (1906) (height: 12 cm). (E) Lubomirskia baicalensis (Demospongiae), an endemic

freshwater sponge from Lake Baikal (height: 40 cm).
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Fig. 2. Frequency of occurrence of major glacial periods (blue). The appearance of the different

organismic groups (Bacteria; Eukarya; Metazoa and Porifera) are indicated. The Urmetazoa

evolved during the inter-ice period between 600 MA and approximately 800 MA (modified after

Hoffmann and Schrag, 2002).
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Fig. 3. Phylogenetic position of the Porifera between the Urmetazoa and the Urbilateria. The

major evolutionary novelties which have to be attributed to the Urmetazoa are those molecules

which mediate apoptosis and control morphogenesis, the immune molecules and primarily

the cell adhesion molecules. The siliceous sponges with the two classes Hexactinellida and

Demospongiae emerged first and finally the Calcarea, which possess a calcareous skeleton,

appeared. These three classes of Porifera are living fossils that provide a reservoir for molecu-

lar biological studies. The Archaeocyatha, sponge related animals with a calcareous skeleton,

became extinct. The Calcarea are very likely a sister group of the Cnidaria. From the latter phy-

lum the Ctenophora evolved which comprise not only an oral/aboral polarity but also a biradial

symmetry. Finally the Urbilateria emerged from which the Protostomia and the Deuterostomia

originated. Very likely the Urmetazoa emerged between the two major “snowball earth events”,

the Sturtian glaciation (710 to 680 myr) and the Varanger-Marinoan ice ages (605 to 585 myr).

In the two poriferan classes Hexactinellida and Demospongiae the skeleton is composed of

amorphous and hydrated silica, while the spicules of Calcarea are composed of Ca-carbonate.

The latter biomineral is also prevalent in Protostomia and Deuterostomia. In vertebrates the

bones are composed of Ca-phosphate (apatite).

410

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/4/385/2007/bgd-4-385-2007-print.pdf
http://www.biogeosciences-discuss.net/4/385/2007/bgd-4-385-2007-discussion.html
http://www.copernicus.org/EGU/EGU.html


BGD

4, 385–416, 2007

The unique skeleton

of siliceous sponges

W. E. G. Müller et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Fig. 4. Fossil marine and freshwater sponge. (A) One of the oldest fossil marine sponge in

body preservation are known from the Lowermost Cambrian Sansha section (Hunan, China);

Solactiniella plumata (Hexactinellida) (A-a). This fossil is composed of highly intact spicules

(A-b). (A-c) Some spicules are broken and expose the internal axial canals. (B) One of the

oldest fossil freshwater sponge; Spongilla gutenbergiana from the Middle Eocene (Lutetian)

near Messel (Darmstadt, Germany). (B-a) Spicule assembly, reminiscent of a complete animal.

(B-b) Oxeas in these nests. (B-c) Oxeas with the flashing centers, representing the axial

canals. Size bars are given.
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Fig. 5. Phylogenetic relationship of the silicateins, the enzyme which catalyzes the poly-

merization process of biosilica in the sponge spicules. Four deduced silicatein sequences

of the isoform silicatein-α (α-1, α-2, α-3 and α-4) from Lubomirskia baicalensis (SILI-

CAa1 LUBAI; SILICAa2 LUBAI; SILICAa3 LUBAI; SILICAa4 LUBAI) and the two cathepsin L

sequences (CATL LUBAI; CATL2 LUBAI) were aligned with silicatein-α from S. domuncula

(SILICAa SUBDO) from Tethya aurantia [T. aurantium] (SILICAa TETYA) and with the β-

isoenzymes from S. domuncula (SILICAb SUBDO) and Tethya aurantium (SILICAb TETYA),

as well as with the cathepsin L sequences from sponges Suberites domuncula (CATL SUBDO),

Geodia cydonium (CATL GEOCY) and Aphrocallistes vastus (CATL APHRVAS) as well as from

the cnidarian Hydra vulgaris (CATL HYDRA). The radial phylogenetic tree was constructed af-

ter the alignment of these sequences. The numbers at the nodes are an indication of the level

of confidence for the branches as determined by bootstrap analysis (1000 bootstrap replicates).
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Fig. 6. Morphology of hexactinellidan spicules. Concentric organization of the silica layers of

giant spicules and giant basal spicules from Monorhaphis intermedia (A to D). (A) The diagonal

scanning electro micrograph (SEM) shows the layered surface of the spicules. The layers are

separated by small gaps, which harbored the proteinaceous material, synthesizing the silica

layers. (B) Granules and spheres of silica which form the lamellae of the spicules. (C and D)

Giant basal spicules (basalia) from M. intermedia. The polished cross sections can be divided

in three parts: (i) The axial canal (ac) in which the axial filament is located. (ii) An axial cylinder

(cy), formed by dense homogeneous silica and finally (iii) the main part of the spicule with

the regularly arranged concentric silica lamellae (la). (D) Higher magnification of the lamellar

region is shown. Between the lamellae (la) a gap (ga) exists.
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Fig. 7. Proposed schematic illustration of the spicule formation in the hexactinellid M. chuni

and M. intermedia. The center of the spicule comprises the axial canal (ac) which is filled

with the axial filament (af; in red). Around the axial filament a first lamella has been formed

(1). The formation of the next silica lamella is supposed to be mediated by silicatein(-related)

proteins (red ellipsoid balls) which are arranged both on the surface of the first lamella and a

proteinaceous tube/cage which is stabilized in its outer layer by lectin molecules (yellow balls).

The final orientation of the tube is provided by the collagen mat. Within the cage a solid silica

lamella is formed through an association of the silica clusters. The concentric arrangement of

the silicatein(-related) proteins/lectin associates is proposed to be stabilized by collagen (col;

grey fibers).
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Fig. 8. Morphology of demospongian spicules showing the zonation of the silica shell of the

spicules from Suberites domuncula. (A to C) SEM analysis of broken spicules in primmorphs,

after an incubation period of 20 days. Around the axial canal (ac) two layers of lamellae (l1 and

l2) can be distinguished. (C) and (D) Immunostaining of spicules with antibodies, raised against

silicatein (PoAb-aSILIC). (D) Immunostaining of cryosections through tissue of S. domuncula.

8-µm thick frozen sections were reacted with polyclonal silicatein antibodies. Spicules (sp) and

one canal of the aquiferous system (ca) are marked. (E) and (F) Reaction of antibodies against

silicatein with partially digested (hydrofluoric acid) spicules. The preparations were placed onto

glass slides and treated with the antibodies (F). The immuno-stained specimen showed that

both the surface of the spicules (sp) and also the axial filaments (af) were brightly stained.
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Fig. 9. Schematic outline of spicule formation in S. domuncula. (A) The initial steps of spicule

synthesis occur intracellularly where the silicatein is processed to the mature form. During this

processing the silicatein undergoes phosphorylation. Very likely with the help of other proteins

the silicatein molecules assemble to a rod, the axial filaments. Around this filament the first

deposition if silica proceeds. (B) Process of the appositional growth of the spicules in the

extracellular space (mesohyl). In the mesohyl, galectin molecules associate in the presence

of Ca
2+

to strings (nets) that allow binding of silicatein molecules. Collagen fibers orient the

silicatein-galectin strings concentrically round the growing spicules. In the last step, biosilica

deposition is mediated in two directions, originating both from the silicatein-galectin strings

and from the surface of the spicules (centripetal and centrifugal). Finally an additional further

biosilica lamella (bs) is formed which is layered onto the previous two lamellae. The initial

biosilica layer is formed around the silicatein rod, existing in the axial canal (ac) of the spicules.
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