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Abstract

Many projections of the soil carbon sink or source are based on kinetically defined car-
bon pool models. Parameters of these models are often determined in a way that the
steady state of the model matches observed carbon stocks. The underlying simplifying
assumption is that observed carbon stocks are near equilibrium. This assumption is5

challenged by observations of very old soils that do still accumulate carbon. In this
modelling study we explored the consequences of the case where soils are apart from
equilibrium. Calculation of equilibrium states of soils that are currently accumulating
small amounts of carbon were performed using the Yasso model. It was found that
already very small current accumulation rates cause big changes in theoretical equilib-10

rium stocks, which can virtually approach infinity. We conclude that soils that have been
disturbed several centuries ago are not in equilibrium but in a transient state because of
the slowly ongoing accumulation of the slowest pool. A first consequence is that model
calibrations to current carbon stocks that assume equilibrium state, overestimate the
decay rate of the slowest pool. A second consequence is that spin-up runs (simulations15

until equilibrium) overestimate stocks of recently disturbed sites. In order to account
for these consequences, we propose a transient correction. This correction prescribes
a lower decay rate of the slowest pool and accounts for disturbances in the past by de-
creasing the spin-up-run predicted stocks to match an independent estimate of current
soil carbon stocks. Application of this transient correction at a Central European beech20

forest site with a typical disturbance history resulted in an additional carbon fixation of
5.7±1.5 tC/ha within 100 years. Carbon storage capacity of forest soils is potentially
much higher than currently assumed. Simulations that do not adequately account for
the transient state of soil carbon stocks neglect a substantial amount of current carbon
accumulation.25
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1 Introduction

The widely applied soil carbon models Century (e.g. Parton et al., 1988), Roth-C (Jenk-
inson, 1990), Romul (Chertov et al., 2001), Yasso (Liski et al., 2005) and many other
models are based on kinetically defined pools. This means, that decomposition is de-
scribed by removing a constant fraction of a pool at each time step. This fraction, which5

distinguishes the pools, is called the decay rate or decomposition rate and is modeled
with a dependence on environmental conditions, in most cases temperature and mois-
ture. Despite simplifying many soil processes, these models have proven to predict
reasonable soil carbon stock changes during decadal time scales (e.g. Smith et al.,
1997). However, there is a controversy whether the decay rates of the slower (more10

stable) pools have a lower, equal or higher dependence to warming than the faster pool
(Ågren, 2000; Davidson and Janssens, 2006). The different answers to this question
cause large differences in the long term soil carbon sink or source. While the decay
rates of the faster pools have been determined by experimental results, the decay rates
of the slower pools have been calibrated in a way that a models steady states matches15

observed carbon stocks (e.g. Liski et al., 2005). The underlying assumption is that the
observed carbon stocks represent equilibrium stocks. This assumption also allows a
determination of the initial state of the model for given constant average inputs and
parameters by simulating the model until an equilibrium state is reached (spin-up-runs)
(e.g. Smith et al., 2005). However, observed soils might be far away from equilibrium20

because of possible very long turnover times of stable compounds and disturbances
by fire, erosion, land use or land use change. The equilibrium assumption is chal-
lenged by observations of steadily increasing carbon stocks of very old soils. Wardle et
al. (1997) observed carbon stocks of about 240 tC/ha in the organic layer on small is-
lands in northern Sweden, where fire was prevented. Sizes of the stocks correlate with25

the time since last disturbance (1000 to 3000 years). This implies increasing stocks
at old soils. Many modellers argue that the equilibrium assumption might be wrong,
but it works and must be used until other approaches are evolving. Nevertheless, the
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consequences of relaxing the equilibrium assumptions are not well understood.
The aim of this study was to explore the consequences of a relaxed equilibrium as-

sumption. The paper has the following outline. In a first part we perform an equilibrium
experiment using the Yasso model’s standard parameterization and show that the de-
cay rate of the slowest pool and theoretical equilibrium stocks are highly uncertain.5

This implies that soil might be far apart from theoretical equilibrium yet. Based on
these findings we propose a method how to initialize models to a transient state in-
stead of equilibrium. In a second part we apply this initialization to a Central European
case study. We discuss consequences for current soil modelling. Further, we show
and discuss ways to overcome the equilibrium assumption.10

2 Methods

2.1 The Yasso model

The soil carbon model Yasso was designed by Liski et al. (2005) in order to model soil
carbon stocks of mineral soils in managed forests. Despite its simplicity and low de-
mands on input data and parameters it shares many properties of the family of models15

that are based on kinetically defined pools. Figure 1 displays the model structure and
the flow of carbon. The right part describes the separation of the different litter types
into compartments that correspond to the kinetically defined pools and it describes a
delay of the woody litter compartments before decomposers can attack the chemical
compounds. The left part describes the decomposition of the chemical compounds.20

