
A Foundation for Flow-Based Program Matching
Using Temporal Logic and Model Checking

Julien Brunel
DIKU, University of Copenhagen,

Denmark
brunel@diku.dk

Damien Doligez
INRIA, Gallium Project,

France
damien.doligez@inria.fr

René Rydhof Hansen
Department of Computer Science

Aalborg University, Denmark
rrh@cs.aau.dk

Julia L. Lawall
DIKU, University of Copenhagen, Denmark

julia@diku.dk

Gilles Muller
École des Mines de Nantes, France

Gilles.Muller@emn.fr

Research report 08/2/INFO, Ecole des Mines de Nantes
July 16, 2008

Reasoning about program control-flow paths is an important functionality of a number of recent program matching languages
and associated searching and transformation tools. Temporal logic provides a well-defined means of expressing properties of
control-flow paths in programs, and indeed an extension of the temporal logic CTL has been applied to the problem of specifying
and verifying the transformations commonly performed by optimizing compilers. Nevertheless, in developing the Coccinelle
program transformation tool for performing Linux collateral evolutions in systems code, we have found that existing variants of
CTL do not adequately support rules that transform subterms other than the ones matching an entire formula. Being able to
transform any of the subterms of a matched term seems essential in the domain targeted by Coccinelle.

In this technical report, we propose an extension to CTL named CTL-VW (CTL with variables and witnesses) that is a
suitable basis for the semantics and implementation of the Coccinelle’s program matching language. Our extension to CTL
includes existential quantification over program fragments, which allows metavariables in the program matching language to
range over different values within different control-flow paths, and a notion of witnesses that record such existential bindings for
use in the subsequent program transformation process. We formalize CTL-VW and describe its use in the context of Coccinelle.
We then assess the performance of the approach in practice, using a transformation rule that fixes several reference count bugs in
Linux code.

1. Introduction
Program matching is the process of searching within the
source code of a program for code fragments matching
a given pattern, described using some language. Recently,
program matching languages that combine descriptions of
code fragments with information about the control-flow paths
between them have been found useful in specifying rules for
program manipulation tasks such as compiler optimizations
[16, 17], bug finding [10], refactorings [23], and evolution
[20].

In recent work, we have developed the transformation
system Coccinelle [20], which provides the language SmPL
(Semantic Patch Language) for specifying desired matches
and transformations. Coccinelle is targeted towards perform-
ing collateral evolutions in systems code. Such evolutions
comprise the changes that are needed in client code in re-
sponse to evolutions in library APIs, and may include mod-
ifications such as renaming a function, adding a function
argument whose value is somehow context-dependent, and
reorganizing a data structure. Collateral evolutions may in-
volve fragments of code that are scattered throughout a func-
tion or a file, such as a function call and its corresponding
error-handling code, and thus it is often necessary to take into
account the control-flow relationships between the relevant
code fragments. Beyond collateral evolutions, we have also
found Coccinelle useful for finding and fixing bugs in the use
of API functions [18], for which control-flow relationships
must also be taken into account.

In developing Coccinelle, it was necessary to choose
a foundation on which to base the matching process. In
the context of specifying compiler optimizations, Lacey
and De Moor have observed that the temporal logic CTL
can provide a convenient foundation for the semantics of
program matching languages that take control-flow paths
into account, because it is designed for reasoning about
paths [16]. In this setting, a pattern is compiled into a
formula of the logic and a program is translated into its
control-flow graph. Model checking [7, 12] is then used
to match the formula against the control-flow graph, thus
identifying where the pattern matches in the program. To
support the specification of compiler optimizations, Lacey
and De Moor extended CTL first with predicates over free
variables, producing the logic CTL-FV [17], and then with
predicates over variables that may be existentially quantified,
producing a logic that we refer to as CTL-V [15]. The former
allows collecting information about the program during
the matching process, via variable bindings, and imposing
constraints on the allowed subterms when a given variable
is matched more than once. The latter enables localizing
collected information and imposed constraints to within
individual subsets of the possible control-flow paths, such as
the different branches of a conditional statement.

The needs of Coccinelle, however, have made apparent
some inadequacies of CTL-V as the back end of a program

matching language. While the use of existentially quantified
variables allows variables to have different values within
different control flow paths, the semantics of CTL-V does not
provide a means of retrieving the values of such variables for
use during subsequent transformation. Furthermore, CTL-V
model checking, like standard CTL model checking, only
provides information about the state at which the entire
formula is satisfied, and not about the results for subformulas
that contribute to a successful match. Information about such
intermediate results, however, is important when a single
formula can describe transformations of subterms, as is
needed for Coccinelle.

In this paper, we present a variant of CTL named CTL-VW
(CTL with variables and witnesses), that addresses the above
needs for program matching. The syntax of CTL-VW is the
same as that of CTL-V, extending that of CTL with predicates
defined over metavariables that can be existentially quantified
over the set of program fragments. The semantics of CTL-
VW maintains a collection of witnesses that record the states
and bindings that satisfy existentially quantified subformulas.
We exploit these witnesses both to record variable bindings
and to identify states at which transformation should take
place. In practice, we have used CTL-VW as the basis of
the implementation of Coccinelle. We have used Coccinelle
to implement over 60 collateral evolutions, affecting in total
over 5800 files in various recent versions of Linux [20]. We
have also used Coccinelle to find over 45 bugs in Linux code.

The contributions of this paper are as follows:

• We present the semantics of CTL-VW. We show that this
semantics is a conservative extension of that of CTL-V.

