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Abstract

We have extended the 3-D ocean based “Grid ENabled Integrated Earth system model”
(GENIE-1) to help understand the role of ocean biogeochemistry and marine sediments
in the “long-term” (∼100 to 100 000 year) regulation of atmospheric CO2, and the im-
portance of feedbacks between CO2 and climate. Here we describe the ocean carbon5

cycle, which is based around a simple single nutrient (phosphate) control on biologi-
cal productivity. The addition of ocean-sediment interactions is presented elsewhere
(Ridgwell and Hargreaves, 20061).

We have calibrated the model parameters controlling ocean carbon cycling in
GENIE-1 by assimilating 3-D observational datasets of phosphate and alkalinity us-10

ing an ensemble Kalman filter method. The calibrated (mean) model predicts a global
export production of particulate organic carbon (POC) of 8.9 PgC yr−1, and reproduces
the main features of dissolved oxygen distributions in the ocean. For estimating bio-
genic calcium carbonate (CaCO3) production, we have devised a parameterization in
which the CaCO3:POC export ratio is related directly to ambient saturation state. Cal-15

ibrated global CaCO3 export production (1.2 PgC yr−1) is close to recent marine car-
bonate budget estimates.

The GENIE-1 Earth system model is capable of simulating a wide variety of dissolved
and isotopic species of relevance to the study of modern global biogeochemical cycles
as well as past global environmental changes recorded in paleoceanographic proxies.20

Importantly, even with 12 active biogeochemical tracers in the ocean and including
the calculation of feedbacks between atmospheric CO2 and climate, we achieve better
than 1000 years per (2.4 GHz) CPU hour on a desktop PC. The GENIE-1 model thus
provides a viable alternative to box and zonally-averaged models for studying global
biogeochemical cycling over all but the very longest (>1 000 000 years) time-scales.25

1Ridgwell, A. and Hargreaves, J. C.: An efficient Earth System Model of Global biogeochem-
ical cycling (II) Regulation of atmospheric CO2 by deep-sea sediments, Global Biogeochem.
Cycles, submitted, http://www.seao2.org/pubs/ridgwell hargreaves manuscript.pdf.
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1 Introduction

The societal importance of better understanding the role of the ocean in regulating
atmospheric CO2 (and climate) is unquestionable. Reorganizations of ocean circu-
lation and nutrient cycling as well as changes in biological productivity and surface
temperatures all modulate the concentration of CO2 in the atmosphere, and are likely5

central to explaining the observed variability in CO2 over the glacial-interglacial cycles
of the past ∼800 000 years (Siegenthaler et al., 2005). These same marine carbon
cycle processes will also affect the uptake of fossil fuel CO2 in the future. Interactions
between marine biogeochemistry and deep-sea sediments together with imbalances
induced between terrestrial weathering and the sedimentary burial of calcium carbon-10

ate (CaCO3) exert further controls on atmospheric CO2 (Archer et al., 1998). These
sedimentation and weathering processes are suspected to have dominated the recov-
ery of the Earth system from catastrophic CO2 release in the geological past (Zachos
et al., 2005), and will largely determine the long-term (>1000 year) future fate of fossil
fuel CO2 (Archer et al., 1998).15

Quantifying the behavior of atmospheric CO2 is complicated by the fact that CO2 ex-
erts (via the radiative forcing of climate) an influence on marine biogeochemical cycles.
For instance, anthropogenically-driven increases in atmospheric CO2 will be amplified
because CO2 solubility decreases at higher temperature and as a result of thermally
(and/or fresh water) induced changes in ocean stratification and transport (Plattner et20

al., 2001; Sarmiento et al., 1998). Understanding how atmospheric CO2 is regulated
thus necessarily requires feedbacks between CO2 and climate to be taken into account.
Coupled GCM ocean-atmosphere plus carbon cycle models (e.g., “HadCM3LC”, Cox et
al., 2000) are important tools for assessing climate change and associated feedbacks
over the next few hundred years. However, their computational demands currently25

make them unsuitable for investigating time-scales beyond 1000 years or for conduct-
ing sensitivity studies. So-called “off-line” carbon cycle models in which the ocean
circulation has been pre-calculated (such as the off-line tracer transport HAMOCC3
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model of Maier-Reimer, 1993) are much faster. However, the fixed circulation field
employed in these models means that the importance of feedbacks with climate can-
not easily be explored, except in a highly parameterized manner (Archer et al., 2004;
Archer, 2005).

In contrast, marine biogeochemical box models, which consider the global ocean in5

terms of relatively few (typically between about 3 and about 12) distinct volumes (the
“boxes”), are extremely computationally efficient. Models of this type have an illustri-
ous pedigree (e.g., Broecker and Peng, 1986; Sarmiento and Toggweiler, 1984) and
continue today to be the tools of choice for many questions involving processes op-
erating on ∼10 000 years or longer time-scales. For instance, when ocean-sediment10

interactions and weathering feedbacks are important (e.g., Ridgwell, 2005; Yool and
Tyrrell, 2005; Zeebe and Westbroek, 2003) or where the inherent uncertainties are
large and need to be extensively explored (e.g., Parekh et al., 2004). Box models, as
with GCMs, have specific limitations. Validation against marine observations and sedi-
ment records is problematic because large volumes of the ocean are homogenized in15

creating each “box”, whereas biogeochemical processes are extremely heterogeneous
both within ocean basins as well as between them. It is also difficult to incorporate a
responsive climate or circulation, which is why almost all box models are in effect off-
line tracer transport models (the coupled meridional box model of Gildor et al., 2002
being one exception). Concerns have also been recently raised regarding whether box20

models present an inherently biased picture of certain aspects of the oceanic control
of atmospheric CO2 (Archer et al., 2003).

This has led to the development of fast climate models with reduced spatial reso-
lution and/or more highly parameterized “physics” – known variously as Earth System
(Climate) Models (ESMs) (Weaver et al., 2001) and Earth System Models of Intermedi-25

ate Complexity (EMICs) (Claussen et al., 2002). While ESMs have been instrumental
in helping address a range of carbon cycling and climate change questions, we be-
lieve that they have yet to realize their full potential. In particular, simulations on the
time-scale of ocean-sediment interaction (order 10 000 years) are still relatively com-
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putationally expensive in many ESMs based around 3-D ocean circulation models,
whereas in faster “2.5-D” models (e.g., Marchal et al., 1998) the zonal averaging of the
basins complicates comparison between model and paleoceanographic data (Ridg-
well, 2001).

