N

N

Topography induced spatial variations in diurnal cycles
of assimilation and latent heat of Mediterranean forest
C. van Der Tol, A. J. Dolman, M. J. Waterloo, K. Raspor

» To cite this version:

C. van Der Tol, A. J. Dolman, M. J. Waterloo, K. Raspor. Topography induced spatial variations
in diurnal cycles of assimilation and latent heat of Mediterranean forest. Biogeosciences Discussions,
2006, 3 (5), pp.1631-1677. hal-00297851

HAL Id: hal-00297851
https://hal.science/hal-00297851
Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00297851
https://hal.archives-ouvertes.fr

Biogeosciences Discuss., 3, 1631-1677, 2006 —G;-s\ Biogeosciences

www.biogeosciences-discuss.net/3/1631/2006/ - .
© Author(s) 2006. This work is licensed Discussions
under a Creative Commons License.

Biogeosciences Discussions is the access reviewed discussion forum of Biogeosciences

Topography induced spatial variations in
diurnal cycles of assimilation and latent
heat of Mediterranean forest

C. van der Tol1, A.J. Dolman1, M. J. Waterloo1, and K. F!aspor2

1Dept. of Hydrology and Geo-Environmental Sciences, Vrije Universiteit Amsterdam,
The Netherlands
®Dept. of Civil and Geodetic Engineering, University of Ljubljana, Slovenia

Received: 4 September 2006 — Accepted: 29 September 2006 — Published: 6 October 2006

Correspondence to: C. van der Tol (tol@itc.nl)

1631

BGD
3, 1631-1677, 2006

Topography induced
variations in
assimilation and
latent heat

C. van der Tol et al.

Title Page
Abstract Introduction

Conclusions References

Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/3/1631/2006/bgd-3-1631-2006-print.pdf
http://www.biogeosciences-discuss.net/3/1631/2006/bgd-3-1631-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html

10

15

20

25

Abstract

The aim of this study is to explain topography induced spatial variations in the diurnal
cycles of assimilation and latent heat of Mediterranean forest. Spatial variations of the
fluxes are caused by variations in weather conditions and variations in the vegetation
characteristics. Weather conditions reflect short-term effects of climate, whereas vege-
tation characteristics, through adaptation and acclimation, long-term effects of climate.
In this study measurements of plant physiology and weather conditions are used to
explain observed differences in the fluxes. A model is used to study which part of the
differences in the fluxes is caused by weather conditions and which part by vegetation
characteristics. Data were collected at four experimental sub-Mediterranean deciduous
forest plots in a heterogeneous terrain with contrasting slopes and aspect, soil water
availability, humidity and temperature. We used a two leaf layer model to scale fluxes
from leaf to canopy, and calculated the canopy energy balance. Parameter values were
derived from measurements of light interception, leaf chamber photosynthesis, leaf ni-
trogen content and B¢ isotope discrimination in leaf material. Leaf nitrogen content is
a measure of photosynthetic capacity, and 8¢ isotope discrimination of water use effi-
ciency. For validation, sap-flux based measurements of transpiration were used. The
model accurately predicted diurnal cycles of transpiration and stomatal conductance,
both their magnitudes and differences in afternoon stomatal closure between slopes of
different aspect. The diurnal cycles were more strongly affected by spatial variations
in vegetation parameters than by meteorological variables. This indicates that topog-
raphy induced variations in vegetation parameters are of at least equal importance
to the fluxes as topography induced variations in radiation, humidity and temperature.
Weather conditions mainly affect the shape of the diurnal cycles, and vegetation pa-
rameters the magnitude of the fluxes.
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1 Introduction

Surface exchange models for water and carbon dioxide have developed in the last 30
years from simple conceptual models towards more accurate descriptions of the soil-
vegetation-atmosphere system. This development is driven by an increasing emphasis
on the carbon balance as a focal point of atmospheric modelling beside the energy
and water balance (Sellers et al., 1997). A great improvement has been the discov-
ery of a close relation between stomatal conductance and photosynthesis rate (Wong
et al., 1979), and the consequent integration of the descriptions of transpiration and
photosynthesis (Lloyd et al., 1995; Harley and Baldocchi, 1995; Tuzet et al., 2003).

Two important processes in these integrated models, are carboxylation of carbon
dioxide in leaves, and transport of carbon dioxide from the air into leaves. Transport of
carbon inevitably involves loss of water by transpiration, which travels along the same
path as carbon but in opposite direction. The uptake of carbon dioxide and the loss of
water by transpiration is regulated by stomatal conductance. The two most important
characteristics of vegetation to describe these processes are unquestionably the pho-
tosynthetic capacity and the way in which vegetation regulates stomatal conductance
(Farquhar and Sharkey, 1982).

Both weather conditions and vegetation characteristics affect the fluxes of water and
carbon. The effect of vegetation is in fact an indirect effect of climate: the evolution of
vegetation depends on long-term climate (Hetherington and Woodward, 2003). Thus,
we can distinguish short term (or direct) from long-term (or indirect) effects of climate.
Short term effects are those of radiation, temperature and vapour pressure deficit, and
long term effects those of photosynthetic capacity and regulation of stomatal conduc-
tance. Both weather conditions and vegetation characteristics vary spatially, and are
most likely correlated in some way.

This study focuses on the quantification of the effects of those spatial variations in
weather conditions and vegetation characteristics on the diurnal cycle of latent heat
flux. The two aims of the study are (1) to translate vegetation characteristics into
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diurnal cycles of photosynthesis and transpiration, and (2) to separate the effects of
weather conditions and vegetation characteristics on the diurnal cycles of assimilation
and latent heat flux using a sensitivity analysis.

We use a sun-shade model for photosynthesis and the energy balance to calculate
the fluxes of carbon dioxide and water from leaf parameters. This model is similar to
existing models for scaling of fluxes from leaf to canopy (Leuning et al., 1995). The
novelty of our approach is the data we use for parametrization and validation of the
model. Data were collected during a field campaign at four experimental plots in nat-
ural broadleaf sub-Mediterranean forests in Slovenia, which contrast in local hydrolog-
ical and climate conditions, aspect and vegetation composition. Contrary to studies
which calibrate vegetation parameters from measured fluxes, we used independent
measurements at leaf level for parametrization, and sap flux density measurements for
validation. For parametrization we use leaf nitrogen content, e isotope discrimination
of leaf material, and leaf chamber photosynthesis measurements. In this way, we test
whether canopy scale fluxes can be predicted from leaf parameters. Spatial patterns
in vegetation parameters and fluxes give an idea of how adaptation works. Next, we
perform a sensitivity analysis of the model to separate the effects of vegetation param-
eters and weather conditions on surface conductance and the fluxes of carbon dioxide
and water.