• We present in two steps a model checking algorithm for
CTL-VW. In the first step, we extend the CTL model
checking algorithm with environments, producing a new
model checking algorithm for both CTL-FV and CTL-V.
In the second step, we further extend this model checking
algorithm with witnesses, for CTL-VW.

• We show that the model checking algorithm for CTL-VW
is sound and complete with respect to the semantics of
CTL-VW.

• We show how to translate the core of Coccinelle’s program
matching language SmPL into CTL-VW. This core is
sufficient to express a semantic patch for finding and
fixing some bugs in the use of reference counts in Linux
code. The resulting corrections have been validated by
Linux experts and accepted into the Linux kernel.1 Our
examples show that the CTL-VW based implementation
of Coccinelle is efficient enough to be usable on a 1.4GHz
laptop.

The rest of the paper is organized as follows. Section 2
briefly presents Coccinelle in terms of a real example that
highlights the above-cited requirements. Section 3 describes

1 http://www.emn.fr/x-info/coccinelle/#impact

EMN 08/2/INFO 1

CTL and some variants that are precursors to our work. Sec-
tion 4 describes our first contribution: a bottom-up model
checking algorithm for CTL-V. Section 5 introduces our sec-
ond contribution: CTL-VW, including its syntax, semantics,
and a model checking algorithm. Section 6 describes how
CTL-VW is used in the context of Coccinelle. Finally, Section
7 presents related work and Section 8 concludes.

2. Overview of Coccinelle
Our motivation for this work was to be able to use CTL
as a foundation for the semantics and implementation of
SmPL, the program matching and transformation language of
Coccinelle [20]. The syntax of SmPL is derived from that of
a Linux patch file [19], which is a notation familiar to Linux
programmers. Unlike a standard patch, however, which is
text-based, a semantic patch takes into account the semantics
of the matched code, in particular its intraprocedural control-
flow. From the point of view of CTL, the relevant features of
a semantic patch are that it may describe a complex region of
code, specified in terms of program fragments that should be
connected by control-flow paths, and that it may be needed
to specify transformations at any point within the described
region. Furthermore, the region may involve multiple control-
flow paths, e.g., due to conditionals, and different control-flow
path may involve different computations, each of which may
be relevant to the transformation process.

In this section, we present the SmPL language via a short
example that illustrates the above issues. We defer a more
formal presentation of the code language of SmPL to Section
6, where we show how to define its semantics by translation
into the CTL-VW logic developed in the next three sections.

2.1 A simple SmPL sample
Managing reference counts is a common source of errors
in C code. In particular, we have observed that Linux error
handling code sometimes does not appropriately decrement
reference counts for objects acquired in the current func-
tion. Figure 1 shows a semantic patch type ref for correcting
such problems involving the function of find node by -
type. This function increases a reference count that should
subsequently be decremented by calling the function of -
node put. The semantic patch in Figure 1 inserts a call to
of node put before a return in error handling code (indi-
cated by a return of a negative value), when there was no
such call previously, and when it is not possible that the
value returned by of find node by type has been saved in
a more permanent manner.

The type ref semantic patch consists of a single rule,
which first declares a collection of metavariables and then
defines a transformation specification. The metavariables are
designated according to the kind of terms they can match,
such as a statement, an identifier, or an expression (line 2).
An expression metavariable can be further constrained by its
type (line 3). The transformation specification essentially has

@type ref@ 1
statement S; identifier f1,f2; expression E1,E2; constant C; 2
struct device node *n; struct device node *n1; struct device node *n2; 3
@@ 4

5
n = of find node by type(. . .) 6
. . . 7
if (!n) S 8
. . . when != of node put(n) 9

when != n1 = f1(n,. . .) 10
when != E1 = n 11

(12
+ of node put(n); 13

return −C; 14
| of node put(n); 15
| n2 = f2(n,. . .) 16
| E2 = n 17
| return . . .; 18
) 19

Figure 1. The semantic patch type ref written in simplified
SmPL

the form of C code, except that lines to remove are annotated
with - in the first column, and lines to add are annotated with
+ (line 13). A transformation specification can also use dots,
“...” (line 7), describing an arbitrary sequence of instructions
within a control-flow path. Dots may be modified with a
when clause (lines 9-11), indicating a pattern that should
not occur anywhere within the matched sequence. Finally,
lines 12-19 specify a disjunction of patterns, of the form
(pat1 | . . . | patn).

Full SmPL, as implemented in Coccinelle, provides many
features not illustrated by this example, such as multiple rules,
subpatterns that match 0 or more times, dots within arbitrary
subterms, and the ability to use both universal and existential
path quantification [20]. All of these features can be encoded
similarly to the basic strategies presented in Section 6.

2.2 Assessment
Our goal is to encode the semantic patch of Figure 1 as a
single formula of a CTL-like logic. For this, the main issues
are 1) to manage the metavariables nx, C, etc., 2) to allow
metavariables to match different terms along different control-
flow paths, as e.g., the return value C may be different at each
return site when there are multiple returns under conditionals,
3) to record the various bindings of the metavariables within
the different control-flow paths, as e.g., the binding of C
may be needed to transform the enclosing return, and 4)
to record the sites where transformation is needed. For the
last point, in our case, the complete formula representing the
semantic patch would match at a call to of find node by -
type, but transformation is required at the various matches
of the subformula representing return -C;. A semantic
patch may indeed specify a transformation anywhere within
the matched term. Among these requirements, CTL-FV
provides only a representation of metavariables, and CTL-V
additionally allows metavariables to match different terms
along different control-flow paths. We thus develop the logic

2 EMN 08/2/INFO

CTL-VW that permits an encoding of a semantic patches that
addresses the remaining requirements, i.e., 3) and 4).