In this paper we present a representation of marine biogeochemical cycling within a5

3-D ocean based Earth system model, which we calibrate for the modern carbon cycle
via a novel assimilation of marine geochemical data. In a companion paper (Ridg-
well and Hargreaves, 20061) we describe the addition of sedimentary diagenesis and
carbonate burial in the deep sea. Together, these developments allow us to explore
important questions surrounding future fossil fuel CO2 uptake by the ocean and in-10

cluding the role of major feedbacks with climate (described elsewhere, Ridgwell and
Hargreaves, 20061; Ridgwell et al., 20062).

This paper is laid out as follows; we first describe the ocean biogeochemistry model
itself (Sect. 2), then how the model is calibrated by assimilation observed marine geo-
chemical data (Sect. 3). In Sect. 4 we present the predictions of the model for modern15

ocean biogeochemical cycling, and discuss the implications for exceptionally low reso-
lution 3-D ocean circulation models. We conclude in Sect. 5.

2 Description of the “GENIE-1” model

The basis of our work is the fast climate model of Edwards and Marsh (2005) (“C-
GOLDSTEIN”), which features a reduced physics (frictional geostrophic) 3-D ocean20

circulation model coupled to a 2-D energy-moisture balance model (EMBM) of the
atmosphere and a dynamic-thermodynamic sea-ice model (see Edwards and Marsh,
2005 for a full description). The ocean model used here is non-seasonally forced
and implemented on a 36×36 equal-area horizontal grid, comprising 10◦ increments

2 Ridgwell, A., Zondervan, I., Hargreaves, J. C., Bijma, J., and Lenton, T. M.: Significant long-
term increase of fossil fuel CO2 uptake from reduced marine calcification, Nature, submitted,
http://www.seao2.org/pubs/ridgwelletalb manuscript.pdf, 2006.
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in longitude but uniform in sine of latitude, giving ∼3.2◦ latitudinal increments at the
equator increasing to 19.2◦ in the highest latitude band. The ocean has 8 z-coordinate
levels in the vertical. The grid and bathymetry is shown in Fig. 1.

Along with temperature and salinity, the oceanic concentrations of “biogeochemi-
cal” tracers are advected, diffused, and convected on-line by the ocean circulation5

model. To enable a broad range of questions concerning global biogeochemical cy-
cling to be addressed, the GENIE-1 model contains the definitions of 39 dissolved
tracers and isotopic properties relevant to future global change and paleoceanography,
as well as their relationships (if any) to sedimentary solids and atmospheric gases.
For this present study, we select only; total dissolved inorganic carbon (DIC), alkalinity10

(ALK), phosphate (PO4), oxygen (O2), CFC-11 and CFC-12, the carbon and phos-
phorus components of dissolved organic matter, plus the stable (13C) and radio- (14C)
isotope abundances associated with both DIC and dissolved organic carbon. The cir-
culation model thus acts on the 3-D spatial distribution of a total of 14 tracers (including
temperature and salinity).15

As with many ocean circulation models, C-GOLDSTEIN employs a rigid lid surface
boundary condition (i.e., grid cell volumes are not allowed to change). Net precipitation-
minus-evaporation (P-E) at the ocean surface is then implemented as a virtual salinity
flux rather than an actual loss or gain of freshwater. The concentration of biogeochem-
ical tracers (DIC, ALK, PO4, etc) should respond similarly to salinity; becoming more20

concentrated or dilute depending on the sign of P-E. To achieve this, one could ap-
ply virtual fluxes of the biogeochemical tracers along with salinity to the ocean surface
(e.g., see the OCMIP-2 protocol; Najjar and Orr, 1999). We take the alternative ap-
proach here, and salinity-normalize the biogeochemical tracer concentration field prior
to the calculation of ocean transport (Marchal et al., 1998).25

We have developed a representation of marine biogeochemical cycling called BIO-
GEM (for; BIOGEochemical Model) that calculates the redistribution of tracer concen-
trations occurring other than by transport by the circulation of the ocean. This happens
through the removal from solution of nutrients (PO4) together with DIC and ALK, by
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biological activity in the sunlit surface ocean layer (the “euphotic zone”, which has a
depth of he=175 m in the 8-level ocean model configuration). The resulting export of
particulate matter to the ocean interior is subject to “remineralization” – the metabolic
and dissolution processes that release constituent species back into inorganic solution
(but at greater depth). Further redistribution of tracers occurs through gas exchange5

with the atmosphere as well as due to the creation and destruction of dissolved or-
ganic matter. BIOGEM has a conceptual relationship with the climate model as shown
schematically in Fig. 2. We refer to the overall composite model as GENIE-1.

We carry out the biogeochemical manipulation of tracer concentration fields asyn-
chronously to maximize overall model speed. In this study, BIOGEM is called once10

every 5 time-steps taken by the ocean circulation model (i.e., 5×0.01 yr=0.05 yr). We
find no discernable impact of this decoupling compared to carrying out the same time
step length as the ocean (0.01 yr), even in response to rather extreme (15 000 PgC)
releases of (fossil fuel) CO2 to the atmosphere.

2.1 Ocean biogeochemical cycling15

The low vertical resolution of the ocean circulation model and need to maximize com-
putational speed (for long simulations) dictates that the “biological” part of the marine
carbon cycle be relatively abstracted. We estimate new (export) production directly
from available surface nutrient concentrations, a tactic used in many ocean carbon cy-
cle models. In other words, what we have is “conceptually not a model of biology in20

the ocean but rather a model of biogenically induced chemical fluxes (from the sur-
face ocean)” (Maier-Reimer, 1993). Overall, the scheme is functionally similar to that
of Parekh et al. (2005), and we adopt their notation where relevant. The main differ-
ence is that we currently consider only a single nutrient, phosphate (PO4), rather than
co-limitation with iron (Fe).25

The governing equations in BIOGEM for the changes in phosphate and dissolved
organic phosphorus (DOP) concentrations occurring in the surface ocean layer (but
omitting the extra transport terms that are calculated by the ocean circulation model;
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Edwards and Marsh, 2005) are;

∂PO4

∂t
= −Γ + λDOP (1)

∂DOP
∂t

= νΓ − λDOP (2)