The decay rates are dependent on mean annual temperature (or alternatively effective
temperature sum) and a drought index (difference between precipitation and potential
evapotranspiration during vegetation period). In the standard parameterization the de-
cay rates of the slower pools are less sensitive to temperature increase than the fast
pools (hums one: 60%, humus two: 36% of sensitivity of fast pools). The model has25

been tested and successfully applied to boreal forest (Peltoniemi et al., 2004), litter
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bag studies in Canada (Palosuo et al., 2005), and as part of the CO2FIX model all over
Europe (e.g. Kaipainen et al., 2004; e.g. Nabuurs and Schelhaas, 2002).

2.2 The relaxed equilibrium assumption

The relaxed equilibrium assumption corresponded to the usual equilibrium assumption,
except that the slowest pool was excluded from this assumption. Assuming that time5

since last disturbance is longer than a century and that the inputs to the soil system did
not change much within this time, the faster pools (turnover times of at most decadal
time scale) have had enough time to recover from former disturbance. They were
regarded to be near a dynamic equilibrium (averaging across changes during rotation
periods and with climate fluctuations). The relaxed equilibrium assumption assumed10

that this is not true for the slowest pool which needs long time scales to reach the
theoretical equilibrium. Hence is assumed the slowest pool to be still accumulating
(Table 1). If all the faster pools are in equilibrium, the input rate to the slowest pool is
constant (Fig. 2).

2.3 Equilibrium experiment15

Using this relaxed equilibrium assumption we determined the decay rates of the slow-
est pool of soils that are recovering from former disturbance. The slowest pool was
described by a first order kinetics with input (Eq. 1). When applying a constant input
rate, integration of Eq. (1) resulted in the closed form of Eq. (2). Equation (3) was
derived from Eq. (2) by constraining the stock at time t=0. The decay rate was deter-20

mined as a function of the current stock and its current rate of assimilation (Eq. 4) by
resolving Eq. (1) for the decay rate.

δC
δt

= i − k · C (1)

C =
i
k

(
1 − ae−k ·t

)
(2)
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C =
i
k
−
(
i
k
− C0

)
· e−k ·t (3)

k =
i − ∆Cc

∆t

Cc
(4)

Ce =
i
k

(5)

t95 =
ln(0.05 · Ce)

k
(6)

C: stock; t: time; i : input rate (amount / time); k: decay rate; a: integration constant;5

C0: stock; at t=0;Cc: current stock; ∆Cc/∆t: current stock change rate (approximation
of δC/δt); Ce: asymptote of Eq. (2) representing the theoretical equilibrium stock; t95:
accumulation time: time for increase of stocks from zero to 95% of equilibrium stock

In the equilibrium experiment we prescribed different current assimilation rates and
calculated corresponding decay rates of the slowest pool (Eq. 4). Given these decay10

rates, we determined equilibrium stocks (Eq. 5), and the times that are needed to ac-
cumulate 95% of these stocks (Eq. 6). Initial pools size (40.7 t/ha) and input to the
slowest pool (i=0.063 tC/ha/yr) were calculated by equilibrium of the faster pools of the
Yasso model with standard parameterization for Norway spruce in standard climate
(Appendix B). Reasonable constant average litter inputs of Norway spruce were ap-15

plied (non woody litter=1.7 tC/ha/yr, fine woody litter=1.4 tC/ha/yr, thin coarse woody
litter=0.1 tC/ha/yr, large coarse woody litter=0.1 tC/ha/yr). Additionally, calculations
were repeated using an increased input to the slow pool (i=0.127 tC/ha/yr) that re-
sulted from a change in the Yasso parameterization in which a larger part of decay
material was spent to form more recalcitrant compounds (plig=phum1=0.4).20
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2.4 The transient correction

In continuation of the results of the equilibrium experiment we developed a method of
correcting spin-up-run predicted pool sizes for the effects of former disturbance (over-
estimation of slowest pool’s decay rate in model calibration and slowest pool being
apart from equilibrium). This “transient correction” is only valid for sites that have not5

been disturbed for about a century, because it uses the relaxed equilibrium assumption
(all pools are in equilibrium except the slowest pool). The correction, first, prescribes
a lower decay rate of the slowest pool. Below it will be shown that about 20% of the
decay rate that is determined by the usual equilibrium assumption is appropriate for
century term simulations. Second, the correction decreases the spin-up-run predicted10

stock of the slowest pool (which will be large due to the lower decay rate) in a way
that the sum of the stocks of the soil carbon pools matches an independent estimate
of current carbon stocks.