2 Method and materials
2.1 Model description

The model we used to calculate the fluxes of water and carbon dioxide consists of
three components: photosynthesis and transpiration at leaf level as a function of bio-
chemical parameters, scaling of the fluxes to canopy level, and an energy balance of
the canopy. At leaf level, diffusion equations, a biochemical model for photosynthesis
(Farquhar et al., 1980) and the model for optimal stomatal control of Cowan (1977) are

1634

BGD
3, 1631-1677, 2006

Topography induced
variations in
assimilation and
latent heat

C. van der Tol et al.

Title Page
Abstract Introduction
Conclusions References
Tables Figures
(R [ 4]
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU


http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/3/1631/2006/bgd-3-1631-2006-print.pdf
http://www.biogeosciences-discuss.net/3/1631/2006/bgd-3-1631-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html

10

15

20

used. Scaling from leaf to canopy is carried out with a two-leaf model that distinguishes
between a sunlit and a shaded fraction of leaves. An energy balance of the canopy is
used to solve canopy temperature, which in turn affects the processes in the leaves.
Figure 1 shows the structure of the model. In what follows, the three components of
the model are presented.

Water and carbon dioxide move by diffusion in opposite directions between the stom-
ata and the air. Water evaporates from the cell walls, and travels from the stomata to
the air, whereas carbon dioxide travels from the air, via the stomata into the mesophyll,
where it is reduced to sugars by the chemical reactions in the Calvin cycle. If the resis-
tance for transport of carbon dioxide from the stomata to the mesophyll is neglected,
then the diffusion equations can be written as:

M

a

E=16 =% _ 464D
=1.69— ) =1.6g (1)

A=9g(C,-C)) (2)

where E is evaporation and A assimilation (mol m~2 s‘1), g the effective aerodynamic

and stomatal conductance (m s’1), e; and e, the vapour pressure in the intercellular

spaces and in the ambient air (Pa), respectively, p atmospheric pressure (Pa), o, spe-
Da &i-

cific mass of air (kg m‘3), M, the molar mass of air (kg mol'1), D=Ma Tea the molar

vapour concentration gradient between the intercellular space and the air (mol m'3),
and C, and C; the molar carbon dioxide concentration in the ambient air and in the
stomata (mol m‘s), respectively. The process of photosynthesis is described with the
biochemical model of Farquhar et al. (1980):

p v(C;-T") o -
=———— —Hy4

Ci+vy
v =V, and y=K, (1"'/(%) for Rubisco limited photosynthesis and v=4(/+‘% and
y=2I" for photon limited photosynthesis, V/,,, is the maximum carboxylation capacity
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of Rubisco (mol m~2 3‘1), " the compensation point for carbon dioxide in absence
of dark respiration (mol m‘3), O the oxygen concentration (mol m'3), K, and K, the
Michaelis-Menten constants for carbon dioxide and oxygen (mol m'3), R, dark respira-
tion (mol m™2 3’1), g the quantum yield efficiency, J,, the maximum potential electron
transport rate (mol m~2 s‘1) and / the irradiance by photosynthetically active radiation
(PAR) (mol m~2 3’1).

Once values for the biochemical parameters are known, the diffusion equations
(Egs. 1 and 2) and the biochemical model (Eqg. 3) form a set of three equations con-
taining four unknowns (A, E, g and C;). A fourth equation, describing the stomatal
behaviour, is required to yield a unique solution. Cowan (1977) and Cowan and Far-
quhar (1977) suggested that stomata operate such as to minimize the evaporative cost
of plant carbon gain. This condition is met if the marginal water cost of assimilation A,
is constant with time:

6E/6g
6A/6g

This model does not explain how stomatal regulation works physiologically, but only
describes the stomatal behaviour that yields the highest mean assimilation rate over
a time period with variable environmental conditions, during which a certain positive
amount of water evaporates. The parameter A is a measure for the intrinsic water
use efficiency (Lloyd and Farquhar, 1994). Low values of A refer to more water effi-
cient vegetation than high values. The advantage of this model for stomatal behaviour
compared to empirical relations between stomatal conductance and humidity deficit, is
that only one parameter, which has a conceptually clear meaning, is used. The model
works best for the diurnal cycle, although it has also been applied to longer time peri-
ods, including dry conditions (Cowan, 1986). A problem with longer time scales and dry
periods is that A does not remain constant (Makela et al., 1996; Arneth et al., 2002),
because of hydraulic limitation of transport of water (Tyree and Sperry, 1988; Jones,
1998; Mencuccini, 2003) and because stomata respond to abscisic acid transmitted by
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roots (Zhang and Davies, 1989).

With Egs. (1) to (4), the variables A, E, g and C; are uniquely defined. Solving
Egs. (1) to (4) results in a C; that is a function of the vapour gradient D between the
intercellular space and the air (Appendix A). The solution is different for the case in
which assimilation is enzyme limited and for the case in which assimilation is electron
limited. Because it is not known a-priori whether assimilation is enzyme or electron
limited, C; is solved by iteration of Egs. (A1) to (A3) and the biochemical model (Eq. 3).

Climate variables in this model are photosynthetically active radiation (PAR), vapour
pressure deficit and carbon dioxide concentration. Biochemical parameters are max-
imum carboxylation capacity V,,, and maximum electron transport J,,,, quantum yield
efficiency g, marginal cost of assimilation A and Michaelis-Menten coefficients for the
chemical reactions in the Calvin cycle.

The approach used to scale from leaf to canopy level (Appendix B) is similar to that
of De Pury and Farquhar (1997). Lambert-Beer’s equation is used to calculate the
vertical distribution of light in the canopy, discriminating between indirect (diffuse) and
direct light, which have different extinction coefficients. Because the experimental sites
were located on steep slopes, a coordinate rotation was used to correct for the effect
of topography on the extinction coefficients for direct light (Appendix B). The model
calculates the exposed and shaded fraction of leaves (f, and f,), and the intensities of
PAR on the exposed and shaded leaves (/, and /;), which are variable over the day.
The fluxes and the surface conductance at canopy level are calculated by adding the
contributions of the two fractions:

V =L (f,v, + f5vy) (5)

where V' and v refer to any of the variables A, E and g at canopy and leaf level,
respectively, the index e to exposed and s to shaded, and L is leaf area index. The
effective internal carbon dioxide concentration for the canopy is:

A
Ci=Ca—5 (6)
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where A is canopy assimilation and G the canopy-scale equivalent of g.