Γ = uPO4

0 ·
PO4

PO4 + K PO4
· (1 − A) · I

I0
(3)

where Γ is the biological uptake of PO4. Γ is calculated from; (i) an assumed maximum5

uptake rate of phosphate (mol PO4 kg−1 yr−1) that would occur in the absence of any
limitation on phytoplankton growth, and (ii) a Michaelis-Menten type kinetic limitation of
nutrient uptake, of which K PO4 is the half-saturation constant. Because of the degree
of abstraction of ecosystem function inherent in our model, what the appropriate val-

ues for either uPO4

0 or K PO4 are not obvious, and so are subsequently calibrated (see10

Sect. 3 and Table 1). We apply two modifiers on productivity representing the effects
of sub-optimal ambient light levels and the fractional sea ice coverage of each grid cell
(A) (Edwards and Marsh, 2005). A full treatment of the effects of light limitation on
phytoplankton growth is beyond the scope of the current model. The strength of local
insolation (I) is therefore simply normalized to the solar constant (I0) to give a limitation15

term that is linear in annual incident insolation. A proportion (ν) of PO4 taken up by
the biota is partitioned into dissolved organic phosphorus (DOP). The relatively labile
dissolved organic molecules are subsequently remineralization with a time constant of
1
/
λ. The values of ν and λ are assigned following the assumptions of the OCMIP-2

protocol (Najjar and Orr, 1999); ν=0.66 and λ=0.5 yr−1.20

The particulate organic matter fraction is exported vertically (and without lateral ad-
vection) out of the surface ocean layer at the next model time-step. Because there is no
explicit standing plankton biomass in the model, the export flux of particulate organic
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phosphorus (F POP
z=he

, in units of mol PO4 m−2 yr−1) is equated directly with PO4 uptake
(Eq. 1);

F POP
z=he

=
∫ 0

he

ρ · (1 − ν) · Γdz (4)

where ρ is the density of seawater and he the thickness of the euphotic zone (175 m in
the 8-level version of this ocean model).5

In the production of organic matter, dissolved inorganic carbon (DIC) is taken out
of solution in a 106:1 molar ratio with PO4 (Redfield et al., 1963) while O2 takes a
−170:1 ratio with PO4 (Anderson and Sarmiento, 1994). The effect on total alkalinity
(ALK) of the biological uptake and remineralization of nitrate (NO3) is accounted for via
a modification of ALK in a −1:1 ratio with the quantity of NO3 transformed. Because10

we do not model the nitrogen cycle explicitly in this paper, we link ALK directly to PO4
uptake and remineralization through the canonical 16:1 N:P ratio (Redfield et al., 1963).
For convenience, we will describe the various transformations involving organic matter
in terms of carbon (rather than phosphorus) units, the relationship between organic
matter export fluxes being simply;15

F POC
z=he

= 106 · F POP
z=he

(5)

We represent the remineralization of particulate organic carbon (POC) as a process
occurring instantaneously throughout the water column. We partition POC into two
distinct fractions with different fates in the water column, following Ridgwell (2001) but
adopting an exponential decay as an alternative to a power law. The POC flux at depth20

z in the water column is;

F POC
z = F POC

z=he
·
((

1−rPOC
)
+ rPOC · exp

(zhe − z

lPOC

))
(6)

The parameters; lPOC (the length-scale) and rPOC (the initial partitioning of POC into
a labile fraction) are calibrated (Table 1). Because we explicitly resolve the individ-
ual “components” (i.e., C, 13C, P, . . . ) of organic matter, the GENIE-1 model can be25
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used to quantify the effect of fractionation between the components of organic matter
during remineralization (e.g., Shaffer et al., 1999) as well as between different carbon
isotopes. However, we assume no fractionation during remineralization in this present
study. The residual flux of particulate organic material escaping remineralization within
the water column is remineralized at the ocean floor, making the ocean-atmosphere5

system “closed” (i.e., there is no loss or gain to the system) with respect to these trac-
ers.

The modern ocean is oxic everywhere at the resolution of our model (e.g., see
Fig. 6). In an ideal model, remineralization would not deplete dissolved oxygen be-
low zero anywhere in the ocean. However, O2 availability may be insufficient under10

different (past) ocean circulation regimes and continental configurations. To broaden
the applicability of the GENIE-1 model to past climates and biogeochemical cycling,
we limit remineralization according to the total availability of electron acceptors – if
dissolved O2 is depleted and NO3 is selected as an active tracer in the model, deni-
trification occurs to provide the necessary oxidant; 2NO−

3→N2+3O2. If NO−
3 becomes15

depleted and SO2−
4 has been selected as an active tracer, sulphate reduction occurs;

2H++SO2−
4 →H2S+2O2. If the total concentration of selected electron-accepting tracer

species (O2, NO3, SO4) is still insufficient, remineralization of POC is restricted. Our
strategy thus differs from other modeling approaches in which remineralization always
strictly conforms to a predetermined profile and the consequences of excess oxidation20

over O2 availability are resolved either by numerically preventing negative oxygen con-
centrations occurring (e.g. Zhang et al., 2001, 2003), or by allowing the tracer transport
of negative O2 concentrations (e.g., Hotinski et al., 2001). (We treat the remineraliza-
tion of dissolved organic matter in an analogous manner if O2 availability is insufficient.)
H2S created through sulphate reduction is oxidized in the presence of O2 at a rate (mM25

H2S h−1);

d[H2S]

dt
= k · [H2S] · [O2]2 (7)
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where [H2S] and [O2] are the dissolved concentrations of hydrogen sulphide and oxy-
gen, respectively, and k=0.625 mM−2 h−1 (Zhang and Millero, 1993).

Open ocean dwelling calcifying plankton such as coccolithophorids and foraminifera
produce calcium carbonate (CaCO3) in addition to organic compounds (see Ridgwell
and Zeebe, 2005 for a review of the global carbonate cycle). As the ecological pro-5

cesses which regulate calcifier activity are not well understood, early models incorpo-
rating marine carbonate production calculated the export flux of CaCO3 in a fixed pro-
duction ratio with POC (e.g., Broecker and Peng, 1986; Yamanaka and Tajika, 1996).
Derivatives of this approach modify the CaCO3:POC rain ratio as some function of tem-
perature (e.g., Marchal et al., 1998) and/or opal flux (e.g., Archer et al., 2000; Heinze et10

al., 1999; Heinze, 2004). Current ecosystem models include a measure of competition
between calcifying phytoplankton such as coccolithophores and non-calcifying ones
such as diatoms to estimate CaCO3 production (e.g., Bopp et al., 2003; Moore et al.,
2002). However, there are drawbacks with this strategy because there are doubts as to
whether autotrophic coccolithophorids are the dominant source of CaCO3 in the open15

ocean (Schiebel, 2002), or whether Emiliania huxleyi is a sufficiently representative
species of global coccolith carbonate production to be chosen as the “functional type”
calcifying species in ecosystem models.