2.5 Application of the transient correction

We applied the transient correction at a Central European beech forest chronose-15

quence (Mühlhausen/Leinefelde), which has been managed as a shelterwood system.
In the EU-project FORCAST, litter fall, organic layer carbon stocks, and soil carbon
stocks have been measured (Mund, 2004). Carbon pools of the soil model were initial-
ized with spin up runs with constant average litter inputs and climatic conditions (mean
average temperature: 6.8◦C, drought index: 71.3 mm). The sites of the chronose-20

quence have been disturbed by wood pasture about 150 years ago and some sites
have been possibly used as agricultural land before the 16th century. As independent
estimate of soil carbon stocks for the transient correction the sum of the measured car-
bon stocks of the mineral soil (41.7±5.0 tC/ha) and the organic layer (3.7±0.8 tC/ha)
was used. In order to maintain comparability across scenarios we did not vary litter25

inputs with stand age but applied constant litter inputs that were averaged across one
rotation cycle. The used standard parameterization is listed in Appendix B. In 4 sce-
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nario groups (Table 2) we studied the sensitivity of carbon stock changes to the decay
rate of the hum2 pool (slowest most stable pool of the Yasso model). Within each
group, the decay rate was varied by dividing the standard value of 0.0012 yr−1 by 1, 5,
25, 125, and 625. Table 3 lists average litter inputs to the Yasso model, for details of
its derivation see Appendix A. Additionally, we repeated all the sensitivity study in four5

scenario groups that differed from the corresponding previous four groups by increased
climate sensitivity of the slow pools. Increased climate sensitivity was parameterized in
a way that the decay rates of the slow pools were as sensitive to warming as the decay
rates of fast pools (s1=s2=100%).

3 Results10

3.1 Highly uncertain decay rates and equilibrium stocks

Soils carbon stocks that are far from equilibrium had a lower decay rate of the slowest
pool and a larger current carbon accumulation rate with the relaxed equilibrium as-
sumption (Fig. 3). The assumption of already very small current accumulation rates
in the equilibrium experiment resulted in large changes in the theoretical equilibrium15

stocks and the times that are needed to accumulate these stocks (Fig. 4). If the as-
sumed rate of change was approaching the input rate to the slowest pool, the differ-
ence between input and accumulation approached zero. Hence, the decay rate also
approached zero. This caused the equilibrium stocks and the times to reach these
stocks to approach infinity. The limit case, when the rate of change was equal to the20

input, corresponded to an inert pool that is not decomposed. Still with big changes
to the model (doubling the proportion of carbon that is used to form more recalcitrant
components plig=phum1=0.4), the limit case had a different position but the pattern was
the same: small current accumulation rates had a large effect on theoretical equilibrium
pools (Fig. 4 cross symbols).25
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3.2 Additional carbon accumulation when accounting for former disturbance

The sum of the carbon pools after the spin-up-run exceeded observed stocks by about
30% for the Mühlhausen/Leinefelde study site that has been disturbed until 150 years
ago (Fig. 5). With the relaxed equilibrium assumption (all pools are in equilibrium
except the slowest pool), we interpreted that the slowest pool (hum2) was far from5

equilibrium yet. The application of the transient correction decreased the slowest pool
(carbon above the line of observed carbon stocks in Fig. 5). In the scenario of increased
climate sensitivity the relative proportion of the slowest pool after the correction was
larger because the spin-up-runs resulted in smaller stocks of all the pools.

The carbon accumulation due to the adjustment of the spin-up-run predicted pools10

for former disturbances was 5.7±1.5 tC/ha with standard climate sensitivity (Fig. 6 top
left) and 5.5±1.8 tC/ha with increased climate sensitivity (Fig. 7 top left) within 100
years for the baseline scenario. This corresponds to a flux of 5.7 gC/m2/yr and an in-
crease of about 13% of initial carbon stocks over 100 years. This carbon accumulation
would have been neglected without the transient correction. Uncertainty resulted from15

different assumptions of turnover times of the slowest pool of 500 years up to 10 000
years. This uncertainty of 1.5 tC/ha (or 1.8 tC/ha for increased slow pool temperature
sensitivity) did not change much with different scenarios of litter input and temperature
increase (Figs. 6 and 7). Hence the relative size of the uncertainty depended on the
projected change of carbon stocks and varied between 9% in the conservation scenario20