For the calculation of E with Eq. (1), an estimate of the internal vapour pressure e;
is needed, which cannot be measured directly. The intercellular vapour pressure is in
equilibrium with leaf water potential and leaf temperature. Because air in stomata is
always close to saturation, we assume that e, is the saturated vapour pressure g, at
surface temperature T:

e; = ey(T,) (7)
Surface temperature is solved from the energy balance. Neglecting soil heat flux and
changes in heat storage, the energy balance is:

R,=H+E (8)

where R, is net radiation, H sensible and AE latent heat flux (all in W m‘z). Latent heat
flux is calculated by converting £ from units of mol m2s ' to kg m?s™" and multiply-
ing by the latent heat of vaporisation of water, A (=2.501-0.0024 7 (°C) MJ kg'1).

Muoe -e,
M, p

AE =1.6A0,G 9)

where My, o the molar mass of water (kg mol’1). Sensible heat flux is calculated as:
H = 0,¢,Ga(Ts = T,) (10)

where G, the aerodynamic conductance. Net radiation is calculated from incoming
and outgoing shortwave and longwave radiation:

R,=(00-a)Rs +R;-R, (11)

where R;;, R,; and R,, incoming shortwave, incoming longwave and outgoing longwave
radiation, respectively, and a the reflection coefficient for shortwave radiation (albedo).
Outgoing longwave radiation is calculated with Stefan-Boltzman’s equation:

R,, = eoTy (12)
1638
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where ¢€=0.98 the emissivity of the canopy and o Stefan-Boltzman constant
(=5.67x10" Wm™2K™).

From the biochemical model (Egs. 1 to 4), A, E, C; and g can be solved, provided
that e, is known. Equation (5) is used to scale from leaf to canopy, and from the energy
balance (Egs. 7 to 12), e;, ), R,,, R,, H and AE can be solved, provided that G and G,
are known. Both sub-models should be solved simultaneously. An analytical solution
is not possible due to the non-linearity of the interactions between the sub-models. For
this reason, surface temperature is adjusted iteratively in order to force energy balance
closure.

The aerodynamic conductance G, is calculated with a wind function:

G, =G, +Bu (13)

where G,y a convective term, u wind speed measured at the meteorological station
(m s'1), and B an empirical wind function. The terms G,, and B are calibrated by
optimising calculated surface temperatures T, with measured ones. Because T is
measured only at the south plot, the parameters G,, and B of the south plot are also
used at the other three plots.

2.2 Site description

The study was part of a broader project to study the effects of natural reforestation on
the water balance and geomorphology of the river catchment of the Dragonja River in
Mediterranean Slovenia (N 45°28' E 13°46/, Fig. 2).

The Dragonja catchment is located within a 30 km wide band along the Adriatic coast
of the peninsula of Istria with has a Sub-Mediterranean climate. The Julian Alps and up
to 1500 m high Karst plateaus form sharp orographic boundaries at the north and the
east with a more continental climate, with lower temperatures and higher precipitation.
The Sub-Mediterranean climate is classified as Caf (mild winter, hot summer, no dry
season) in the Koéppen system. Mean annual precipitation varies from 1300 mm at the
source to 1000 mm at the outlet of the Dragonja and is distributed evenly over the year.
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The parent material in the Dragonja catchment is flysch: a sequence of calcareous
shales and thin sandstone banks. In the upper part of the catchment, broad plateaus
are intersected with narrow, steep river valleys of two contributing streams. In the lower
part, the valley is broad and the plateaus narrow. The elevation ranges between 0 and
330 m above sea level. Soils in the whole catchment are Rendzina soils (Keesstra,
2006) and consist of clay loam (30 percent sand, 50 percent silt, 20 percent clay). Soil
depth ranges from a few decimeters on the slopes to several meters of alluvial deposits
in the valley.

Four experimental plots were selected in deciduous forests, which contrasted in as-
pect, local hydrological and climate conditions and vegetation composition (Fig. 2). The
forests had developed with minimum human interference during the last 50 years. Both
texture and chemical composition of the soils at the plots were similar. One plot was
located on a north and one on a south facing slope (north and south plot), and one
at the foot of a converging west facing slope (west plot) and one on a diverging south
facing slope (east plot). Although the east plot has a south facing aspect, it was named
east plot to distinguish it from the south plot, and because it is located the most to the
east.

The differences in water availability, light, temperature and vapour pressure deficit
among the plots are presented schematically in Fig. 3. Two plots are predominantly
sunlit and experience a high vapour pressure deficit, temperature and radiation input
(south and east), and two plots predominantly shaded and experience a low vapour
pressure deficit, temperature and radiation input (north and west). Two plots experi-
ence a high (north and east) and two plots a low (south and west) water availability.
In this way, each of the four combinations of high and low vapour pressure deficit and
high and low soil moisture content was present.

The plots not only contrasted in micro-environment, but also in species composi-
tion (Fig. 4), stem density and forest structure (Table 1). The dominant species were
Carpinus betulus at the two shaded plots (north and west), and Quercus pubescens at
the two exposed plots (south and east). Trees at the shaded plots were taller than at
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the sunlit plots. The forest at the east plot was younger, and pioneer vegetation was
present (Juniperus communis).

2.3 Measurements

At each plot, vegetation and soil parameters, meteorological variables and the water
balance were measured between May and September 2004. We selected only those
data for which vegetation was not limited by water availability. The reason for doing so
is that we are interested in the diurnal cycle during a period in which biochemical pa-
rameters remain constant, and water stress causes biochemical parameters to change
in time (Lambers et al., 2000). Those temporal variations of biochemical parameters in
a changing environment are the subject of a study we will publish separately.

Basic meteorological variables (wind speed, diffuse and direct incoming shortwave
radiation and reflected shortwave radiation) were measured at a meteorological station
3km east of the experimental plots. Parameters for the biochemical model at leaf
level were derived from leaf chamber photosynthesis measurements carried out on
two species at the south and the east plot, and leaf nitrogen content and 8¢ isotope
discrimination at all four plots.