Recent work has introduced a further dimension as to how CaCO3 production should
be represented in models. Experiments have shown that planktic calcifiers such as20

coccolithophores (Delille et al., 2005; Riebesell et al., 2000; Zondervan et al., 2001)
and foramifera (Bijma et al., 1999) produce less carbonate at lower ambient carbonate
ion concentrations (CO2−

3 ). A progressive reduction in surface CO2−
3 is an expected

consequence of fossil fuel invasion into the ocean (Caldeira and Wickett, 2003; Freely
et al., 2004; Kleypas et al., 1999; Orr et al., 2005). Several recent studies have incorpo-25

rated a response of the CaCO3:POC rain ratio to changes in surface ocean carbonate
chemistry, by employing a parameterization based on the deviation from modern sur-
face ocean conditions of either CO2 partial pressure (Heinze, 2004) or CO2−

3 (Barker
et al., 2003). We present a new approach here, one which relates the export flux of
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CaCO3 (F
CaCO3

z=he
) to the POC flux (F POC

z=he
) via a thermodynamically-based description of

carbonate precipitation rate;

F
CaCO3

z=he
= γ · rCaCO3:POC

0 · F POC
z=he

(8)

where r
CaCO3:POC
0 is a spatially-uniform scalar, and γ is a thermodynamically-based

local modifier of the rate of carbonate production (and thus of the CaCO3:POC rain5

ratio), defined;

γ = (Ω − 1)η Ω > 1.0 (9a)

γ = 0.0 Ω ≤ 1.0 (9b)

where η is a constant and Ω is the ambient surface saturation state (or “solubility ratio”)
with respect to calcite, defined by the ratio of the product of calcium ion (Ca2+) and10

carbonate ion (CO2−
3 ) concentrations to KSP , the solubility constant (Zeebe and Wolf-

Gladrow, 2001);

Ω =
[Ca2+][CO2−

3 ]

KSP
(10)

In formulating this parameterization we have drawn on descriptions of abiotic carbonate
system dynamics in which the experimentally observed precipitation rate can be linked15

to saturation via an equation with the same form as Eq. (8) (e.g., Burton and Walter,
1987). What this equation says is that the precipitation rate increases with a greater
ambient environmental degree of supersaturation with respect to the solid carbonate
phase (Ω>1.0), with the power parameter η controling how non-linear the response of
calcification is. At ambient saturation states below the point of thermodynamic equilib-20

rium (Ω=1.0) (“undersaturation”) no carbonate production occurs. It should be noted
that although coccolithophorid and foraminiferal calcification rates are observed to re-
spond to changes in saturation (e.g., Bijma et al., 1999; Delille et al., 2005; Riebesell et
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al., 2000; Zondervan et al., 2001), we do not explicitly capture other important controls.
Instead, we have implicitly collapsed the (poorly understood) ecological and physical
oceanographic controls on carbonate production onto a single, purely thermodynamic
dependence on Ω.

For this paper we take our prior assumptions regarding the suspected values of η5

(Table 1) from previous analysis of neritic (shallow water) calcification (Langdon and
Atkinson, 2005; Opdyke and Wilkinson, 1993; Ridgwell, 2004; Zeebe and Westbroek,
2003). Elsewhere, we collate available observational data on pelagic calcifiers and
explore the effect of alternative prior assumptions in η.

The remineralization (dissolution) of CaCO3 in the water column is treated in a similar10

manner to particulate organic carbon (the parameter nomenclature being analogous to
Eq. 6);

F
CaCO3
z = F

CaCO3

z=he
·
((

1−rCaCO3

)
+ rCaCO3 · exp

(zhe − z

lCaCO3

))
(11)

The values of rCaCO3 and lCaCO3 are also calibrated (Table 1). With the GENIE-1 model
configured without a coupled sediment model as here, all CaCO3 reaching the ocean15

floor is dissolved.

2.2 Air-sea gas exchange

The flux of gases (mol m−2 yr−1) across the air-sea interface is given by;

F = k · ρ · (Cw−α · Ca) · (1 − A) (12)

where k is the gas transfer velocity (m yr−1), ρ the density of sea-water (kg m−3), Cw20

the concentration of the gas dissolved in the surface ocean (mol kg−1), α is the solu-
bility coefficient (mol kg−1 atm−1) (calculated from the coefficients listed by Wanninkhof
(1992), and references therein), Ca the concentration of the gas in the overlying at-
mosphere (atm), and A the fractional ice-covered area. Gas transfer velocities are

1325

http://www.biogeosciences-discuss.net
http://www.biogeosciences-discuss.net/3/1313/2006/bgd-3-1313-2006-print.pdf
http://www.biogeosciences-discuss.net/3/1313/2006/bgd-3-1313-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


BGD
3, 1313–1354, 2006

Marine
biogeochemical

cycling in an Earth
System Model

A. Ridgwell et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

calculated as a function of wind speed following Wanninkhof (1992);

k = a · u2 ·
(
Sc/660

)−0.5
(13)

where u is the annual mean climatological wind speed and Sc is the Schmidt Num-
ber for the specific gas following Wanninkhof (1992) (and references therein). We
use the scalar annual average wind speed field of Trenberth et al. (1989) for cal-5

culating air-sea gas exchange and set the scaling constant a=0.31 (Wanninkhof,
1992), which gives us a global annual mean gas transfer coefficient for CO2 equal
to 0.058 mol m−2 yr−1µatm−1 in the calibrated model (Sect. 3.2).

For completeness, we include the parameterization of air-sea gas exchange for all
the gases listed by Wanninkhof (1992) (the calculation is not made if the correspond-10

ing dissolved tracer in the ocean is not selected). To facilitate analysis of the biogeo-
chemical consequences of extreme anoxia in the geologic past, we also allow for the
exchange of H2S, for which we take the solubility following Millero (1986) and Schmidt
number from Khalil and Rasmussen (1998).

2.3 Isotopic tracers and fractionation15

Fractionation occurs between 12C and 13C during the biological fixation of dissolved
carbon (as CO2(aq)) to form organic and inorganic (carbonate) carbon, as well as during
air-sea gas exchange. For the production of organic carbon (both as POC and DOC)
we adopt the fractionation scheme of Ridgwell (2001);

δ13CPOC=δ13CCO2(aq)−εf + (εf−εd ) ·
KQ

[CO2(aq)]
(14)

20

where δ13CCO2(aq) and [CO2(aq)] are the isotopic composition and concentration of
CO2(aq), respectively. εf and εd are fractionation factors associated with enzymic in-
tercellular carbon fixation and CO2(aq) diffusion, respectively, and assigned values of
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εf =25 and εd =0.7 (Rau et al., 1996, 1997). KQ is an empirical approximation of the
model of Rau et al. (1996, 1997) as described by Ridgwell (2001);

K=
Q 2.829 × 10−10 − 1.788 × 10−7 · T + 3.170 × 10−5 · T 2 (15)

with T the ocean temperature in Kelvin.
For CaCO3, we adopt a temperature-dependent fractionation for calcite following5

Mook (1986). The air-sea 13C/12C fractionation scheme follows that of Marchal et
al. (1998), with the individual fractionation factors all taken from Zhang et al. (1995).