(Fig. 7 litter) and 59% in the temperature increase scenario (Fig. 7, t3).
Assuming lower decay rates of the slowest pool resulted in an increased carbon

accumulation (Fig. 8). Consistently across all scenario groups, the carbon accumula-
tion increased most with the first decrease of the slowest pool’s (hum2) decay rate to
20% of standard parameterization. Further decrease of the decay rate to 4%, 0.8%,25

and 0.16% of standard parameterization only slightly increased carbon accumulation
during 100 years.
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4 Discussion

4.1 What are the consequences for interpretation of current model results?

The equilibrium experiment showed that already very small rates of current accumu-
lation caused tremendous changes in equilibrium stocks (Fig. 4). They are so small,
that it is practically impossible to measure them within a few years. The times to reach5

equilibrium could span millennia. Hence, soils may be far apart from a theoretical equi-
librium. They may never reach this theoretical equilibrium because of changing condi-
tions and partial resets by disturbances (e.g. forest fires, Parker et al., 2001; Wardle et
al., 2003, or erosion, Polyakov and Lal, 2004) . In addition soil weathering continues
and soil horizons may change in a way to increase humus stabilization and potential10

carbon stocks.
If soils are apart from equilibrium, this leads to a big overestimation of the decay

rate of the slowest pool with the current method of constraining the slow pool decay
rates. The spin-up-runs will still give reasonable results for soils that have a similar
disturbance history as the sites used for parameterization of the model (Peltoniemi et15

al., 2004). However, with an overestimated decay rate of the slowest pool, the spin-up-
runs underestimate the stock at sites that have not been disturbed for a very long time
and overestimate the stock at sites that have been disturbed in the former centuries.
This still needs to be tested.

Previous model studies of soil carbon stock changes (e.g. Liski et al., 2002) did not20

take detailed account for the effect of soils recovering from former disturbance (Fig. 6).
This results in an underestimation of carbon accumulation in soils.

In a first very rough extrapolation we assume that half of the forested area in Europe
is still recovering from former disturbance and that the 5.7 g/m2/yr additional increase
that we calculated for the Leinefelde site would occur on this area. With these assump-25

tions, the projected forest soil carbon sink of 7.5 TgC for Europe (EU15 + Norway +
Switzerland: 120 million ha) by a recent LPJ modelling study by ATEAM (Lindner et
al., 2004; Schröter et al., 2004) would be increased by 3.42 TgC or by 46%. Hence,
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the potential carbons sink due to recovering from former disturbance is in the same
magnitude as the currently projected sink.

4.2 How can we account for these effects in modelling?

The initialization of the model state needs to account for former disturbances. Soils
that have been disturbed centuries ago are still in a transient state due to the long5

timescales of the slowest pool. At sites, where the relaxed equilibrium assumption is
valid (time since last disturbance is longer than a century), the transient correction can
be applied.

The transient correction does not specify the decay rate of the slowest pool, because
the rate can not be determined by calibrating equilibrium states to current stocks or10

observing current stock changes. If no method of constraining this rate is available,
1/5 of the standard decay is a good first estimate, because lower rates did not change
results much in decadal time scale (Fig. 8).

The variation in uncertainty of carbon stock changes was caused in part by the higher
initial percentage of the slow pool in the increased temperature sensitivity scenarios15

(Fig. 5). We suppose that uncertainty of stock changes due to slow pool parameter-
ization will be largest in soils, where the initial percentage of the slow pool after the
transient correction is large or where decay rates are high. All in all, the range of un-
certainty in decay rates adds considerable amount of uncertainty in predicted changes
of carbon stocks within the next century (Fig. 6 and 7).20

Adjustment of pools may initialize models to non-valid states. However, most models
have no feedbacks or very weak feedbacks from the slowest pool to the other pools.
Hence, we do not expect big numerical errors or anomalies due to the transient correc-
tion when simulating the system.