3. Background
In this section, we present the theoretical background for
the work in the present paper. First, we briefly review the
syntax, semantics, and algorithmic implementation of the
well-known Computational Tree Logic (CTL) [7]. Next, we
present a variant of CTL called CTL-FV (CTL with free
variables) used by Lacey et al. to show the correctness
of some classical compiler optimizations [17]. Finally, we
present CTL-V (CTL with variables), a CTL variant with
existentially quantified variables, and formally define its
semantics.

3.1 Computational Tree Logic
Computational Tree Logic is a temporal logic based on
the notion of branching time [7]. It has been implemented
in a variety of model checkers and used to model check
properties ranging from hardware verification [11, 14] to
program analysis [22].

In what follows we briefly review the syntax and semantics
of CTL without going into detail. For a textbook treatment,
see [12]. CTL is a logic for reasoning about states and the
paths between them. Its syntax is as follows:

φ ::= p | φ ∧ φ | φ ∨ φ | ¬φ |
AXφ | EXφ | A[φUφ] | E[φUφ]

Intuitively, the formulas p (propositions), φ∧φ, φ∨φ, and ¬φ
are the same as in propositional logic, and permit reasoning
about the properties of a given state. The remaining formulas
permit reasoning about paths. AXφ holds if all the successors
of the current state satisfy φ, while EXφ holds if at least
one successor of the current state satisfies φ. A[φ1 Uφ2]
expresses that along all paths there is some state where
φ2 holds, and requires that φ1 hold at all preceding states.
E[φ1 Uφ2] is similar, except that there need be only one
path with these properties. For example, in Figure 2a, the
formula A[(f(1) ∨ g(2))Uh(1, 2)] holds at state 1, because
all paths eventually reach a state, i.e., state 3 or 5, where the
proposition h(1, 2) holds, and at all previous states, i.e., states
1, 2, and 4, either f(1) or g(2) holds. On the other hand, in
Figure 2c, AX(g(2)) does not hold at state 1, because g(2)
does not hold at one of the neighbors, state 4. The semantics
of CTL is defined over a model:

DEFINITION 1. A model is a triple, (States,→, Label),
where States is a finite set of states; →⊆ States× States is
the successor relation such that ∀s.∃r.s→ r, i.e., every state
has at least one successor; and Label : States → P(Atom)
is a labelling function that assigns a set of atomic proposi-
tions to each state.

The set of infinite paths starting in state s is denoted Path(s).
For a path π = s0 → s1 → · · · → sj → · · · the jth element

53

1

2 4

h(1, 2) h(1, 2)

f(1)

g(2) g(2)

(a)

1

2 4

53

f(1)

g(2) g(3)

h(1, 2) h(1, 3)

(b)

1

2 4

53

f(1)

g(2) g(3)

h(1, 3) h(1, 3)

(c)

Figure 2. Some simple CTL models illustrating differences
between control-flow paths

is denoted by π[j], i.e., π[j] = sj . Note that the set of paths
may be infinite. Finally, the next function computes the set
of successors of a given state: next(s) = {s′ | s→ s′}.

We now formally define the semantics for CTL as a set
of judgements of the form M, s |= φ, where M is a model,
s ∈ States and φ is a CTL formula. For convenience, we
elide the model in the judgements:

s |= p ⇔ p ∈ Label(s)
s |= φ1 ∧ φ2 ⇔ s |= φ1 ∧ s |= φ2

s |= φ1 ∨ φ2 ⇔ s |= φ1 ∨ s |= φ2

s |= ¬φ ⇔ s 6|= φ
s |= AXφ ⇔ ∀s′ ∈ next(s).s′ |= φ
s |= EXφ ⇔ ∃s′ ∈ next(s).s′ |= φ
s |= A[φ1 Uφ2] ⇔ ∀π ∈ Path(s).∃i ≥ 0.π[i] |= φ2 ∧

∀0 ≤ j < i.π[j] |= φ1

s |= E[φ1 Uφ2] ⇔ ∃π ∈ Path(s).∃i ≥ 0.π[i] |= φ2 ∧
∀0 ≤ j < i.π[j] |= φ1

Figure 3 presents a model checking algorithm, SAT, for
CTL. Given a formula and a model, SAT returns the set of
states at which the formula is true in the model. The algorithm
is based on that presented in [12], but we have reorganized
it so that it can be easily extended to the logics CTL-V
and CTL-VW that we consider subsequently. In particular,
the algorithm accepts predicates parameterized by a list of
variables x, which in the case of CTL will always be an empty
list, and it includes a line for formulas ∃x.φ, which are not
part of CTL. In the latter case, the instantiation of the model
checking algorithm for CTL simply fails.