For radiocarbon, the 14C/12C fractionation factors are simply the square of the factors
calculated for 13C/12C at every step. Radiocarbon abundance also decays with a half-
life of 5730 years (Stuiver and Polach, 1977). We report radiocarbon isotopic properties10

in the ∆14C notation, which we calculate directly from model-simulated δ13C and δ14C
values by;

∆14C=1000 ·

(1 +
δ14C
1000

)
· 0.9752(

1 + δ13C
1000

)2
−1

 (16)

which is the exact form of the more commonly used approximation; ∆14C=δ14C−2 ·(
δ13C + 25

)
·
(

1 + δ14C/1000
)

(Stuiver and Polach, 1977). δ14C is calculated using15

δ14C= (AS/Aabs−1) · 1000, where AS is the (model-simulated) sample activity and Aabs
is the absolute international standard activity, related to the activity of the oxalic acid
standard (AOx) by Aabs = 0.95 ·AOx. AOx is assigned a ratio of 1.176×10−12 (Key et al.,
2004).

2.4 Definition of the aqueous carbonate system20

We define alkalinity following Dickson (1981) but excluding the effect of NH3, HS−, and
S2−. The set of carbonate dissociation constants are those of Mehrbach et al. (1973),
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as refitted by Dickson and Millero (1987), with pH calculated on the seawater pH scale
(pHSWS). Numerical solution of the system is via an implicit iterative method, seeded
with the hydrogen ion concentration ([H+]) calculated from the previous time-step (Ridg-
well, 2001) (or with 10−7.8 from a “cold” start). We judge the system to be sufficiently
converged when [H+] changes by less than 0.1% between iterations. This brings pH5

and fCO2 to within ±0.001 units (pHSWS) and ±0.2µatm, respectively, compared to
calculations made using the model of Lewis and Wallace (1998).

Dissolved calcium, total boric acid, sulphate, and fluorine can all be selected as
prognostic tracers in the ocean biogeochemistry model and their oceanic distributions
simulated explicitly. Here, we do not select them, and instead estimate their concentra-10

tions from salinity (Millero, 1982, 1995) in order to solve the aqueous carbonate system.
Furthermore, because we do not consider the marine cycling of silicic acid (H4SiO4)
here we implicitly assume a zero concentration everywhere. The error in atmospheric
CO2 induced by this simplification compared to observed concentrations (Conkright et
al., 2002) is <1µatm.15

3 Data assimilation and “calibration” of the marine carbon cycle

The degree of spatial and temporal abstraction inherent in representations of complex
global biogeochemical processes inevitably gives rise to important parameters whose
values are not well known a priori. Because of the computational cost of most 3-D
ocean biogeochemical models, calibration of the poorly known parameters usually pro-20

ceeds by trial-and-error with the aid of limited sensitivity analysis. The relative speed
of the GENIE-1 model allows us to explore a new efficient and optimal approach to this
problem by assimilating 3-D fields of marine geochemical data using a version of the
ensemble Kalman filter which has been developed to simultaneously estimate multiple
parameters in climate models.25
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3.1 EnKF methodology

The model parameters were optimized with respect to 3-D data fields that are avail-
able for the present day climatological distributions of phosphate (PO4) (Conkright et
al., 2002) and alkalinity (ALK) (Key et al., 2004) in the ocean. The data were assimi-
lated into the model using an iterative application of the ensemble Kalman filter (EnKF),5

which is described more fully in Annan et al. (2005a, b). The EnKF was originally intro-
duced as a state estimation algorithm (Evensen, 1994). We introduce the parameters
into the analysis simply by augmenting the model state with them. The EnKF solves
the Kalman equation for optimal linear estimation by using the ensemble statistics to
define the mean and covariance of the model’s probability distribution function. In other10

words, the resulting ensemble members are random samples from this probability dis-
tribution function. Although this method is only formally optimal in the case of a linear
model and an infinite ensemble size, it has been shown to work well in cases similar to
ours (Annan et al., 2005a; Hargreaves et al., 2004).

The parameter estimation problem studied here is a steady state problem, somewhat15

different in detail (and in principle simpler) than the more conventional time-varying
implementations of the EnKF. However, the prior assumption of substantial ignorance,
combined with the nonlinearity of the model and high dimensionality of the parameter
space being explored, means that a direct solution of the steady state problem does
not work well. Therefore, an iterative scheme has been developed which repeats a20

cycle of ensemble inflation, data assimilation and model integration over a specified
time interval, in order to converge to the final solution. (See the references mentioned
above for the technical details.) As demonstrated in Annan et al. (2005a) and Annan
and Hargreaves (2004), this iterative method converges robustly to the correct solution
in identical twin testing. Further applications using real data have also been successful25

with a range of different models (e.g., Hargreaves et al., 2004; Annan et al., 2005b,
c). The method is relatively efficient, requiring a total of approximately 100 times the
equilibrium time of the model to converge, and it is exact in the case of a linear model
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and a large ensemble size.
This method has already been used to calibrate the physical part of this model with

long-term average climatological data to produce a reasonable representation of the
preindustrial climate (Hargreaves et al., 2004). For this work we use the ensemble
mean parameter set derived using the same method but with a slightly more recent5

version of the model (following the correction of an error in the equation of state for sea-
water, giving ∼2 Sv stronger Atlantic meridional overturning compared to Hargreaves
et al. (2004), and in closer agreement with observational estimates) to define the phys-
ical climate model. These physical parameters are kept fixed during the calibration of
the biogeochemical model reported here.10

As mentioned above, the EnKF ensemble randomly samples the probability distri-
bution function defined by the model, data and prior assumptions. Therefore, the
ensemble members do not themselves converge to the optimum but instead sample
the region around it, with the ensemble mean being a good estimate of the optimum.
Where all uncertainties are well defined, the spread of the ensemble members indi-15

cates the uncertainty surrounding this optimum. However, this is not the case here,
since many model parameterizations are poorly understood and may be inadequate in
various ways. A good example is the uncertainty surrounding the role of dust and the
marine iron cycle (Jickells et al., 2005). The formulation of the biogeochemical model
is thus inherently more uncertain than that of a physical model, and, at this stage, there20

is no clear way to estimate the true uncertainty of the calibrated model. We therefore
use the EnKF to produce a single calibrated model version, taking the mean of this
ensemble as an estimate of the best parameters.