Light response curves of photosynthesis and transpiration of leaves of Quercus
pubescens and Fraxinus ornus were measured using a broadleaf leaf chamber with
portable light unit connected to an LCA3 gas analyser (ADC BioScientific Lt., UK) at
the east and the south plot between 14 and 21 July 2004. At the east plot, the trees
were so small that measurements could be carried out at breast height. At the south
plot, measurements were carried out on a scaffolding tower of 9m height. The two
species sampled are the most abundant species at the south and the east plot.

2.4 Leaf sample analysis

Leaf samples for analysis of carbon and nitrogen content and 3¢ isotope discrimina-
tion were collected by a professional tree climber at the start (a few weeks after bud
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break) and the end (four weeks before the onset of senescence) of the growing season
at all four plots. The total number of leaf samples was 83 (15 at the north, 31 at the
south, 16 at the west and 21 at the east plot). One third of the samples was collected
between 5 May and 8 June 2004, and two third between 8 and 10 September 2004.
Each sample consisted of 4 to 15 leaves of different size from neighbouring branches
of a tree. The number of samples of a species was chosen such that it approximated
the relative contribution to the total sapwood area of that species at the plot. Species
which contributed less than 5 percent to the total sapwood area were not sampled. At
all plots, the sampled species represented over 85 percent of the sapwood area. Both
predominantly sunlit and predominantly shaded leaves were collected. Samples were
classified by plot, species, sunlit or shaded, and young or old leaves.

The leaves were air dried, oven dried at 50°C, minced in a mincing machine and
grounded in centrifugal ball mill. Carbon and nitrogen content (percentage by weight)
and discrimination of '>C were determined using an elemental CHNO-analyzer Flash
EA 1112 (Finnegan MAT, Bremen, Germany).

The '*C discrimination against ambient air was calculated as (Farquhar and
Richards, 1984):

513c._6¢c

Atc=—2 _ " 14
! 1+ A13C/ ( )

where 6'3C the isotope ratio per mil compared to the PDB standard, subscript a and /

indicate air and leaf, respectively, and 6'°C,=-8ppm. The long-term internal carbon

dioxide concentration is calculated as (Farquhar et al., 1989):

Cc; NA'C,-c

e (15)

Ca Cor — Cy4

where ¢,=4.4 per mil the discrimination by diffusion in air and ¢,=27 per mil the dis-

crimination by Rubisco.
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The leaf samples were used to calculate effective values for leaf nitrogen content
and '3C isotope discrimination for each plot. First, a Kolmogorov-Smirnov test showed
that the measurements of leaf nitrogen and 3¢ within each plot had normal distribu-
tions, and a Levene test showed the variances within the plots were not different from
each other. Next, the estimated mean values /i and variances $2 for each plot were
calculated as:

m = z F:m (16)
nS

£ =7 F& (17)
nS

where F; the contribution of species / to total sapwood area, and ng the number of
sampled trees of species /. A 95% confidence interval for the mean was calculated as:

N $2
m = M+ So.95) [ (18)
D

where s g5 the Student-t statistic for p=0.95 and n, the number of samples at each
plot.

The parameters for the model of Farquhar and internal carbon dioxide concentration
for each plot were derived in the following way. First, maximum carboxylation capacity
and electron transport capacity for each plot were calibrated from the leaf chamber
photosynthesis measurements. Next, a linear relationship between maximum carboxy-
lation capacity and leaf nitrogen content was calibrated for the leaves for which mea-
surements of both leaf nitrogen content and maximum carboxylation capacity were
available. Finally, this linear relationship was used to derive values for the maximum
carboxylation capacity at all four plots from measurements of leaf nitrogen content.

The average values of internal carbon dioxide concentration C; from the isotope
analysis were used to calibrate the model parameter A for each plot, by minimising the
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absolute difference between measured and calculated internal carbon dioxide concen-
tration. Modelled internal carbon dioxide concentration changes during the day. An
average was calculated by weighing C; with the instantaneous rate of photosynthesis
(Farquhar et al., 1982):
c - /A(t)(f,(t) i

A

Temperature, relative humidity, vertical profiles of soil moisture content and sap flux
density were measured continuously at each plot, and data stored at 30-min intervals.
Precipitation was measured at 3 stations within 500 m of the forest plots. Transpiration
was calculated from sap flux density measurements with the method of Granier (1987).
At each plot, 12 sensors were installed in 6 trees (2 sensors per tree). The trees were
selected such that they best represented the distribution of species and stem diameters
(Figure 4). From each of the three most abundant species at each plot, at least one
tree was sampled. Two species, Fraxinus ornus and Quercus, were sampled at all four
plots because they were present at all plots. Both ring porous (Quercus and Fraxinus
ornus) and diffuse porous species (Carpinus betulus, Juniperus communis and Acer
campestre) were sampled.

Effective mean sap flux density and a 95% confidence interval were calculated from
the individual sensors weighed by the contribution of each species to the total sapwood
area, in the same way as for leaf nitrogen (Eqgs. 16 to 18). Latent heat flux, AE (W m'z),
was calculated by multiplying sap flux density by the area of sapwood per unit forest
floor f4 and by the latent heat of vaporization of water 1 (2.5 MJ kg_1):

AE = Afym (20)

(19)

The area of sapwood per unit forest floor, f4, was calculated in the following way. Be-
cause the sensors had a length of 20 mm and were inserted in heat-conducting mate-
rial, it was assumed that the measured sap flux density is the effective sap flux density
of the outer 20 mm of the stem. However, for most trees the sapwood area extended
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deeper than 20 mm into the stem. The actual sapwood area was inferred from micro-
scopic analysis of tree cores taken perpendicular to the tree rings of all sampled trees
at the end of the growing season of 2004. A film of approximately 0.1 mm thickness
was planed off the tree cores with a razor blade and examined visually under a micro-
scope for the presence of active xylem vessels. The majority of xylem vessels were
present in the outer 20 mm, and few extended up to 40 mm depth. Because 10 to 30%
of active xylem vessels were present at depths greater than 20 mm, we used a value of
25mm=+10% for the sapwood depths for all trees at all plots. The total sapwood area
per unit forest floor was calculated by measuring the diameters of all trees in each plot.

