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Abstract

Soil moisture retrieval models from Soil Moisture and Ocean Salinity (SMOS) mission, an L-band

microwave interferometer, are based on multi-angular measurements and make use of the emissivity angular

signature. Mountainous areas modify local incidence angles, implying significant impacts on brightness

temperatures and, consequently, on soil moisture retrievals. The purpose of this study is to establish a

criterion to quantify the relevance of topographic impacts at the SMOS scale (∼40 km). The goal is thus

to define a method to flag the pixels according to the relative impact of topography on the brightness

temperature. The proposed method uses the variogram of digital elevation model (DEM) images.

As a result, a map of pixels to be flagged is produced to ensure no soil moisture retrievals are carried

out on pixels which are affected by a strong topographic effects. As validation, a model was also used

to simulate differences between brightness temperature variations between mountainous areas and flat

surfaces.

Index Terms

SMOS, Topography impacts, Passive Microwave, L-band.

I. I NTRODUCTION

The SMOS mission, part of ESA’s (European Space Agency) Earth Explorer Opportunity program,

is a 1.4 GHz (L-band) multi-angular interferometer [1]. It is scheduled for launch in 2008. One of

the main scientific objectives is to retrieve soil moisture with an accuracy of 4% [1]. Soil moisture

retrieval schemes from SMOS data are based on multi-angular measurements of a scene, using the

incidence angle dependency of the emissivity [2]. Consequently, topography, characterized by various

facets, varying slopes, shadowing and adjacency effects, can significantly alter the relationship between

reflectivity and incidence angle of a surface and the optical thickness of the canopy [3]-[4] and affect

surface emission. Moreover, the distribution of vegetation with altitude and the distribution of water are

linked to topographic features (altitude and slopes). This leads to impacts on the measured brightness

temperatures up to several kelvin depending on the incidence angle [3] - [5] that may imply uncertainties
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on soil moisture higher than the 4% required. Few attempts have been dedicated to estimate topography

impacts on L-band brightness temperatures. Because of the complexity of simulation, retrieval models

are designed for flat surfaces. They do not,per se, allow to take these perturbations into account.

Therefore, within the framework of soil moisture retrieval, an important issue is to assess, through

a quantitative estimator, to which of three classes a SMOS pixel (node) is to be assigned. These three

classes are : flat surface (i.e. soil moisture retrieval possible), moderate topography (flagged pixels and

soil moisture retrieval attempted) and strong topography (precludes any sensible soil moisture retrieval at

the SMOS scale). According to [5], this criterion should rather rely on the slope distribution itself and not

on a surrogate variable related to slope distribution such as altitude. Considering this, we proposed here

a simple method applicable at a global scale and based on a Digital Elevation Model (DEM). Results

presented in this paper are used to generate a map of flagged pixels to be used in the SMOS soil moisture

level 2 retrieval.

II. RATIONALE

As no detailed measurement data are available on the issue of topography effect on L-band brightness

temperatures, previous studies [3],[4], have attempted to characterize topographic impacts on passive

microwave measurements with models. A first approach was developed by [4] to simulate the effect

due to tilted surfaces from a flat surface. This allowed to quantify variations of the incidence angle and

the shadowing effect (radiation of surrounding elevated surface). This model was then generalised by

[5] using a geometrical approach accounting for shadowing and adjacency effects. Based on a radiative

transfer model [6] and surface emissivity from the L-MEB (L-band Microwave Emission of the Biosphere)

model [7], the upwelling emission can be computed in any direction. The approach consists in considering

first the emission from a flat surface. Then, the same surface properties are projected on tilted surfaces.

Differences between the two simulated radiations (called∆Tb) are linked to topography. Applying this

model (hereafter refered as the∆Tb model) is not feasible at a global scale because the process is too

ressource demanding (L-Meb and its many inputs, geometrical approach including angle computation and

shadow effects...) in the L2 soil moisture scheme. Moreover, soil moisture and vegetation may vary with

altitude and slope which is not taken into account with this model, though it is important [9]. However, we

use this∆Tb model over the Pyrenees (West-East orientation), the Alps (more random slope distribution)

and over the Andes (North-South orientation) to assess the merit of the new method proposed in this study.