The marine carbon cycle is calibrated against long-term average observations of
PO4 (Conkright et al., 2002) and ALK (Key et al., 2004) distributions in the ocean. We25

chose these data targets on the basis that PO4 will help constrain the cycling of organic
matter within the ocean, while ALK will (primarily) help constrain the cycling of CaCO3
in the ocean. We assume that their observed distributions are relatively unaffected by
anthropogenic change (Orr et al., 2005) (although see Feely et al., 2004). To create the
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PO4 and ALK assimilation “targets”, we transformed the 3-D data-sets of Conkright et
al. (2002) and Key et al. (2004]), respectively, to the GENIE-1 model grid, and salinity-
normalized the data. For the surface data target, although the model surface layer is
175 m thick, the observed data is integrated only over the uppermost 75 m, which is
assumed in the OCMIP-2 protocol to be the nominal “consumption” depth separating5

the production zone (above) from the consumption zone (below) for calculating surface
boundary conditions (Najjar and Orr, 1999).

The calibration of the biogeochemistry used an ensemble size of 54, which was
chosen primarily for computational convenience. Ocean chemistry was initialized with
uniform concentrations of; 2244µmol kg−1 DIC (estimated pre-Industrial) (Key et al.,10

2000), 2363µmol eq kg−1 ALK (Key et al., 2000), 2.159µmol kg−1 PO3−
4 (Conkright

et al., 2001), and 169.6µmol kg−1 O2 (Conkright et al., 2002). Initial concentrations
of dissolved organic matter are zero, as are δ13C and δ14C. Atmospheric pO2 was
initially set at 0.2095 atm and allowed to evolve freely in response to net air-sea gas
exchange thereafter. Atmospheric CO2 was continually restored to a value of 278 ppm15

throughout the assimilation. The parameters we considered in the EnKF assimilation
as well as our prior assumptions regarding their likely values are listed in Table 1.

3.2 Results of the EnKF assimilation

The mean and standard deviation of the ensemble values of the controlling biogeo-
chemistry parameters are listed in Table 1. Most of the parameters showed only weak20

correlations in the posterior ensemble, with the striking exception of r
CaCO3:POC
0 and η,

as shown in Fig. 4. We can trace this relationship back to Eqs. (8) and (9), where it

implies that r
CaCO3:POC
0 · (Ω − 1) η is close to being constant. We interpret this to mean

that although total global production of carbonate is relatively tightly constrained by the
data, the spatial variation, which is a function of local saturation state (Ω) in the model,25

is not as well constrained.
We explored the sensitivity of the model calibration to the assimilated data by using
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the ALK data of Goyet et al. (2000) as an alternative to Key et al. (2004). (We omitted
assimilating surface model layer ALK in this case because the Goyet et al. (2000) data-
set is valid only below the mixed layer depth in the ocean.) We found that the marine
carbon cycle model and GLODAP PO4 data set (Key et al., 2004) were less consistent
with the Goyet et al. (2000) ALK distributions compared to the GLODAP ALK data5

(Key et al., 2004). Assimilation of the latter data rather than the former reduced the
root mean square difference between model ALK and PO4 fields taken together by
about 10%. Most of the improvement occurred in the fit of the model to the ALK data
set but there was also a slight improvement (1%) in the fit of the PO4 data set to the
model output. We interpret this in terms of the interpolation procedure used by Key et10

al. (2004) producing a more self-consistent data-set compared to the empirically based
reconstruction of Goyet et al. (2000).

Analysis of ocean respiration patterns led Andersson et al. (2004) to propose a dou-
ble exponential as a useful description for the profile of POC flux with depth. We tested
a parameterization for the remineralization of POC in which each of the two fractions15

was assigned a characteristic (exponential decay) length scale. The mean EnKF cal-
ibrated remineralization length scales were 96 m and 994 m, compared to values of
55 m and ∼2200 m determined by Andersson et al. (2004). However, the coarse verti-
cal resolution of the model employed here means that we cannot place any confidence
in length scales shorter than a few hundred meters. The improved fit to upper ocean20

PO4 gradients using a double exponential in the EnKF comes at the expense of a rather
negligible POC flux to the ocean floor because of the poor data constraint provided by
the relatively weak gradients of PO4 in the deep ocean (e.g., see Fig. 3). We thus
retain the Eq. (6) parameterization (in which one of the fractions has a fixed and ef-
fectively infinite length scale) because achieving an appropriate POC flux to the ocean25

floor is critical to the determination of sedimentary carbonate content and organic car-
bon burial. (We address this further in the companion paper Ridgwell and Hargreaves,
20061.)
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4 Discussion

4.1 The calibrated “baseline” state of the model

The calibrated model achieves appropriate zonally-averaged nutrient (PO4) distribu-
tions for many regions of the ocean, particularly the Equatorial and North Atlantic,
the Indian Ocean, and Equatorial Pacific and deep Pacific (Fig. 3). The predicted5

surface distribution of PO4 (Figs. 5a, b) also agrees with the observations to a first-
order (Conkright et al., 2002), with relatively high (>0.5µmol kg−1) concentrations in
the Southern Ocean, North Pacific, North Atlantic, and Eastern Equatorial Pacific, and
nutrient depletion (<0.5µmol kg−1) in the mid latitude gyres. However, over-estimated
low latitude upwelling results in excess (>0.5µmol kg−1) PO4 in the Western Equatorial10

Pacific and Equatorial Indian Ocean. In addition, there is no representation of iron limi-
tation, critical in the modern ocean in restricting nutrient depletion in the “High Nutrient
Low Chlorophyll” (HNLC) regions of the ocean such as the North and Eastern Equa-
torial Pacific, and Southern Ocean (Jickells et al., 2005). The calibration must then
strike a “compromise” – PO4 uptake (scaled by the parameter, uPO4

0 in Eq. 3) must be15

sufficiently low that nutrients remain unused in the HNLC regions, yet at the same time,
high enough to deplete nutrients elsewhere. The result is that PO4 is generally slightly
lower than observed in the HNLC regions but slightly too high elsewhere. Overall,
global export production of particulate organic carbon (POC) is 8.91 GtC (PgC) yr−1,
consistent with recent estimates (e.g., Amount et al., 2003; Jin et al., 2006; Schmittner20

et al., 2005).
For alkalinity (ALK), we achieve a generally reasonable simile of the zonally-

averaged distributions in each ocean basin (Fig. 3). The main areas of model-data
mismatch concern surface concentrations. These are primarily caused by deficien-
cies in the climate model simulation of surface ocean salinities (see Hargreaves et al.,25

2004). This is because we assimilate salinity-normalized alkalinity, which means that
deviations of model-predicted salinity from observations degrades the fidelity of sim-
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ulation of the (non salinity-normalized) ALK field. (The importance of salinity-related
variations is much less for PO4 because the biologically-induced range in concentra-
tions is an order of magnitude greater.) Global pre-industrial CaCO3 production is
1.21 PgC yr−1, which falls towards the centre of the production budget uncertainty of
0.8–1.4 PgC yr−1 proposed by Feely et al. (2004). It is also very close to the preferred5

estimate of 1.14 PgC yr−1 diagnosed by Jin et al. (2006) from global nutrient and alka-
linity distributions. The mean global CaCO3:POC export ratio (Fig. 5c) is a little less
than 0.14, supporting suggestions (Jin et al., 2006; Sarmiento et al., 2002; Yamanaka
and Tajika, 1996) that the ratio is rather lower than the value of around 0.2–0.25 charac-
terizing many models (e.g., Archer et al., 1998; Broecker and Peng, 1986; Heinze et al.,10

1999; Maier-Reimer, 1993). Of the predicted 1.21 PgC of biogenic carbonate exported
annually from the surface ocean, approximately 0.62 PgC yr−1 reaches 2000 m depth,
slightly higher than estimates of 0.4 PgC yr−1 based on sediment trap measurements
(Feely et al., 2004).