One precondition for applying the transient correction is an independent estimate of25

current soil carbon stocks. This estimate must account for the disturbance history. Best
choice is measuring carbon stocks at the site. However, this is laborious and expen-
sive. If the disturbance history can be assumed to be similar within a region, a spatial
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extrapolation of measured carbon stocks can be used. Therefore recent literature on
spatial extrapolation of carbon measurements is reviewed here. Ryan et al. (2000)
present a classification of approaches extrapolating soil properties and some applica-
tions. First, there are geostatistical methods, especially kriging (Webster, 1985). Vari-
ous modifications of kriging can be applied where spatial correlation is high (e.g. Emery,5

2006). However, soil carbon stocks at regional scale do not have a good spatial cor-
relation. Second, there are heuristic and knowledge based approaches (Zhou et al.,
2005) which infer soil properties based on spatially accessible information. This is
closely related to the third group of approaches called environmental correlation which
involves the development of statistical models. Spatially available information can be10

retrieved from forest surveys, carbon stock observations, remote sensing or digital ele-
vation models. While topographic indices (e.g. curvature) are best suited at catchments
scale (e.g. Gessler et al., 2000) these indices can be used to define homogenous areas
of soil properties in order to scale up point measurements (Baatz and Schäpe, 2000;
Burnett and Blaschke, 2003; Friedrich, 1996; Sonnabend, 2002). This allows defining15

stratums of soils and scale up soil properties by taking into account the area covered
by each stratum (e.g. Post et al., 2001). The environmental correlation approach has
already been successfully applied using stratums defined by site classifications and
forest types (e.g. Liski and Westman, 1997; Perruchoud et al., 2000; Wirth et al., 2004;
Wutzler et al., 2006).20

4.3 Do the consequences also apply to other models?

The models Century (e.g. Parton et al., 1988), Coup (Jansson and Karlberg, 2004),
Romul (Chertov et al., 2001), and the soil model of Biome-BGC (Thornton, 1998) all
define a very slow pool. Except Romul, which provides a database of compiled initial
states, all these models use the equilibrium assumption to infer initial states. There-25

fore, the consequences of Yasso model simulations also apply to these models. The
transient correction should also be readily applicable to these models except the Roth-
C model. The Roth-C model specifies no input to the inert pool and already calibrates
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the size of the inert pool in a way that the average age of the soil pool matches the age
determined by C14 measurements (Martel and Paul, 1974; Rumpel et al., 2002).

4.4 How can we test whether soil carbon stocks are apart from equilibrium?

The influence of former disturbances, namely former land use, on current soil carbon
stocks, C:N ratios, nitrification and other soil properties is confirmed by many stud-5

ies (e.g. Berger et al., 2002; Caspersen et al., 2000; Dupouey et al., 2002; Goodale
and Aber, 2001; Janssens et al., 2001; e.g. Koerner et al., 1997; Mund, 2004; Mund
and Schulze, 2005; Rothe et al., 2002; Thornton et al., 2002; Wardle et al., 1997).
These influences can be much stronger than climatic influences (Caspersen et al.,
2000; Janssens et al., 2001) and can be observed after 1700 years (Dupouey et al.,10

2002). A recent review regarding soil carbon changes in forests concludes that the vast
intensive cultivation throughout Europe (deforestation, drainage, deflation and erosion)
has caused immense historical losses of soil carbon. Nowadays forested areas with
degraded soils are abundant and offer a tremendous potential to restore carbon stocks
(Baritz et al., 2004). Foster et al. (2003) describe processes that alter soil proper-15

ties in historic timescales. The most important ones are probably tillage (Grandy and
Robertson, 2006; Wall and Hytonen, 2005) and erosion (Polyakov and Lal, 2004).

One consequence of soil being apart from equilibrium is the underestimation of cur-
rent soil carbon stocks for sites that have not been disturbed for a much longer time
than the sites used for parameterization and the overestimation of current soil carbon20

stocks for sites that have been disturbed in the last centuries. Is this observed? We did
not apply the Yasso model to the old-growth forest with high carbon stocks (Harmon et
al., 2004; Wardle et al., 1997), but we realize that the litter input and adjustment of de-
cay rates with climate would not be sufficient to simulate the large stocks. In this study
we presented simulations of forest soils that have been disturbed by wood pasture 15025

years ago with lower observed carbon stocks than stocks predicted by spin-up runs
(Fig. 5). These observations confirm the notion of soils being apart from equilibrium.

Koerner et al. (1999) found that δ15N values increase with intensity of former land
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use. They related this to former input of 15N enriched manure, and to the activation of
soil nitrification. The increase δ15N can be used as a (yet non-quantitative) tracer of
previous land use in forests.