Kerr et al.’s study [5] also reported two important considerations for our purpose. First, the criterion

we want to define must rely on slope distribution and not on the altitude. Secondly, slope distribution can

be effectively categorized into three different terrain types (Fig. 1). Almost flat surface - plains (Fig. 1 a)

- can be characterized by a mean slope less than 2o and a low variance. High topography - rugged areas

(Fig. 1 c)- have high mean slopes, with a low variance. And finally, an intermediate case is related to
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Fig. 1. Histograms of slope distribution for 3 topographic landscapes : a) plain ; b) piedmont plain (i.e.,areas lying at the foot of

mountain range) ; c) mountain (i.e. rugged terrain).
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Fig. 2. Angular representation of∆ Tb for both polarizations (H, continued lines and V dashed lines) for different terrains : plain

(+) ; piedmont plain (¦) ; mountain (•).

areas lying at the foot of mountain range, called piedmont plain. It is a mixture of plain and moutainous

areas (Fig. 1 b), associated with a mean slope close to 10o and a high variance due to larger range of

slopes.

Using the∆Tb model for these three classes shows the influence of topography on the brightness

temperature (Fig. 2).∆Tb depends on the polarization, increasing with zenith angle at H polarization and

decreasing at V polarization. For instance, topography can cause∆Tb up to 5K at 55o (limit angle for

SMOS studies), illustrating the significant effect of mountainous terrains and hence the importance of

locating these areas for SMOS retrievals.

The method proposed here is based on the variogram of a DEM image. The DEM is provided by the

Shuttle Radar Topography Mission (SRTM) [10], a joint project between the National Aeronautics and

Space Administration (NASA) and the National Geospatial-Intelligence Agency (NGA). Flown aboard

the NASA Space Shuttle Endeavour (February 11-22, 2000), the SRTM has collected data over 80 % of



IEEE TGARS SPECIAL ISSUE SMOS MISSION 4

Fig. 3. At left, the spatial variation of the impact on the brightness temperature over Western Europe as predicted by the∆Tb

model. At right, the spatial variation of the parameter a from (2) over Western Europe.

the Earth’s land surface, between 60o N. and 56o S. of latitude. The dual radar antennas (Spaceborne

Imaging Radar-C, SIR-C, and X-band Synthetic Aperture Radar -X-SAR-) provide data at a 3-arc-second

resolution (approximately 90 m at the equator).

III. M ETHOD

A semi-variogram is often used to analyse landscape distribution as forests, urban or agricultural areas.

This statistical tool relies on spatial pattern analysis of the landscape [11] and provides an easy method

for characterizing land surface topography [12]. The semi-variogramγ(h) of an image is the average

square difference of values separated by a number of h pixels [13]:

γ(h) =
1

2×N(h)
.

N(h)

∑
i=1

[s(h+ pi)−s(pi)]
2 (1)

where s(p) is the value of the pixel p, and N(h) the number of pairs for lag h. For most geostatistical

analysis, mathematical models are used to fit semi-variogram shape [14].

A. Modelling the Semi-Variogram behaviour

The first step of the approach is to model the shape of the semi-variogram [15]. Several analytical

models were tested (i.e. affine, fractal and power, exponential) and the most efficient approach was found

to be a log-polynomial model (2), based on fractal parameterisation [14] of the landscape, defined as :

γ(h) = exp(a.(ln(h))2).hb
.ec (2)

Between the three parameters of the log-polynomial model (i.e. a, b and c in (2)),a is the most

correlated with the topography. This is illustrated in Fig. 3 which shows the spatial distribution ofa over

Western Europe (right Fig. 3) and the spatial distribution of∆Tb (left Fig. 3 ; horizontal polarization,θ

= 55o).

Fig. 4 shows the∆Tb variations for a 55o zenith angle (∆Tb <0 for V polarization and∆Tb>0 for H)

as a function ofa (from log-polynomial law, (2)) for the same area as depicted in Fig. 3. As suggested
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Fig. 4. ∆ Tb variation witha-parameter at H polarization (gray¦) and V polarization (black×). A linear fit is shown (black line)

for pixels with a > 2 and defined by∆ TbH = 3.3x a - 4.6. ath is the intersection between the linear fit and∆ TbH = 4K.

by the behaviour of the data Fig.4, an empirical relationship exists between the two parameters. Using

the form of an exponential law, the empirical relationship (not shown in Fig.4) is:

∆Tbi(θ,a) = Ci
1(θ).exp(Ci

2(θ).a) (3)

with i the polarization,C1 andC2 being empirical constants.