In this algorithm, the SAT function simply serves to
recursively traverse the formula, except in the case of a
proposition, where it returns each state where the proposition
is satisfied (recall that x is empty for CTL). The functions
applied to the intermediate SAT results then perform the main
calculation of the algorithm. The function conj combines
compatible information from two sets of results, and thus
implements conjunction. In the case of CTL, this amounts
to intersection. The function disj collects all information
from two sets of results, and thus implements disjunction.
The functions Conj and Disj fold conj and disj over a set of
results, respectively, and are used to define some of the other
functions. The function neg computes the complement of a
set of results, and in the case of CTL amounts to returning the

EMN 08/2/INFO 3

SAT function:
SAT(p(x)) = {inj(s, θ) | p(θ(x)) ∈ Label(s) ∧

dom(θ) = fv(p(x))}
SAT(φ1 ∧ φ2) = conj(SAT(φ1), SAT(φ2))
SAT(φ1 ∨ φ2) = disj(SAT(φ1), SAT(φ2))
SAT(¬φ) = neg(SAT(φ))
SAT(∃x.φ) = exists(x, SAT(φ))
SAT(AX φ) = pre∀(SAT(φ))
SAT(EX φ) = pre∃(SAT(φ))
SAT(A[φ1 U φ2]) = SATAU(SAT(φ1), SAT(φ2))
SAT(E[φ1 U φ2]) = SATEU(SAT(φ1), SAT(φ2))

Operators on SAT results:
conj(T1, T2) = {t1

d
t2 | t1 ∈ T1 ∧ t2 ∈ T2 ∧ t1

d
t2 is defined}

Conj = fold conj {inj(s, ∅) | s ∈ States}
disj(T1, T2) = T1 ∪ T2

Disj = fold disj ∅
neg(T) = Conj {negone(t) | t ∈ T}
exists(x, T) = {existsone(t) | t ∈ T}
pre∀(T) =

S
s∈States(Conj {shift(s′, T, s) | s′ ∈ next(s)})

pre∃(T) =
S

s∈States(Disj {shift(s′, T, s) | s′ ∈ next(s)})
SATAU(T1, T2) = local var W = T1, Y = T2, X;

repeat X = Y ; Y = disj(Y, conj(W, pre∀(Y)));
until same(X, Y);
return Y ;

SATEU(T1, T2) = local var W = T1, Y = T2, X;
repeat X = Y ; Y = disj(Y, conj(W, pre∃(Y)));
until same(X, Y);
return Y ;

Element level operators, for CTL:
inj(s, θ) = s
s1

d
s2 = s1, if s1 = s2

negone(s) = {s′ | s′ ∈ States− {s}}
shift(s1, T, s2) = {s2}, if s1 ∈ T , ∅ otherwise
same(T1, T2) = T1 = T2

existsone is not defined

Figure 3. A generic model checking algorithm and its in-
stantiation for CTL

difference between the complete set of states and the given
set of states. The functions pre∀ and pre∃ have the effect of
checking whether all neighbors of a state are in a given set of
results or whether there exists a neighbor of a state that is in
a given set of results, respectively. These functions are used
in the implementation of AX and EX, respectively, and in the
definition of the functions SATAU and SATEU that implement
AU and EU.

The remaining functions manipulate the elements of the
sets of results, which are states in the case of CTL. The
function inj takes as arguments a state and an environment
(always empty for CTL) and injects it into the type of
results for the given logic, which in the case of CTL implies
just dropping the environment. The (partial) function

d

determines whether two results are compatible, which simply

means that they are equal in the case of CTL. The function
negone computes the complement of a single result. The
function shift returns all results in a set T that are associated
with a state s1, but replaces the state information in each
case by another state s2; this function makes it convenient to
implement pre∀ and pre∃. Finally, the function same makes
it possible to vary the termination condition for the fixpoint
iterations in SATAU and SATEU.

It is straightforward to show that this algorithm is sound
and complete with respect to the semantics [12]:

THEOREM 1 (Soundness and completeness).
s |= φ⇔ s ∈ SAT(φ)

3.2 Computational Tree Logic with free variables
While CTL has proven to be very useful in the context of
program analysis [22], Lacey et al. showed that the extension
CTL-FV, supporting not propositions but predicates over free
variables, could be used in the context of program transfor-
mation [17]. In particular CTL-FV has been used to formalize
and prove correct a number of classical compiler optimiza-
tions [17, 21]. The introduction of variables implies that logic
satisfies our first requirement for Coccinelle (Section 2.2).

The syntax of CTL-FV is essentially the same as that of
CTL with the addition of predicates over free variables. We
refer to these variables as metavariables:

φ ::= p(x) | φ ∧ φ | φ ∨ φ | ¬φ |
AXφ | EXφ | A[φUφ] | E[φUφ]

fv(φ) is the set of free metavariables of a formula φ.
The semantics of CTL-FV is almost the same as that

of CTL; indeed, they are based on the same models. The
new features are that the semantics of predicates now takes
free variables into account and all judgements now carry an
environment θ, mapping metavariables to an arbitrary set of
values, Val:

Env = MetaVar → Val

When using CTL-FV to describe program transformations,
Val is the set of subterms of the program to be transformed.
The semantics is defined as follows. Again we elide the
model:

s |=θ p(x) ⇔ p(θ(x)) ∈ Label(s)
s |=θ φ1 ∧ φ2 ⇔ s |=θ φ1 ∧ s |=θ φ2

s |=θ φ1 ∨ φ2 ⇔ s |=θ φ1 ∨ s |=θ φ2

s |=θ ¬φ ⇔ s 6|=θ φ
s |=θ AXφ ⇔ ∀s′ ∈ next(s).s′ |= φ
s |=θ EXφ ⇔ ∃s′ ∈ next(s).s′ |= φ
s |=θ A[φ1 Uφ2] ⇔ ∀π ∈ Path(s).∃i ≥ 0.π[i] |=θ φ2

∀0 ≤ j < i.π[j] |=θ φ1

s |=θ E[φ1 Uφ2] ⇔ ∃π ∈ Path(s).∃i ≥ 0.π[i] |=θ φ2

∀0 ≤ j < i.π[j] |=θ φ1

Model checking for CTL-FV has been done using a standard
model checker by instantiating the formula with respect to all
possible bindings of the metavariables [21].