The sun-shade model for light interception was validated using PAR measurements
along horizontal transects at the forest floor of the north and the south plot, and along
vertical transects at the south plot, at different weather conditions, times of the day
and days of the year. Leaf area index L was derived from PAR measurements on
completely overcast days.

3 Results

In this section we present the derivation of the parameters for the biochemical model
at leaf level from leaf chamber photosynthesis measurements and leaf samples, the
validation of the sun-shade model, the model predictions of diurnal cycles of the fluxes.
The discussion section is dedicated to a sensitivity analysis of the model.

3.1 Biochemical model

Figure 5 shows leaf chamber photosynthesis measurements used for parametrization
of the biochemical model, and model predictions (solid lines). The upper panels show
net assimilation as a function of photosynthetically active radiation (PAR), the lower
panels C;/C, versus PAR. The parameters V,,,,, R, and g of the photosynthesis model
were calibrated (Table 3) using these data, whereas a-priori values were used for other
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parameters (Table 2).

The measurements were carried out at similar vapour pressure deficit (10 hPa) and
temperature (28°C). If the hypothesis of Cowan (1977) holds, then C; should be in-
dependent of PAR. However, Fig. 5 shows a sharp increase of C;/C, when PAR de-
creases to low values. This is either caused by a minimum stomatal conductance that
prevents the stomata to fully close, or by the fact that the time interval of 2 minutes
between the measurements was too short for the stomata to reach an equilibrium.
The solid line in Fig. 5 was derived by assuming a relation between assimilation and
stomatal conductance as proposed by Leuning (1995).

The values for V,,, for the two sampled species (Table 3) were used to calibrate
the linear relationship between leaf nitrogen content and V,,,. Figure 6 shows leaf
nitrogen versus V,,, for the two sampled species at the south and the east plot, with
0.95 confidence intervals for both nitrogen content and V,,,,. We adopt a linear relation
of Field and Mooney (1986) to relate V,,, to nitrogen content:

V = x(N = N) (21)

where N, the residual leaf nitrogen content (=25 mmol m~2 or 0.5%), and x an empiri-
cal coefficient. We calibrated x for the two measurement points (solid line in Figure 6),
acknowledging the ambiguousness to use this relationship based on two data points
for all plots. However, our data agree with literature data (dots in Fig. 6), calculated
from values of maximum photosynthesis by Reich et al. (1999) for different vegetation
types in North and South America. Our data are in the same order of magnitude and
the relation between leaf nitrogen content and photosynthetic capacity is similar.
Table 4 shows the biochemical parameters as derived from the leaf sample analy-
sis and leaf photosynthesis measurements, and leaf area index for the four plots. For
R, and g, we used equal values for all plots. Differences in nitrogen content between
sunlit and shaded leaves were not significant, perhaps due to the open structure of
the canopy. It is remarkable that the two plots with the lowest vapour pressure deficit
(north and west) have higher carboxylation capacity V,,, than the two plots with the
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highest vapour pressure deficit (south and east), and that the two plots with the low-
est soil moisture content (south and west) have a higher intrinsic water use efficiency
(lower A) than the two plots with a higher soil moisture content. This topic will be dis-
cussed in detail in a separate study which focusses on the relation between climate
and biochemical parameters.

3.2 Sun-shade model

Figure 7 shows the modelled versus the measured fraction of direct light that reaches
the forest floor ///, at the north and the south plot. The model prediction is reason-
able for the south plot (r2:0.77), and poor for the north plot (r2:0.31), which can be
attributed to the high spatial variability of sunfleck distribution at the north plot due to
the heterogeneous structure of the forest. The values in the circle correspond to low
light conditions in the late afternoon. Figure 8 shows vertical profiles of measured (x)
and modelled (line) light distribution in the canopy at the south plot, measured at differ-
ent times of the day and for different weather conditions. The depth is in units of leaf
area index, assuming a homogeneous leaf distribution over depth. From left to right
and from top to bottom, the fraction of diffuse ambient irradiance increases from 13 to
100%. The curves are similar in shape, and the model performs well in all conditions
except for low solar angles and low light intensity (lower left and lower middle panel).
Although the shape of the curves are similar, large differences exist in the irradiance on
sunlit and shaded leaves depending on light conditions and time of the day. The insets
show calculated values for the fractions of sunlit (open boxes) and shaded (shaded
boxes) leaves, and the mean intensities of PAR on sunlit and shaded leaves. With
increasing fraction of indirect radiation, the difference in irradiance between sunlit and
shaded leaves decreases.
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3.3 Diurnal cycle of assimilation and latent heat

Figure 9 shows the mean diurnal cycles of A, AE and G, for all 20 clear days between
29 May and 8 July 2004. During this period, the time of sunrise and sunset shifted
by approximately 14 min. Because this is smaller than the time resolution of the data
(830min), we did not correct for this. The lines are model predictions, the bars 0.95
confidence intervals for latent heat flux estimated from sap flux measurements (from
now on referred to as measured latent heat), and surface conductance calculated from
measured latent heat using the inverse Penman-Monteith equation.

The diurnal cycles of assimilation show some remarkable features. The increase of
assimilation in the morning and the decrease in the evening are slower at the north
and the west than at the south and the east plot. This can be attributed to the lower
fraction of sunlit leaves at the north and the west plot than at the south and the east
plot, and consequently a greater contribution of leaves that assimilate at a light limited
rate, even late in the morning. Although assimilation reaches its peak later at the north
and the west plot than at the south and the east plot, the peak values are higher due
to a higher value of maximum carboxylation capacity V.,

The modelled diurnal cycles of latent heat closely match the measured latent heat.
This is remarkable, because the measured latent heat is entirely independent of the
data we used for deriving model parameters. The biochemical parameters V,,, (the
maximum carboxylation rate) and A (the marginal cost of assimilation) affect latent
heat flux in the following way. The north plot has the highest latent heat flux, because it
has both a relatively high V,,, and a relatively high A, i.e. a high photosynthetic capacity
and a high marginal cost of assimilation. The west plot also has a relatively high V/,,,,
but a low A, and therefore a lower latent heat flux than the north plot. The south and the
east plot both have a relatively low V/,,,, but the east plot has a higher A and therefore
a higher latent heat flux than the south plot.