With a mean ocean ALK of 2363µmol eq kg−1 (Key et al., 2004), a (pre-15

Industrial) atmospheric CO2 concentration of 278 ppm requires a mean ocean DIC
of 2214µmol kg−1 compared to an observationally-based estimate of 2244µmol kg−1

(Key et al., 2004). Some 14µmol kg−1 of this apparent DIC difference is explained
by mean surface alkalinity being slightly lower than observed (2301µmol eq kg−1 com-
pared to an average of 2310µmol eq kg−1 over the uppermost 75 m of the modern20

ocean (Conkright et al., 2002), itself mainly a consequence of the low surface salinities
simulated by the climate model (particularly in the Atlantic) (Hargreaves et al., 2004).
Use of a revised “Redfield ratio” value of 1:117 linking phosphorus and carbon in or-
ganic matter (Anderson and Sarmiento, 1994) increases DIC by ∼7µmol kg−1, while
using observed ocean surface temperatures (in place of climate model simulated tem-25

peratures) in the calculation of air-sea gas exchange accounts for another 2µmol kg−1

DIC. The residual model-data difference (9µmol kg−1 DIC) is comparable to the un-
certainty in the GLODAP data-sets of ∼5–10µmol kg−1 (Key et al., 2004). However,
we cannot rule out convective ventilation or insufficient sea-ice extent in the South-
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ern Ocean, lack of seasonality, and/or the thickness of the model surface ocean layer,
contributing to driving the DIC inventory slightly too low.

4.2 The marine biogeochemical cycling of O2

The model reproduces the main features of the observed distribution of dissolved oxy-
gen (O2) in the ocean (Fig. 6), with elevated concentrations associated with the sinking5

and subduction of cold and highly oxygenated waters in the North Atlantic, as well as
the occurrence of intermediate depth minima at low latitudes in all three ocean basins.
Deep ocean O2 concentrations are almost everywhere correct to within ∼40µmol kg−1

of observations (Conkright et al., 2002). The area of greatest model-data mismatch
concerns the ventilation of intermediate waters in the Southern Ocean and North Pa-10

cific. In addition, while the magnitude of O2 depletion of the oxygen minimum zone in
the northern Indian Ocean is correctly predicted, it lies at too shallow a depth and is
too restricted in vertical extent. Overall, however, the quality of our O2 simulation com-
pares favorably with predictions made by considerably more computationally expensive
ocean circulation models (e.g., Bopp et al., 2002; Meissner et al., 2005).15

4.3 Ocean circulation and biogeochemical cycling in very coarse resolution models

While large-scale heat transports in the ocean are well captured (Hargreaves et al.,
2004), the steady-state distribution of dissolved oxygen (Fig. 6) highlights the excess
ventilation of intermediate depths above ca. 1500 m in parts of the Southern Ocean and
North Pacific in the GENIE-1 model. We can demonstrate that ocean transport rather20

than processes associated with organic production and/or remineralization is primarily
responsible by simulating the transient uptake of CFC-11 and CFC-12 from the atmo-
sphere. We use a similar methodology to OCMIP-2 (Dutay et al., 2002), in which the
partial pressure of CFCs in the atmosphere follow observations for the years 1932 to
1998 (Walker et al., 2000) and with air-sea gas exchange calculated explicitly accord-25

ing to Eqs. (12) and (13). The model-predicted 1994 global ocean CFC-11 inventory is
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0.88×109 mol, compared to the observationally-based estimate of 0.55±0.08×109 mol
(Willey et al., 2004; Key et al., 2004), with Southern Ocean intermediate depths ac-
counting for more than half of the model-data mismatch.

Anthropogenic CO2 uptake by the ocean can be similarly assessed by forcing at-
mospheric CO2 to follow the historical trajectory between 1765 and 2000 (constructed5

from the data of Enting et al. (1990) up until 1994, and Keeling and Whorf (2004) there-
after), and allowing climate to respond. We find a year 1994 anthropogenic CO2 inven-
tory of 171 PgC compared to a recent data based estimate of 118±19 GtC (Sabine et
al., 2004), with the main areas of model-data mismatch similar to CFC-11 and consis-
tent with excess O2 concentrations.10

There may be fundamental limitations to how coarse a resolution a 3-D ocean circu-
lation model may have and still simulate decadal-scale uptake processes accurately.
This is because the stability of the water column at high latitudes appears to be very
sensitive to the vertical resolution. For instance, it has recently been demonstrated
(Müller et al., 2006) that a signification improvement in transient tracer uptake can be15

obtained by increasing the number of vertical levels from 8 to 32, although the use of
observed climatological surface boundary conditions and separation of eddy-induced
and isopycnal mixing effects may also have been critical in this. We have investigated
this further by repeating the various OCMIP-2 transient tests with 16 rather than 8 lev-
els in the ocean (Edwards and Marsh, 2005). For instance, radiocarbon properties of20

the deep ocean are relatively close to observations, with model-predicted ∆14C below
2000 m in the Southern Ocean of ca. −140, and ca. −200 in the North Pacific.

Thus, simply increasing the vertical resolution appears to be an effective strategy
in creating a more stable water column at high latitudes. However, this comes at a
computational price because there is an approximate doubling of the number of cells in25

the ocean, while a thinner surface layer requires that air-sea gas exchange is updated
more frequently to ensure numerical stability. Overall, these changes reduce the speed
of a 16-level version of GENIE-1 Earth system model by a factor of about 3. To address
century to millennial-scale (and longer) questions, particularly those involving interac-
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tion with deep-sea sediments we retain the 8-level ocean by default, but recognize the
limitations we have identified in 8-level vs. 16-levels, in representing some sub-decadal
processes.