B. Definition of a threshold

Using this function (3), a threshold for the parameter a - hereafter ath - is derived and equal to 2.70

(not shown). This threshold corresponds to|∆Tb| = 4K, which is the instrument precision specification

[16]. Indeed, it is difficult and not straightforward to estimate variations of Tb from the 4% uncertainties

required for the soil moisture retrieval. So we propose here to use the instrument precision specification

to deduce ath. Only pixels witha lower than ath are retained, asa higher thanath should indicate high

topographic impacts.

IV. RESULTS AND DISCUSSION

Table I (middle column) presents the results of the comparison between pixels having a∆Tb higher

than 4 K and pixels having aa higher thanath. 54.6 % of non-wanted pixels (i.e.∆Tb >4) have aa

higher thanath. That means only 54.6% of the non-wanted pixels are eliminated whenath threshold is

used. This is not acceptable and consequently, another fit function is needed to derive a more appropriate

value ofath.

According to Fig.4, only pixels with ana greater than 2 have the potential to result in a |∆Tb| > 4

K. A linear relationship (continued line Fig.4) is applied to fit the∆Tb variations witha for this data range:
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TABLE I

NUMBERS AND PERCENTAGE OF PIXELS INFLUENCED BY TOPOGRAPHY(I .E. WITH ∆TB >4K) WHICH ARE ELIMINATED AND

PERCENTAGE OF PIXELS NOT INFLUENCED BY TOPOGRAPHY(I .E. WITH ∆TB ≤4K) WHICH ARE KEPT BY THE USE OF TWO ATH

THRESHOLDS: FROM AN EXPONENTIAL FIT (MIDDLE COLUMN ) AND FROM A LINEAR FIT (RIGHT COLUMN). FOR Θ = 55o AND

H POLARIZATION, OVER WESTERNEUROPE AND THEANDES

ath = 2.70 (exponential fit) ath= 2.59 (linear fit)

Western Europe

Pixels influenced by topography, i.e.∆Tb>4K 978 978

% eliminated, i.e. a>ath 54.6% 66%

Pixels not influenced by topography, i.e.∆Tb≤4K 21412 21412

% kept, i.e. a≤ath 99.5% 99.2%

The Andes

Pixels influenced by topography, i.e.∆Tb>4K 1421 1421

% eliminated, i.e. a>ath 61.9% 74.7%

Pixels not influenced by topography, i.e.∆Tb≤4K 13579 13579

% kept, i.e. a≤ath 97.3% 96.1%

∆Tb= 3.3×a−4.6 (4)

The same |∆Tb| = 4 criterion allows to define a newath (dot pointed out by arrow labeled ath). For θ

= 55o, it is equal to 2.59 at H polarization (dot in Fig. 4) and 2.93 at V polarization. Applying this new

threshold, 66% of non-wanted pixels (i.e., having a∆Tb > 4) are eliminated (Table I, right column).

This result is satisfying enough for our purpose (Fig 5) as much as a confidence interval (see further) is

defined aroundath. The upper part of Fig. 5 shows results over Western Europe (tile centred over France).

Red pixels correspond to areas associated witha higher thanath (hereath = 2.59 for H polarization at

55o), and yellow lines outline areas with significant topographic impacts from∆Tb model. The two areas

are in good agreement.

As this method should be applicable at a global scale, another area is selected to test the consistency

of the resultant map. It is applied over the Andes while the∆Tb model [5] was used as well for

comparison. Results (bottom Fig. 5) are better than over Western Europe, with 74.7% (Table I) of non-

wanted pixels (i.e. with |∆Tb| > 4K, from ∆Tb model, [5]), eliminated. This can be explained by a

different geomorphology between the Andes and the Alps, the latter being qualified as subdued [17]

in comparison with the former. It means that the Andes are a more rugged area. This results in thea

variation with∆Tb being slightly different than for the Alps (Fig. 4). The linear regression derived from

the Andes dataset would have lead to a stronger slope (5) than that from the Alps (4).
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Fig. 5. Comparison between topographic impacts on Tb (yellow boundary) forθ = 55o - H polarization, and pixels with a>

ath=2.59 (red area), over western Europe (top) and over the Andes (bottom).