4.5 How can we interpret and constrain the slow pool’s decay rate without assuming
equilibrium?5

There are only vague ideas about which processes determine the slow kinetically de-
fined pools and their decay rate. Couteaux et al. (1995) present a conceptual model
of decomposition in the organic layer that is divided in three phases. The initial phase
could be roughly attributed to the decay of the extractives, celluloses, and lignin pools
of the Yasso model, the late phase to the pools lignin and humus one pool, and the final10

stage to the decay of the most recalcitrant pool. Howard et al. (1974) found, when ex-
trapolating mass loss of litter bag studies with an asymptotic model, that in many cases
the proportion of mass that is decayed, is smaller than 100% and that there is a part of
the litter that is transformed to stable components. Björn Berg termed the asymptote
of the decay “limit value” and showed that it can be correlated with litter quality and15

climatic conditions (e.g. Berg et al., 2003; Berg et al., 1996). If pools are attributed to
the decay phases as described above, the portion above the limit value corresponds to
the flux into the slowest pool. It needs to be investigated, if this approach can be used
to constrain the slower pools without the equilibrium assumption. The parameterization
of the slow pools then will depend on litter quality, namely initial nitrogen content, and20

climatic drivers.
Another expensive approach is to measure 14C ages of soils. This average age

of soil carbon could be used to constrain the proportions of the two slowest pools,
and hence its decay rate. In order to avoid expensive 14C measurements, empirical
relationships can be used (Falloon et al., 1998).25
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5 Conclusions

– Observations of current soil carbon stocks are not sufficient to constrain the decay
rates of the recalcitrant components and the corresponding equilibrium carbon
stocks, because it is not known whether carbon stocks are in equilibrium, because
of the long time scales of recovering from disturbances.5

– If soils are apart from equilibrium, spin-up runs are only valid for sites that have
a similar disturbance history as the sites used for model calibration. The spin-up
runs underestimate the stock of sites that have not been disturbed for a very long
time and overestimate the stock of sites that have been disturbed two or three
centuries ago.10

– Spin-up runs of the kinetic pool defined models should be corrected by the “tran-
sient correction”, i.e. the adjustment of the slowest pool in a way that the sum of
soil pools matches an independent estimate of soil carbon stocks. Such an esti-
mate can be obtained by soil carbon stock observations or by regional statistical
models that can account for the unknown but similar disturbance history.15

– In century-term simulations the uncertainty due to the unknown decay rate of the
slowest pool results in uncertainty of stock changes in the magnitude of 1′ g/m2/yr.
This uncertainty is reasonably small compared to simulated changes in soil car-
bon stocks due to litter input and climate change in most cases. The amount of
uncertainty does not change very much with changing litter input and changing20

temperature. However, this amount increases with temperature sensitivity of the
slow pools and the initial proportion of the stock of the slowest carbon pool.

– Carbon storage capacity of forest soils is potentially much higher than currently
assumed.

– Century-term simulation of changes in soil carbon stocks that use spin-up-runs25

without the transient correction miss a substantial amount of carbon accumulation
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at many forest sites.

Appendix A

Calculation of average litter inputs

In addition to the measured litter input, we calculated input by harvest residues and5

coarse roots after harvest in the following way. Merchantable timber volume and vol-
ume increment of the remaining part of the stand was estimated by yield tables (Dittmar
et al., 1986). We assumed a harvest of 50% of the volume at age 140 years and 15%,
15% and 20% at the ages 150, 160, 170 years respectively. Carbon mass of tree
compartments stem, branches were estimated by age and site index dependent con-10

version factors of (Wirth et al., 2004). Extracted wood volume on harvest was 92% of
merchantable timber volume (Weber personal communication). Carbon mass of har-
vest residues was calculated by the difference between stem/branch carbon and the
carbon mass of the extracted wood by applying a wood density of 0.56 t/m3 and a car-
bon concentration of 48.6%. (Weiss et al., 2000). The harvest residues and roots were15

partitioned to the inputs of the Yasso model according to Table 4. The coarse woody
part of harvest residues was removed by about 90% by wood pickers (Mund, personal
communication). The sum of harvest residues and root biomass was divided by the
rotation length of 140 years and added to the average litter inputs.

Appendix B20

Parameterization of the Yasso model

Following tables list the standard parameters that have been applied to the Yasso
Model for simulation experiments.
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climatic parameters (standard climate)

mat0 3.3◦C standard mean annual temperature
drought0 –32 mm standard precipitation – potential evapotranspiration from may to september
beta 0.105 effect of mean annual temperature
gamma 0.00274 effect of drougth

decomposition rates (k) and mass proportions of decay use to form more recalcitrant5

components (p)

Compartment k [1/yr] p [1]

ext 0.48 0.2 conifers
ext b 0.82 0.2 deciduous
cel 0.30 0.2
lig 0.22 0.2
hum1 0.012 0.2
hum2 0.0012 0

standard relative sensitivity of slow pool decay rates to differences in temperature and10

drought

s1 (hum1) 0.6
s2 (hum2) 0.36

microbial invasion rates with standard climate15

compartment a [1/yr]

fwl 0.54
cwl small 0.077
cwl large 0.030
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chemical composition of litter, used in the equilibrium experiment (pinus sylvestris).