4 EMN 08/2/INFO

f(x) ∧ AX(g(y) ∧ AX(h(x, y)))
f(x) ∧ AX(∃y.(g(y) ∧ AX(h(x, y))))

Figure 4. CTL-FV and CTL-V formulas

3.3 Computational Tree Logic with quantified
variables

Lacey further extends CTL-FV with the ability to existentially
quantify over metavariables [15], producing a logic that we
refer to as CTL-V. The syntax of CTL-V is as follows:

φ ::= p(x) | φ ∧ φ | φ ∨ φ | ¬φ | ∃x.φ
| AXφ | EXφ | A[φUφ] | E[φUφ]

The semantics is the same as that of CTL-V, augmented with:

s |=θ ∃x.φ ⇔ ∃v ∈ Val.s |=θ[x7→v] φ

Introducing the ability to quantify over metavariables al-
lows metavariables to have different values within different
control-flow paths (our second requrement for Coccinelle)
and thus adds flexibility as compared to CTL-FV. For exam-
ple, consider the formulas in Figure 4, of which the first is in
both CTL-FV and CTL-V, and the second is only in CTL-V.
Both formulas are satisfied at state 1 in the model in Figure
2(a), as it is possible to uniformly assign x to 1 and y to 2.
Only the second formula is satisfied at state 1 in the model
in Figure 2(b), as in the left branch (states 2 and 3), y must
be 2, while in the right branch (states 4 and 5), y must be 3.
Finally, neither formula is satisfied at state 1 in the model in
Figure 2(c), as it is not possible to choose a consistent value
for y in the left branch (states 2 and 3).

Lacey has presented a model checking algorithm for CTL-
V [15]. This algorithm follows a top-down strategy, in which
it tries to satisfy the formula at each state of the model, rather
than following a bottom-up strategy, which is the source of
the efficiency of the standard CTL model checking algorithm
presented in Figure 3. No precise performance measurements
are provided.

4. A Model Checking Algorithm for CTL-V
In this section, we present a bottom-up model checking algo-
rithm for CTL-V that is based on the CTL model checking
algorithm presented in Figure 3. This algorithm is not suf-
ficient as a foundation for Coccinelle, as it does not record
information about the bindings of existentially quantified vari-
ables. Nevertheless, it permits to introduce a representation
of environments that is common to model checking for both
CTL-V and CTL-VW, and the algorithm may be of indepen-
dent interest in context of the work of Lacey and De Moor
[16]. While the CTL model checking algorithm identifies the
set of states where a formula is satisfied, the CTL-V model
checking algorithm must identify the set of pairs of a state
and an environment that satisfy the formula. The algorithm
is applicable to both CTL-V and CTL-FV, and even to CTL,

although the environment it collects is unnecessary in the
latter case.

We first present a representation of environments that
allows the CTL-V model checking algorithm to efficiently
represent information about bindings, then present the CTL-V
model checking algorithm, and finally consider its soundness
and completeness with respect to the semantics of Section
3.3.

4.1 Environments for CTL-V model checking
A recurring problem in model checking is how to represent
the result of negation; the size of the complement of a set of
states depends on the size of the model, which can be very
large. For CTL-V, where the result of model checking is a
set of state-environment pairs, taking the complement of the
result includes taking the complement of the environment,
where the size of the result depends on the size of Val. In the
case of program matching, Val amounts to the set of subterms
of the program. In our experience, the set of bindings that
derive from matching a predicate against the source code is
quite small, and thus taking the complement in this manner
would incur a substantial performance overhead. To address
this issue, we use constructive negation [6].2

Rather than negating a binding by creating a disjunction
of all of the possible bindings for the variable other than the
current one, we add the ability to represent negative bindings
directly. Thus, we define an extended form of environment,
Env±, in which a variable is mapped to either a positive
binding (a particular value in Val) or a set of negative bindings
(in P(Val)):

Env± = (MetaVar → Val + P(Val))⊥

The added bottom element is used to represent an environ-
ment that contains conflicting information. The domain of
⊥ is undefined. The following notation facilitates reasoning
about the positive and negative bindings of an environment:

DEFINITION 2. Let θ ∈ Env±. We define

1. dom+(θ) = {x ∈ dom(θ) | θ(x) ∈ Val}
2. dom−(θ) = {x ∈ dom(θ) | θ(x) ∈ P(Val)}
3. θ+(x) = θ(x) iff x ∈ dom+(θ)
4. θ−(x) = θ(x) iff x ∈ dom−(θ)

Env+ = {θ ∈ Env± | dom(θ) ⊆ dom+(θ)} is the set of
the environments that have only positive bindings. Env+

is the same as Env, and thus is the form of environment
accepted by the semantics. Env+

φ = {θ ∈ Env± | dom(θ) =
dom+(θ)∩ fv(φ)} is the subset of Env+ restricted to the free
variables of the formula φ.

NOTATION 1. For convenience, we define the following ex-
plicit notation for environments. Let {x1, . . . , xm, y1, . . . , ym} ⊆
2 Another approach would be to use BDDs, for which negation can be
performed in constant time. We have not taken this option, however, because
it is not clear how it scales to include witnesses, which we add in CTL-VW.