∆Tb= 2.7×a−3.4 (5)

The consequence is that, over the Andes, more pixels with a∆Tb higher than 4K have aa-value higher

thanath.

These results are considered satisfying enough for its use in the SMOS level 2 soil moisture retrieval

and for a global scale application. Indeed, it is of purpose during the calibration/validation phase of the

SMOS mission to tune this method and get to a better accuracy with the availability of real data.

A. Confidence interval

However, uncertainties in∆Tb model have to be considered and are estimated to +/-1.5K. This means

that the criterion∆Tb = 4K, used to assessath, has to be associated with uncertainties equal to +/-1.5K.

This implies a confidence interval onath, which, at 55o and H polarization, corresponds to the range :
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[2.17 - 3.04].

B. Classifying the pixels

Computinga for each pixel allows us to distinguish 3 cases. First, ifa is lower than the minimum

of the confidence interval (i.e.,a < 2.17 at 55o and H pol.), the surface of the pixel is considered flat

and topography would have no detectable influence on SMOS observed brightness temperatures. This

represents almost 87.6% of global surface land pixels. Second, ifa is in the confidence interval the

topography is moderate and there is a slightly detectable influence on the brightness temperature. This

is the case for 5.7% of global land surface pixels. Finally, 6.7% of land pixels are characterized bya

higher than the maximum value of the confidence interval (i.e.,a > 3.04 at 55o and H pol.). In this

case, topography has an influence on brighness temperature higher than the noise and is thus clearly

observable.

A problem with the use of the SRTM DEM is observed at the coasts and borders of water areas which

exhibit an important value ofath. There is a a noticeable difference between the elevation of coastal

pixels and the elevation of adjacent water pixels, which implies a sharp slope between those pixels and

so a high value ofa, misclassifying the pixel. However, this issue is easily accounted for with a land sea

mask.

V. CONCLUSION

The SMOS mission will provide multi-angular data at L-band (1.4 GHz). One of the main objectives

is to measure soil moisture on continental surfaces. However, microwave satellite measurements can be

strongly affected by topography. Indeed, since topography modifies incidence angle, significant effects

on soil moisture retrieval schemes, based on multi-angular measurements, are induced. Topographical

features can cause brightness temperature variations up to 5K [18]. Depending on surface properties (soil

moisture and vegetation optical thickness), this may lead to soil moisture retrieval errors higher than the

required accuarcy (4% [1]). Current soil moisture retrieval models do not take topography into account.

In this paper, a first attempt is presented to identify SMOS pixels affected by topography at a global scale.

This simple method is based on semi-variograms of a DEM map. Moreover, it is easier to implement in

the soil moisture retrieval scheme than the∆Tb model. A log-polynomial function is first used to fit the

semi-variogram behaviour. Then, a relationship is established between one parameter (referred to asa)

of this function and brightness temperature variations due to topography (according to∆Tb model [5]).

The instrument uncertainties (|∆Tb| = 4K) allows to establish an arbitrary threshold value to be adjusted

during the commissionning phase, depending on the incidence angle and polarization. Uncertainties on

∆Tb model lead to consider a confidence interval forath.

The method developed over the Alps and Pyrenees in Europe has been applied over the Andes

(characterized by a different orientation) and offers promising results. A global map of flagged pixels

is then deduced and can be used in the level2 soil moisture retrieval schemes [8]. SMOS nodes witha
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lower than the minimum value of the confident interval are considered not influenced by topography and

soil moisture is attempted ; for nodes presenting aa-value between the minimum value of the confidence

interval andath, topography is considered having a moderate impact, so soil moisture is attempted with

bigger error bars ; finally, nodes having aa-value higher thanath, are masked and no soil moisture

retrieval is attempted.

As acceptable as the method may be in the framework of SMOS L2, improvements are possible to

enhance accuracies. It is planned to tune the threshold during the calibration/validation phase of the

SMOS mission when data will be available. Investigations on the fit function betweena and ∆Tb can

improve botha and the confidence interval. Validation studies should also be carried out with the use of

other satellite data (Polarization Index of SMMR or AMSR). And finally, further efforts will focus on

assessing the thresholdath considering the relationship between a and the soil moisture variations due to

topography by using retrieval models.
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