compartment ext ext b cel lig

nwl 0.27 0 0.51 0.22
fwl 0.03 0 0.66 0.31
cwl 0.01 0 0.69 0.3

5

chemical composition of litter, used in the Leinefelde application (broadleaved)

compartment ext ext b cel lig

nwl 0 0.38 0.36 0.26
fwl 0 0.03 0.65 0.32
cwl 0 0.01 0.77 0.22
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Table 1. Comparison of equations between the usual equilibrium assumption and the relaxed
equilibrium assumption for the slowest pool. k: decay rate, i : input rate, Cc: current stock, Ce:
equilibrium stock.

Usual Relaxed

Mass balance i = k · Cc; δCc
δt = 0 i = k · Cc +

δCc
δt

Decay rate k = i
Cc

k =
i− δCc

δt
Cc

Equilibrium stock Ce = i
k = CC Ce = i

k > CC

1703

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/3/1679/2006/bgd-3-1679-2006-print.pdf
http://www.biogeosciences-discuss.net/3/1679/2006/bgd-3-1679-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


BGD
3, 1679–1714, 2006

Soils apart
equilibrium
modelling

T. Wutzler and
M. Reichstein

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Table 2. Scenario groups of the simulations of the Leinefelde/Mühlhausen chronosequence.
Within each group simulations were performed with different decay rates of the slowest pool
(hum2) and repeated with increase climate sensitivity.

Scenario Group Description

base current inputs and current temperature
litter increase of litter inputs by assuming that all the wood remains in the forest (conservation scenario)
t3-t9 increase of temperature by 3,6, and 9 Kelvin gradually over the next 100 years
t3+litter increase of litter input and increase of temperature by 3 Kelvin

1704

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/3/1679/2006/bgd-3-1679-2006-print.pdf
http://www.biogeosciences-discuss.net/3/1679/2006/bgd-3-1679-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


BGD
3, 1679–1714, 2006

Soils apart
equilibrium
modelling

T. Wutzler and
M. Reichstein

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Table 3. Average litter inputs to the Yasso model [tC/ha/yr]. nwl: non woody litter, fwl: fine
woody litter, cwl small: coarse woody litter with a diameter diameter 6–20 cm, cwl large: coarse
woody litter with a diameter 20–60 cm.

Scenario Group nwl fwl cwl small cwl large

base, t3-t9 3.148693 0.528087 0.208115 0.08467
litter, t3+litter 3.148693 0.865541 1.242068 0.213914
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Table 4. Partitioning of the harvest residues and the root after harvest (excluding fine roots)
to different inputs of the Yasso model. fwl: fine woody litter, cwl small, coarse woody litter with
a diameter diameter 6–20 cm, coarse woody litter with a diameter 20–60 cm. Proportion of
fwl/cwl of roots is based on (Kummetz, 1996), proportion of cwl small/cwl large of roots is a
reasonable guess according proportion coarse roots/stump. Other studies of root biomass do
not distinguish different coarse roots with a diameter greater 2 mm (e.g. Drexhage and Gruber,
1998; e.g. Le Goff and Ottorini, 2001).

Harvest Residues Root

fwl 25% 21%
cwl small 67% 55%
cwl large 8% 24%
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nwl
Branches
Coarse Roots

Stem

fwl

cwl

ext

cel

lig

hum1

hum2

Foliage
Fine Roots CO2

CO2

CO2

CO2

CO2

Fig. 1. Model Structure of the Yasso Model (Liski et al., 2005). The pools on the left side
describe woody litter that becomes available for decomposition after a delay (nwl: non-woody
litter, fwl: fine woody litter, cwl: coarse woody litter). The pools on the right side (ext: extractives,
cel: celluloses, lig: lignin, hum1: humus1, hum2: humus2) represent soil carbon pools of
different stability that are modeled by different decay rates of an exponential decay. The ext
pool has the largest decay rate (i.e. least stability and shortest turnover time) and the hum2
pool has the smallest decay rate (i.e. highest stability and longest turnover time).