EMN 08/2/INFO 5

MetaVar be a set of pairwise different meta-variables. Then
[x1 7→ v1, . . . ,
xn 7→ vn, y1 67→ V1, . . . , yn 67→ Vn] represents the envi-
ronment θ such that θ(xi) = vi ∈ Val for every i ∈ 1..n and
θ(yj) = Vj ∈ P(Val) for every j ∈ 1..m.

DEFINITION 3 (Conflict). Two environments θ1, θ2 ∈ Env±,
with θ1 6= ⊥, θ2 6= ⊥, conflict iff ∃x ∈ dom(θ1) ∩ dom(θ2)

θ+1 (x) 6= θ+2 (x) ∨ θ+1 (x) ∈ θ−2 (x) ∨ θ+2 (x) ∈ θ−1 (x)

Otherwise, θ1 and θ2 are said to be compatible.

Next, we introduce an ordering on environments. This
ordering is needed to relate the environments that are returned
by the algorithm, which can contain negative bindings, to
the ones that satisfy the formula according to the semantics.
Intuitively an environment with more specific information
is less than one with less specific information, e.g., [x =
42, y = 12] v [x = 42] v [x 6= 87].

DEFINITION 4 (Environment ordering). Let θ1, θ2 ∈ Env±

and define θ1 v θ2 iff θ1 = ⊥ ∨
(
dom(θ1) ⊇ dom(θ2) ∧

∀x ∈ dom(θ1).θ+1 (x) = θ+2 (x)∨θ+1 (x) /∈ θ−2 (x)∨θ−1 (x) ⊇
θ−2 (x)

)
According to this ordering, the environment with the empty
set as its domain is the greatest element > and ⊥ is the least
element.

To compute the environment that satisfies a conjunction
in a given state, the algorithm joins the environments that
satisfy each of the conjunct formulas in the same state. The
join of two environments is defined as follows:

DEFINITION 5 (Environment join). Let θ1, θ2 ∈ Env±. We
define θ1 u θ2 to be ⊥ if θ1 = ⊥ or θ2 = ⊥, i.e., θ1 u ⊥ =
⊥uθ2 = ⊥. For θ1 6= ⊥, θ2 6= ⊥, if θ1 and θ2 are compatible,
θ1 u θ2 is defined as follows:

(θ1uθ2)(x) =

v if θ+1 (x) = v ∨ θ+2 (x) = v
V1 if θ−1 (x) = V1 ∧ x /∈ dom(θ2)
V2 if θ−2 (x) = V2 ∧ x /∈ dom(θ1)
V1 ∪ V2 if θ−1 (x) = V1 ∧ θ−2 (x) = V2

If θ1 and θ2 conflict, then θ1 u θ2 = ⊥.

It is straightforward to show that the join operator computes
the greatest lower bound of two environments according to
the environment ordering.

Finally, we conclude with the definition of the negation of
an environment. This operation can create negative bindings.

DEFINITION 6 (Negation of an environment). For θ ∈ Env±,
we define

¬θ =

{>} if θ = ⊥
{[x 67→ {v}] | v = θ+(x)} ∪ {[x 7→ v] | v ∈ θ−(x)}

otherwise

Notice that ¬θ ∈ P(Env±).

4.2 A bottom-up CTL-V model checking algorithm
The algorithm SAT for CTL-V takes as arguments a model
and a formula and returns result in the form of a set of pairs
(s, θ) ∈ State × Env±. As compared to the definition of
SAT in Figure 3, it is only necessary to redefine the element-
level functions inj,

d
, negone, existsone, shift, and same to

take environments into account. The new definitions are as
follows:

inj(s, θ) = (s, θ)
(s1, θ1)

d
(s2, θ1) = (s1, θ1 u θ2), if s1 = s2 ∧ θ1 u θ2 6= ⊥

negone(s, θ) = {(s′, ∅) | s′ ∈ States− {s}} ∪
{(s, θ′) | θ′ ∈ ¬θ}

existsone(x, (s, θ)) = (s, θ − [x 7→ v]), if θ+(x) = v
(s, θ − [x 67→ V]), if θ−(x) = V
(s, θ), otherwise

shift(s1, T, s2) = {(s2, θ) | (s1, θ) ∈ T}
same(T1, T2) = T1 = T2

The function inj, used to inject the result of matching a
predicate into the codomain of SAT, now keeps both the state
and the environment argument, as the environment argument
is now non-trivial. The function

d
, used in computing a con-

junction of results, extends the CTL definition by taking the
join of the associated environments. The function negone,
used in computing the negation of a result, similarly extends
the definition for CTL by including not only each element
of the complement of the given state, paired with the empty
environment, but also pairs for the current state combined
with each element of the negation of the current environment.
These pairs represent the least specific ones that are incompat-
ible with the given state and environment pair. The function
shift selects the pairs in T that have the same state as its first
argument and replaces the state in each pair with the state
in its third argument, as is needed to implement the opera-
tors AX and EX. Finally, the function same simply checks
whether the results it is given represent equivalent sets, as in
the CTL definition.

4.3 Examples
As examples of the CTL-V model checking process, we
consider again the models of Figure 2 and the formulas
of Figure 4. In checking the formula f(x) ∧ AX(g(y) ∧
AX(h(x, y))) with respect the model in Figure 2b, the result
for the subformula g(y) ∧ AX(h(x, y)) is

{(2, [x 7→ 1, y 7→ 2]), (4, [x 7→ 1, y 7→ 3])}

Model checking of the enclosing AX, however fails, because
although both of the neighbors of state 1 are in the above
result, they are associated with conflicting environments. On
the other hand, in checking the formula f(x)∧AX(∃y.(g(y)∧
AX(h(x, y)))), with respect to the same model, the same
result is obtained for g(y)∧AX(h(x, y)), but for ∃y.(g(y)∧

6 EMN 08/2/INFO

AX(h(x, y))), the result is

{(2, [x 7→ 1]), (4, [x 7→ 1])}

in which the conflicting bindings of y have been dropped.
This time, the result of the enclosing AX is {(1, [x 7→ 1])},
which in turn is the result of checking the entire formula.