The model accurately reproduces the diurnal cycles of surface conductance. The
north plot does not show afternoon stomatal closure, whereas the other three plots
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show a typical pattern of stomatal closure in the late morning and afternoon. This can
be explained by the combined effects of vapour pressure deficit and the parameter A.
Low values of A (low marginal cost of assimilation) indicate early stomatal closure in
response to vapour pressure deficit, whereas high values of A indicate that stomata
remain open relatively long. At the north plot, stomata remain open because A is high
and vapour pressure deficit low, whereas on all other plots, A is low, or vapour pressure
deficits are high, or both. At south plot, A is low and vapour pressure deficit high, at
the west plot, A is low, and at the east plot, vapour pressure deficit high.

In Fig. 10, the data are presented in a different way. This figure shows modelled ver-
sus measured latent heat flux for all half-hourly data between 29 May and 8 July 2004.
The solid lines are 1:1 lines. For all plots, the squared correlation coefficients are above
0.90. Latent heat flux at the north plot is slightly underestimated, and maximum latent
heat flux at the south and east plot overestimated. The significance of this difference
between measured and modelled latent heat flux is discussed in the next section using
an error propagation analysis of the model.

The model also predicts surface temperature. Modelled surface temperature is not
independent of the measurements, because surface temperature was used to calibrate
aerodynamic conductance at the south plot. Figure 11 shows for 27 June 2004, the
measured and modelled difference between surface temperature and air temperature
at the south plot (left panel), and the modelled temperature difference versus the mea-
sured temperature difference for all half hourly values between 19 May and 8 July 2004
(right panel). The correlation between modelled and measured surface temperature is
lower than that for latent heat. This is a minor problem, because T, — T, is relatively
small compared to the diurnal cycle of T,, and the model prediction of latent heat is not
very sensitive to errors in T — T ,.
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4 Discussion

The agreement between modelled and measured fluxes depends on the accuracy of
four components: (1) measurements used for validation, (2) input variables, (3) param-
eter values and (4) the model description itself.

The uncertainty in the measurements for validation includes the variation of sap flux
density measurements among sensors and the sapwood-surface area ratio. An addi-
tional error is that we ignored the time lag that exists between transpiration and sap
flux due to storage of water in stems (Schulze et al., 1985). The data indicate that
indeed for some time after sunset, sap flow continues. However, there is no reason
why storage in stems and the time lag would be equal for all four plots (tree heights
vary from 3 m at the east plot to 18 m at the north plot). To account for the time lag
requires at least four additional parameters to be estimated (one for each plot). To cali-
brate these parameters against modelled latent heat would compromise our aim to use
independent data for validation of the model. An alternative would be to use radiation
data to estimate the time lag, but doing so also creates a dependence between the
model and the validation data, because the same radiation data are also used as input
in the model. Any other parametrization would be highly subjective. For this reason,
we did not account for the time lag.

The sensitivity of the model to the most relevant input variables and parameters was
calculated with an error propagation analysis, assuming all errors are uncorrelated.
The variance of the model prediction af of an output variable y can be calculated from
the variances of the variables and parameters x as:

5\ 2
oZ= ) o} (5—§> (22)

The greatest uncertainty in the input variables is the vapour pressure deficit, which was
measured at 2 m height rather than in or above the canopy. For four weeks at the end
of the growing season in 2004, the instrument for temperature and relative humidity
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was moved to just above the canopy at 9 m height at the south plot. A comparison with
measurements before and after relocation of the instrument with data of the other plots
showed that both temperature and relative humidity are lower above than below the
canopy. The net effect was that vapour pressure deficit was <2 kPa higher above than
below the canopy. At the north and the west plot, the effect might have been larger
because of the taller trees and the denser canopy. In the sensitivity study, we assumed
Oe,-¢=3 kPa. The greatest uncertainty in the biochemical parameters is the maximum
carboxylation capacity V,,,. The accuracy of I/,,, depends on the accuracy of nitro-
gen measurements and the relation with leaf chamber photosynthesis measurements.
Based on the confidence intervals of nitrogen and leaf chamber photosynthesis mea-
surements and the coarse relationship between nitrogen content and V,,,,, we assumed
0V0m=10/,zmol m~2 s‘1, which is about 20% of the actual values.

Table 5 shows the sensitivity of the mean value of the fluxes of water and carbon
dioxide to variations in e;—e, V,,,, A and L, absolute and as a percentage of the actual
values. In the table we present standard deviations instead of variances. The difference
between modelled and measured latent heat flux (Fig. 9) is smaller than the standard
deviation of the error of the model prediction, i.e. the difference between modelled
and measured latent heat falls within the accuracy of the parameter values and input
variables. Thus, there is no reason to improve the accuracy of the physical model
description itself. The uncertainty of the vapour pressure alone is insufficient to explain
the difference between measured and modelled latent heat flux.

The direct effect of climate and the effect of biochemical parameters on the fluxes
can be separated by the following modelling experiment. The north and the south slope
have different climate conditions, and also different biochemical parameters. In one
experiment, we reverse the meteorological variables at the north and the south plot
while leaving the biochemical parameters the same, and in another experiment, we
reverse the leaves of the north and the south plot while leaving the weather conditions
the same. Figure 12 shows the result of these model experiments for the surface
conductance. The bold curve is the reference scenario, as in Fig. 9, the fine line is the
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model where vapour pressure deficit, temperature, incoming radiation and aspect have
been reversed, and the dashed line the model where parameters V/,,,,, J,,, and A have
been reversed. Reversing the parameters has a greater effect on surface conductance
than reversing the meteorological variables. Reversing the biochemical parameters
results in a large change of the magnitude of surface conductance, but a similar shape
of the diurnal cycle. Reversing the meteorological variables also changes the shape of
the diurnal cycle, especially the hour of the peak.

Wilson et al. (2003) studied the time lag between the peaks of radiation and the
fluxes of carbon and latent heat for different climates. The time lag between the peak
of radiation and surface conductance we find is for the south plot similar to what they
found for Mediterranean forests, and for the north plot similar to what they found for
boreal forests. Our results indicate that this difference is mainly caused by the diurnal
cycles of radiation, temperature and vapour pressure deficit.

The large effect of the spatial variations of biochemical parameters on the fluxes
suggests that models which use uniform biochemical parameters would not predict the
observed spatial variability of the fluxes. If average biochemical parameters are used
for the north and the south plot, then surface conductance is overestimated at the south
plot and underestimated at the north plot.