Finally, we confirm our assumptions regarding the century-scale (and beyond) ap-
plicability of an 8-level configuration by running an OCMIP-2 test, in which an abiotic5

ocean is brought to steady state with an atmospheric CO2 concentration of 278 ppm,
atmospheric CO2 instantaneously doubled, and the invasion of CO2 into the ocean
then tracked for 1000 years (Orr, 2002). We find that atmospheric CO2 concentrations
diverge between our 8-level model and the OCMIP-2 models over the first few decades
of uptake, but the trajectories re-converge thereafter (Fig. 7), making the century-scale10

(and longer) CO2 behavior in GENIE-1 indistinguishable from the differing OCMIP-2
model behaviors. This is consistent with simulations we have made of radiocarbon
distributions in the ocean (not shown) in which predicted (natural) ∆14C properties of
deep ocean water masses also fall within the range of OCMIP-2 model behavior (Mat-
sumoto et al., 2004). That we reproduce the year 2100 prediction for the strength of15

“CO2-calcification” feedback (the enhancement of CO2 uptake from the atmosphere
due to reduced calcification) made by a much higher resolution ocean model (Ridgwell
et al., 20062) also supports our assertion regarding the sphere of applicability of the
fast 8-level version of the GENIE-1 model.

5 Conclusions20

We have constructed a 3-D ocean based Earth System Model that includes key feed-
backs between marine carbon cycling, atmospheric CO2, and climate, yet even when
simulating 12 biogeochemical tracers in the ocean together with the exchange with the
atmosphere of 6 gaseous tracers, achieves better than 1000 yr simulated per (2.4 GHz)
CPU hour on a desktop computer. The computational speed of the GENIE-1 model has25

enabled us to calibrate via an Ensemble Kalman Filter (EnKF) method the critical pa-
rameters controlling marine carbon cycling. The EnKF has also allowed us to judge the
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consistency of available global alkalinity data-sets with our mechanistic representation
of global biogeochemical cycling, and has determined the a priori unknown relationship

between η and r
CaCO3:POC
0 in our parameterization of carbonate production. Because

our results highlight the importance of global biogeochemical cycling in providing a
sensitive diagnostic of ocean circulation in models, we propose that more physically5

realistic models might be achieved by “co-tuning” key physical and biogeochemical
parameters.

Global particulate organic carbon and inorganic (carbonate) carbon export predicted
by the calibrated model is consistent with recent data- and model-based estimates.
Furthermore, despite the very coarse resolution of the ocean model, the distribution of10

dissolved O2 in the ocean generally compares favorably with the data and with the re-
sults of much more computationally expensive 3-D ocean circulation models. Overall,
the speed and multi-tracer capabilities make the GENIE-1 model a viable alternative
to marine biogeochemical box models for questions regarding the controls on atmo-
spheric CO2 over all but the very longest (>100 000 years) time-scales.15
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Table 1. EnKF calibrated biogeochemical parameters in the GENIE-1 model.

Name Prior assumptions Final valueb Description
(mean and rangea)

uPO4

0 1.65µmol kg−1 yr−1 (0.3–3.0) 1.91µmol kg−1 yr−1 maximum PO4 uptake (removal) rate (Eq. 3)
K PO4 0.2µmol kg−1 (0.1–0.3) 0.21µmol kg−1 PO4 Michaelis-Menton half-saturation concentration (Eq. 3)
rPOC 0.05 (0.02–0.08) 0.055 initial proportion of POC export as fraction #2 (Eq. 6)
lPOC 600 m (200–1000) 556 m e-folding remineralization depth of POC fraction #1 (Eq. 6)

r
CaCO3:POC
0 0.036 (0.015–0.088)c 0.022 CaCO3:POC: export rain ratio scalar (Eq. 8)
η 1.5 (1.0–2.0) 1.28 thermodynamic calcification rate power (Eq. 9)
rCaCO3 0.4 (0.2–0.6) 0.489 initial proportion of CaCO3 export as fraction #2 (Eq. 11)
lCaCO3 600 m (200–1000) 1055 e-folding remineralization depth of CaCO3 fraction #1 (Eq. 11)

aThe range is quoted as 1 standard deviation either side of the mean,
bquoted as the mean of the entire EnKF ensemble,
cassimilation was carried out on a log10 scale.
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Fig. 1. Gridded continental configuration and ocean bathymetry of the 8-level, 36×36 equal-
area grid version of the GENIE-1 model.
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Fig. 2. Schematic of the relationship between the different model components comprising
GENIE-1. Arrows represent the coupling of compositional information (black) and fluxes (grey).
The bold highlights indicate the biogeochemical extensions described in this paper to the cli-
mate model (C-GOLDSTEIN) (Edwards and Marsh, 2005). The current implementation of
the module ATCHEM (not described in the text) is rather trivial. (It consists of a 2-D 36×36
atmospheric grid storing atmospheric composition, together with a routine to homogenize com-
position across the grid each time-step.) The efficient numerical terrestrial scheme ENTS and
modifications to the EMBM described in Williamson et al. (2006) are not used in this study, so
that the land surface is essentially passive.
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Fig. 3. Data assimilation of PO4 and ALK. The top panel shows the basin averaged meridional-
depth distribution of phosphate (PO4), with the model simulation immediately below the re-
spective observations (Conkright et al., 2002). The bottom panel shows the basin averaged
meridional-depth distributions of alkalinty (ALK) (Key et al., 2004). Note that we plot this data
as actual concentrations, whereas the assimilation is carried out on salinity-normalized values.
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layer predictions (b). (c) The predicted distribution of CaCO3:POC export ratio.
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Fig. 6. Basin averaged meridional-depth distributions of dissolved oxygen in the ocean; ob-
served (top) (Conkright et al., 2002) and model-simulated for the year 1994 (bottom).
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Fig. 7. Ocean CO2 invasion behavior. Predicted evolution of atmospheric CO2 following an
instantaneous doubling to 556 ppm. The atmospheric CO2 behavior of GENIE-1 is consistent
with the four ocean carbon cycle models which ran this experiment out as part of OCMIP-2
(Doney et al., 2004). The OCMIP-2 models are those of; Schlitzer (2002); Yamanaka and
Tajika (1996); Gordon et al. (2000); and Stocker et al. (1992). We deliberately do not differenti-
ate between the different OCMIP-2 models here to highlight the comparison between GENIE-1
and models having much greater horizontal and/or vertical resolution, rather than discuss the
reasons for the differences amongst the OCMIP-2 models. All OCMIP-2 trajectories are there-
fore plotted as identical grey lines. The 8-level version of GENIE-1 is shown as a thin solid black
line, while the improvement in decadal-scale CO2 uptake resulting from doubling the vertical
resolution is illustrated by the thin dashed black line. The bottom plot shows the same data, but
plotted on a logarithmic time axis to help visually separate out the different time-scales of CO2
invasion.
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