4.4 Soundness and completeness
The model checking algorithm for CTL-V can return envi-
ronments that contain negative bindings, while the semantics
for CTL-V only accepts environments with positive bindings.
Thus, the relationship between them is not as direct as in the
case of CTL (Theorem 1). Instead, the soundness and com-
pleteness theorem for the CTL-V model checking algorithm
relates an environment produced by the algorithm, which may
contain negative bindings, to the set of more specific environ-
ments that contain only positive bindings and are accepted by
the semantics:

THEOREM 2 (Soundness and completeness). Let φ be a for-
mula, and T ∈ P(State × Env±). Let us define ηφ(T) =
{(s, θ) ∈ State × Env+

φ | ∃(s′, θ′) ∈ T.s = s′ ∧ θ v θ′}.
Then,

∀s∀θ (θ ∈ Env+
φ ∧ s |=θ φ) ⇔ (s, θ) ∈ ηφ(SAT(φ))

The proof of this theorem has been validated with Coq [3]. 3

5. CTL-VW
CTL-V allows variables to have different values in differ-
ent control-flow paths, but discards their bindings, making it
impossible to refer to such variables in a subsequent transfor-
mation phase. The goal of CTL-VW is to collect the bindings
of such variables, as witnesses, in a way that does not affect
the rest of the matching process. This satisfies the third of our
requirements for Coccinelle (Section 2.2). We first define wit-
nesses, then give the semantics and model checking algorithm
of CTL-VW, and finally sketch the proof of the soundness
and completeness of the model checking algorithm.

5.1 Witnesses
A witness is essentially a record of a state, a binding, and
the set of witnesses for other bindings that contributed to
establishing the binding in the given state. A witness thus
has a tree structure, which corresponds to the structure of the
nested existential quantifiers in the formula.

DEFINITION 7 (Witnesses). The set Wit of witnesses is de-
fined as:

Wit = States×MetaVar× (Val + P(Val))×WitForest

A witness forest Ω ∈ WitForest is a multiset of witnesses,
i.e., a pair (W, f), where W ⊆ Wit is a set of witnesses, and

3 URL: http://www.emn.fr/x-info/coccinelle/ctlv.tar.gz

f : W → N∗ is a function that associates each witness with
its multiplicity (a nonnegative integer). We define WitForest+

as the set of the witness forests in which all bindings are
positive.

The operator] produces the join of two multisets. For
ease of reading, we sometimes use the set-like notation {. . .}
to enumerate the elements of a multiset. Then, {a, a, b}
represents the multiset whose underlying set is {a, b}, and
the multiplicities of a and b are 2 and 1, respectively.

We use multisets rather than sets for technical reasons.
However, in order to specify a termination criterion in the
model checking algorithm, we need to reason about the
underlying sets of witness forests. We define the binary
operator ' as follows:

Ω1 ' Ω2 iff wit red(Ω1) = wit red(Ω2)

wit red(Ω) translates Ω into the corresponding underlying
set.

As for environments, we define an ordering on witnesses,
and on witness forests. These orderings are useful to relate the
results of the algorithm, which can contain negative bindings,
to witness forests that satisfy the formula according to the
semantics.

DEFINITION 8 (Witness ordering). Let w = 〈s, x, a,Ω〉
and w′ = 〈s′, x′, a′,Ω′〉 be two witnesses. We define w v w′

iff s = s′ ∧ x = x′ ∧ [x 7→ a] v [x′ 7→ a′] ∧ Ω v Ω′.
The ordering for witness forests is defined as follows:

(W, f) v (W ′, f ′) iff there is a bijection h such that

1. h : {(w, i) | w ∈W ∧ i ∈ 1..f(w)} →
{(w′, j) | w′ ∈W ′ ∧ j ∈ 1..f ′(w′)}

2. ∀w ∈ W.∀i ∈ 1..f(w).w v w′, where there is some j
such that (w′, j) = h(w, i)

5.2 A semantics for CTL-VW
The new feature of the semantics of CTL-VW is to define
what it means to be a witness forest for a formula φ, with
respect to some state and environment. If φ = ∃x.ψ, then a
witness forest for φ should record a binding of x that satisfies
ψ, as well as a witness forest that records information about
the bindings associated with any existential quantifiers in ψ.
If φ = φ1∨φ2, then a witness forest for φ has to be a witness
forest for either φ1 or φ2, because the information needed to
satisfy φ1 or φ2 also satisfies φ1 ∨ φ2.

A witness forest for φ = φ1 ∧ φ2 has to contain the
information that makes φ1 true and the information that
makes φ2 true. Thus, the semantics joins a witness forest
for φ1 and a witness forest for φ2 to obtain a witness forest
for φ1 ∧ φ2. Similarly, for AXψ, the semantics collects, for
each successor of the current state, a witness forest that makes
ψ true in this successor. In both cases, we collect the bindings
of the metavariables that make the subformulas true at the
relevant states. On the other hand, since EX is related to a

EMN 08/2/INFO 7

s1 s2

s0

Figure 5. Illustration of finite unfolding

disjunction, a witness forest for EXψ is a witness forest for
ψ in one of the successors of the current state.