Although we demonstrated that spatial variations in biochemical parameters are im-
portant, we did not address the questions why biochemical parameters vary among
the plots the way they do, and whether we can predict spatial patterns. Biochemi-
cal parameters are functions of environmental conditions: water potentials in soil and
air, the availability of water and nutrients and temporal variations therein, and stand
age, succession, pests and diseases and anthropogenic influence. A model to explain
biochemical parameters from long term climate will be the subject of a separate study.
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5 Conclusions

This study showed that both the magnitude and the shape of the diurnal cycle of tran-
spiration and stomatal conductance can be calculated from measurements of leaf ni-
trogen, e isotope discrimination and leaf photosynthesis measurements. The diurnal
cycles were more strongly affected by spatial variations in vegetation parameters than
by meteorological variables. This indicates that topography induced variations in vege-
tation parameters are of at least equal importance for the fluxes as topography induced
variations in radiation, humidity and temperature.

Appendix A Cowan-Farquhar model after Arneth et al. (2002)

In their Appendix A, Arneth et al. (2002) present a solution of the model of combined
model of Farquhar et al. (1980) for photosynthesis, the diffusion equations and the
model of Cowan (1977). Combining Egs. (1), (2), (3) and (4), gives two solutions for
C;: one for enzyme limited photosynthesis, and one for electron limited photosynthesis.
In both cases, the equation for C; is quadratic:

koC2 + kyC; + ky = 0 (A1)
where
ky = A + 1.6D
k' + T
1.6D(I" - k')
ki=16D-2C N+ ———
1 Sy
1.6DI" k'
ko = (/\Ca - 16D)Ca + W
k' =K.(1+0/K,) (A2)
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for the enzyme limited case and

ky = A~ 1.6D
3re
1.60r"
ki =1.6D - 2C,A\
‘ ST
*2
ko = (NC, — 1.6D)C, + 1'63% (A3)

for the electron limited case.

Appendix B Light distribution model

The extinction of both indirect and direct light in a canopy is calculated analogous to
light absorption in homogeneous media with the law of Lambert-Beer:

M) _ expr (B1)

lo

where / light intensity, / the depth in the canopy in units of L from the top of the canopy
and « an extinction coefficient, which depends on the zenith angle of the light beam 6
and the orientation of the leaves. The orientation of the leaves is expressed by the el-
lipsoidal leaf angle distribution parameter x, where x<1 for mainly vertical leaves, x=1
for a spherical leave distribution or x > 1 for mainly horizontal leaves. The extinction
coefficient « is (Campbell, 1986):

X2 + tan?(6)>2

K(x, ) = if  x>1
x+1/2ex)In[(1 +e7)/(1 - €9)]
x2 +tan?(0)?
k(x, 8) = if x <1 (B2)

X+ arcsin(e,)/€e,
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where e,=\/1-1/x2 and e,=\/1-x2

The extinction coefficients for indirect and direct light are different, because they ori-
gin from different directions. The calculation of the extinction of direct light is straight-
forward, but the extinction of indirect light must be calculated by integration of Egs. (B1)
and (B2) over the sky area. In practice, this results in an extinction coefficient of 0.7 if
x=1, independent of geographical location, time of the year or time of the day.

In terrains of steep topography, the penetration of direct light into the canopy is differ-
ent from that in flat areas. To include the effect of topography, a modified zenith angle is
used in Eq. (B2). The coordinate system is rotated such that the surface becomes hor-
izontal, and the zenith angle is calculated for the rotated coordinate system. A sloped
surface is described by its steepest angle ¢ and the orientation of the slope @, which
is the horizontal direction of the steepest downward slope, measured clockwise from
north. The angle of the surface in the plane of the direct light beam and the vertical ¢',
is defined as (Fig. 13):

@' = arctan (tan (@) cos (@5 — ®)) (B3)

where @, the hour angle of the sun. The rotated zenith angle, @', is defined as the
angle between the vector perpendicular to the slope and the solar beam, i.e.:

8 =0+ (B4)

In the calculation of the vertical profile of light in the canopy with Egs. (B1) and (B2), 8’
is used instead of 8. By doing so, it is implicitly assumed that leaf angle distribution x
is unaffected by the coordinate rotation. This is an acceptable assumption if leaf angle
distribution is spherical, but may not be acceptable if leaf angle distribution is strongly
erectophile or planophile. In this study, it is assumed that x=1.

It is assumed that leaves are either sunlit or shaded. The effect of a partial eclipse
due to the fact that direct radiation does not origin from a point source, or due to light
bending over edges of leaves, is ignored. Sunlit leaves receive direct and diffuse light,
shaded leaves receive only diffuse light. Scattering and transmission of direct light is
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15

20

ignored, and it is assumed that reflected direct light does not meet other leaves on its
way back to the atmosphere. The fractions of sunlit leaves f,, and shaded leaves f,
are functions of depth in the canopy / in units of leaf area index:

0 = 40 (B5)

/dO
fo=1-f1, (B6)

where /4y the intensity of ambient direct light. The intensities of irradiance on the two
fractions are:

le(l) = lgo + 1i(/) (B7)
Is(1) = K(1) (B8)

where /[y the intensity of ambient indirect light. Total light intensity at depth / in the
canopy is:

I(1) = Tele(1) + fsls(1) = (/) + I4(/) (B9)

The exposed and shaded fractions and the irradiance on the fractions for the whole
canopy are calculated by integrating Egs. (B5) to (B8) over the leaf area index. In this
study, the integration was done numerically using intervals of units leaf area index of
0.1.
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Topography induced
variations in

Table 1. Characteristics of the four experimental forest plots in the Dragonja catchment. assimilation and

latent heat
north south west east B v cler Tl el

elevation (m) 180 190 120 150

slope 30° 30° 30° 30°

aspect 330° 210° 270° 210°

plot size (m?) 625 313 250 100

soil depth (m) 1.0 1.0 1.0 0.8

soil type clay loam clay loam clay loam clay loam

no of stems ha™'(10°%) 2.3 7.2 34 14.4

average diameter (cm) 12.8 7.3 8.6 4.0

average height (m) 16 8 14 4

mid-season LAI 4.0 5.2 4.5 27

age (y) >100 >100 >100 60

management (1900) wood gathering  cattle grazing  wood gathering crop field

management (current) wood gathering wood gathering wood gathering wood gathering

I b
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Table 2. A-priori parameter values for the biochemical model (Farquhar et al., 1980).
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K, (mmol m~2) K, (mbar) O (mbar) I (mmolm-3) J,/V.,
18.7 330 210 1.22 25
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Table 3. Calibrated values of maximum carboxylation capacity V,,,, dark respiration rate R,
and quantum yield efficiency g with 0.95-confidence intervals, calibrated for measurements on
13 leaves of Quercus pubescens and 6 leaves of Fraxinus ornus at the south and the east plot
between 14 and 21 July 2004.