1707

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/3/1679/2006/bgd-3-1679-2006-print.pdf
http://www.biogeosciences-discuss.net/3/1679/2006/bgd-3-1679-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


BGD
3, 1679–1714, 2006

Soils apart
equilibrium
modelling

T. Wutzler and
M. Reichstein

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

nwl
Branches

Coarse Roots

Stem

fwl

cwl

ext

cel

lig

hum1

hum2

Foliage
Fine Roots

CO2

CO2

Equilibrium of fast pools
Stock (ext+cel+lig+hum1):
     40.7 tC/ha

Carbon flow to hum2:
0.063 tC/ha/yr (plig=phum1=0.2)
0.127 tC/ha/yr (plig=phum1=0.4)

Fig. 2. Relaxed equilibrium assumption: all pools are assumed to be in equilibrium except the
slowest pool (hum2). Constant average litter input determines equilibrium stocks of the faster
pools and the constant flow to the slowest pool.
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Fig. 3. Trajectories of the slowest pool of the Yasso model with different decay rates. Dy-
namics is described by a first order kinetics with constant input (Eq. 3): C= i

k−
( i
k−C0

)
· e−k ·t;

input i=0.06345 tC/ha/yr; stock at time zero C0=52.874 tC/ha. The lower the decay rate, the
higher is the resulting theoretical equilibrium stock and the larger is the current rate of carbon
accumulation, which is given by the slope ∆C/∆t at time zero.

1709

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/3/1679/2006/bgd-3-1679-2006-print.pdf
http://www.biogeosciences-discuss.net/3/1679/2006/bgd-3-1679-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


BGD
3, 1679–1714, 2006

Soils apart
equilibrium
modelling

T. Wutzler and
M. Reichstein

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

(a)
Prescribed Accumulation Rate [tC/ha/yr]

D
ec

ay
 R

at
e 

[1
/y

r]

0.00 0.05 0.10 0.15 0.20 0.25
1e6

5e6
1e5

5e5
1e4

5e4
1e3

5e3

ooooo
o

oo
o

ooo
o

o

xxxxxxx x x xx x x x
x

x

xx

xxx
xo

x
i=0.063 tC/ha/yr
i=0.127 tC/ha/yr

(b) Prescribed Accumulation Rate [tC/ha/yr]

E
qu

ili
br

iu
m

 S
to

ck
s 

[tC
/h

a]

0.00 0.05 0.10 0.15 0.20 0.25

50
100
200

500
1000
2000

5000
10000
20000

50000

oooo
o

o

oo
o

oo
o
o

o

xxxxxxx x x xx x x x
x

x

xx

xx
x
x

(c)
Prescribed Accumulation Rate [tC/ha/yr]

A
cc

um
ul

at
io

n 
Ti

m
e 

(t9
5)

 [y
r]

0.00 0.05 0.10 0.15 0.20 0.25

1e3

1e4

1e5

1e6

1e7

oooo
o

o

oo
o

oo
o
o
o

xxxxxxx x x xx x x x
x

x

xx

xx
x
x

Fig. 4. Decay rates (a) (Eq. 4), equilibrium stocks (b) (Eq. 5), and accumulation times (c) (Eq. 6)
that result when different rates of current carbon accumulation (x-axis) are prescribed. Symbols
correspond to two different equilibrium inputs that result from a variation in the proportion of
decomposed mass in the Yasso Model.
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Fig. 5. Transient correction at the Mühlhausen/Leinefelde site. Spin-up-runs of the Yasso
model simulate the theoretical equilibrium stocks of the kinetically defined soil carbon pools
(ext, cel, lig, hum1, and hum2). The transient correction decreased the slowest pool (hum2) so
that the sum of the pools matches the observed carbon stocks. Climatic sensitivity: The decay
rates of the slower pools were less sensitive to warming than the faster pools with standard
parameterization and equally sensitive (s1=s2=100%) in the scenarios of increased climate
sensitivity.
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Fig. 6. Development of the soil carbon stocks at the Leinefelde chronosequence simulated
by the Yasso model with standard climate sensitivity. The sum-lines represent the sum of
the stocks of the Yasso soil pools (ext+cel+lig+hum1+hum2). The four panels correspond to
different scenario groups (base: no change in litter inputs and temperature, litter: increase litter
input, t3: temperature increase of 3 K gradually over 100 years). The diverging lines represent
the boundaries of the stocks with different parameterizations of the decay rate of the slowest
pool (hum2).
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Fig. 7. Development of the soil carbon stocks at the Leinefelde chronosequence simulated like
the ones in figure 6 except an increased climate sensitivity of the slow pools (s1=s2=100%).
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Fig. 8. Difference of carbon stocks from base line (standard parameterization, rHum2=0.0012)
after 100 years (y-axis) caused by different parameterization of the decay rate of the slowest
pool (logarithmic x-axis). The four panels correspond to different scenario groups (base: no
change, litter: increase litter input, t3: increased temperature).
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