-2 -1 -2 -1

Ve (Umolm™s™") R, (umolm™=s™) q
Quercus pubescens 54+9 1.0+£0.2 0.46+0.15
Fraxinus ornus 4417 1.1£0.0 0.39+0.09
1662
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Table 4. Mean values of leaf nitrogen concentration [N] and e isotope discrimination with 95%
confidence intervals, maximum carboxylation capacity V,,,, dark respiration R,, marginal cost
of assimilation A, quantum yield efficiency g, and leaf area index L at the north, south, west and
east plot. V,,, was derived from leaf nitrogen concentration and leaf chamber measurements,
A from 3C isotope discrimination, g and R, from leaf chamber measurements and L from PAR
measurements.

north south west east
[N](g100g™" 1.61+.08  1.33x0.03 1.74+0.16  1.34+0.04
A "*C (ppm) 21.20£0.24 19.95+0.31 19.76+0.21 20.73+0.22
V., (umolm=2s") 68 51 70 52
A 1233 622 507 1030
R, (umolm™2s™") 1.0 1.0 1.0 1.0
q 0.45 0.45 0.45 0.45
L 3.9 4.4 4.2 25
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Table 5. Sensitivity of assimilation A and latent heat A£ to parameter or variable x with standard
deviation o,, calculated with Eq 22. Standard deviation are also expressed as percentage of
the mean values of assimilation and latent heat.

X Oy Oy O,F
pmol m2s?' % wm? %
D 3 hPa 0.30 5 40 5
V., 10umolm2s™ 0.72 12 72 10
100 0.27 4 58 8
L 0.5 0.64 11 65 9
total 1.05 13 12 11
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Fig. 1. Flow chart of the combined photosynthesis-transpiration model. The enlargement at

the left represents the biochemical model at leaf level.
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Fig. 2. Map showing the location of the four forest plots and meteorological stations.
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Fig. 3. Schematic representation of vapour pressure deficit and soil water availability the four
forest plots: north (N), south (S), west (W) and east (E).
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north east
o J 0
W Carpinus betulus, orientalis (C)
B Acer campestre (A)
Q M Juniperus communis (J)
c F B Fraxunus ornus (F)
W Sorbus domesticus (S)
Quercus cerris, pubescens, petrea (Q)
F Q other (0)
A
west south

AC o
Q
F
CGF @
s
A Q

Fig. 4. Distribution of sap wood area over different species at the four forest plots.
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Fig. 5. Rates of net photosynthesis (pmolm'2 s'1) (upper panels), and C;/C, versus in-
tensity of photosynthetically active radiation PAR (mmol m~2 3'1) (lower panels) for Quercus
pubescens and Fraxinus ornus. Measurements were carried out at the south and the east plot
between 14 and 21 July 2004. The solid line is a prediction of the calibrated biochemical model.
For the lines in the lower panels, the model of Leuning (1995) was used.
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Fig. 6. Mean maximum carboxylation capacity V,,,, with 0.95-confidence intervals for Quer-
cus pubescens and Fraxinus ornus, versus mean leaf nitrogen with 0.95-confidence intervals,
measured at the south and the east plot, and a linear regression line through the two data
points, forced through V,,,,(0.5)=0. Dots refer measurements by Reich et al. (1999), and were
calculated with Eq. (3) from light saturated photosynthesis, assuming C;=0.7C, and using the
constants of Table 2.
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Fig. 7. Modelled versus measured fraction of ambient PAR that reaches the forest floor, for
different weather conditions and different times of the day (6 to 19 h) at the north and the south
plot, for different days between May and September 2004. The values in the circe refer to
low-light conditions in the late afternoon.
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1
15-May-2004 16:07 31-May-2004 10:30 07-Jun-2004 14:30

0 0
0 2 4 0 2 4 0 2 4
depth in canopy (units LAI) depth in canopy (units LAI) depth in canopy (units LAI)

Fig. 8. Measured (x) and modelled (lines) vertical profiles of light intensity relative to ambient
light (//1,) for different weather conditions at the south plot on different days in May and June
2004. The insets indicate the difference between sunlit and shaded leaves: the open boxes
refer to the sunlit fraction, the shaded boxes to the shaded fraction. The width of the boxes
denotes the size of the fraction, and the height the intensity of PAR. From left to right and from
top to bottom, the fraction of diffuse ambient irradiance increases from 13 to 100%.
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Fig. 9. Modelled rates of net photosynthesis (umol m'zs'1), latent heat flux AE (W m’2), and
surface conductance G, (mm s™') at the north, south, west and east plot for 20 clear days be-
tween 29 May and 8 July 2004. Lines are model predictions, and bars latent heat flux and
surface conductance derived from independent sap flux measurements, and 95% confidence
intervals, derived from measurements of 12 sap flux sensors per plot. Bars for surface con-
ductance were derived by inverting the Penman-Monteith equation, using the sap-flux based

estimates of latent heat flux.
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Fig. 10. Modelled versus sap-flux based latent heat flux at the north, south, west and east plot
for half hourly data between 29 May and 8 July 2004.
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Fig. 11. Diurnal cycle of the measured (x) and modelled (line) difference between surface and
air temperature at the south plot on 27 June 2004 (left), and the modelled versus the measured
difference between surface and air temperature for half hourly values between 29 May and 8

July 2004 (right).
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Fig. 12. Modelled and measured surface conductance for the north and the south plot, as in
Fig. 9 (bold line), modelled surface conductance after reversing aspect, radiation, temperature
and vapour pressure deficit of the north and south plot (fine line), and after reversing V,.,,, J,,
and A of the north and south plot (dashed line).
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Fig. 13. Definition sketch of the zenith angle 6, the angle of the surface in the plane of the
direct light beam ¢’, and the modified zenith angle ' for sloped terrain.
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