If φ = A[φ1 Uφ2], then we can define a witness forest
for φ by analogy with conjunction and AX. Then, the usual
semantics of AU implies that a witness forest of φ collects as
many witnesses as there are paths starting from the current
state. This leads to an infinite number of witness forests,
carrying redundant information. In order to collect only
witness forests that are pertinent, we reason about a finite
unfolding of the model when defining the semantics of AU,
rather that reasoning about all the paths. Then, a witness forest
of A[φ1 Uφ2] collects a witness forest of φ1 for every state
in the finite unfolding that is not a leaf, and a witness forest
of φ2 for every leaf. A witness forest for φ = E[φ1 Uφ2]
collects, for some path leading to a leaf, a witness forest for
φ1 in every non-leaf state in this path, and a witness forest
for φ2 in the leaf.

DEFINITION 9 (Finite paths). Given a model and a state s,
we define FPath(s) as the set of the finite paths starting from
s. Given a finite path π ∈ FPath(s), |π[is the length of π, i.e.,
|π|+ 1 is the number of states in π, prefix(π) represents the
set of the (finite) proper prefixes of π, and π6n, for n 6 |π|,
represents the prefix of π containing the first n + 1 states
(from π[0] to π[n]).

DEFINITION 10 (Finite unfolding). Given a state s, a finite
unfolding from s is a set Σ ⊆ FPath(s) where every path
π ∈ Σ satisfies the following constraints:

• ∀π′ ∈ prefix(π). π′ /∈ Σ (no redundancy)
• ∀i ∈ 0..|π| − 1. ∀s′ ∈ next(π[i]). ∃π′ ∈ Σ. π′6i = π6i

∧ s′ = π′[i+ 1] (full branching)

The set of the finite unfoldings starting from s is denoted Π(s).
The set of the states that appear in some path of Σ is denoted
Σ.

Consider the model shown in Figure 5. Then {s0} and
{s0 → s1, s0 → s2 → s2} are two valid finite unfold-
ings starting from s0. On the other hand, {s0 → s1, s0 →
s2, s0 → s2 → s2} violates the first constraint of Defini-
tion 10, and {s0 → s1} does not explore the right branch,
and thus does not satisfy the second constraint.

DEFINITION 11 (Semantics). Given a model (States,→
, Label), a state s ∈ States, a formula φ, an environment
θ ∈ Env+, and a witness forest Ω ∈ WitForest+, the seman-

tics is defined as the following relation:

s |=θ,∅ p(x) ⇔ p(θ(x)) ∈ Label(s)
s |=θ,Ω1]Ω2 φ1 ∧ φ2 ⇔ s |=θ,Ω1 φ1 ∧ s |=θ,Ω2 φ2

s |=θ,Ω φ1 ∨ φ2 ⇔ s |=θ,Ω φ1 ∨ s |=θ,Ω φ2

s |=θ,∅ ¬φ ⇔ ∀Ω. s 6|=θ,Ω φ
s |=θ,{〈s,x,v,Ω〉} ∃x.φ ⇔ s |=θ[x7→v],Ω φ
s |=θ,Ω AXφ ⇔ ∃(Ωs′)s′∈next(s).⊎

s′∈next(s)Ωs′ = Ω ∧ ∀s′ ∈ next(s). s′ |=θ,Ωs′ φ

s |=θ,Ω EXφ ⇔ ∃s′ ∈ next(s). s′ |=θ,Ω φ
s |=θ,Ω A[φ1 Uφ2] ⇔ ∃Σ ∈ Π(s). ∃(Ωs′)s′∈Σ.
∀π ∈ Σ. π[|π|] |=θ,Ωπ[|π|] φ2 ∧ ∀0 6 j < |π|. π[j] |=θ,Ωπ[j] φ1

∧
⊎

s′∈ΣΩs′ = Ω
s |=θ,Ω E[φ1 Uφ2] ⇔ ∃Σ ∈ Π(s). ∃π ∈ Σ.∃(Ωi)i∈0..|π|.

π[|π|] |=θ,Ω|π| φ2 ∧ ∀0 6 j < |π|. π[j] |=θ,Ωj φ1

∧
⊎

j6|π|Ωj = Ω

Note that the semantics does not allow any witness to be
satisfied under a negation. This facilitates the proof of the
soundness and completeness of the model checking algorithm.
Indeed, a negation turns the nature of an existential quantifica-
tion to a universal quantification, for which witnesses would
not make any sense. However, one could justify the interest
of a witness for an existential quantifier that appears under an
even number of negations. We do not consider a special treat-
ment for this case. Because of this constraint on negation, we
must include both AX and EX in the logic explicitly, because
a definition of e.g., EX in terms of AX and negation, would
preclude witnesses under EX.

5.3 A model checking algorithm for CTL-VW
The algorithm SAT for CTL-VW takes as arguments a
model and a formula and returns a set of triples of the form
(s, θ,Ω) ∈ States× Env± ×WitForest. The new definitions
of the element-level functions of Figure 3 are as follows:

inj(s, θ) = (s, θ, ∅)
(s1, θ1,Ω1)

d
(s2, θ2,Ω2) =

(s1, θ1 u θ2,Ω1] Ω2), if s1 = s2 ∧ θ1 u θ2 6= ⊥
negone(s, θ,Ω) =

{(s′, ∅, ∅) | s′ ∈ States− {s}} ∪ {(s, θ′, ∅) | θ′ ∈ ¬θ}
existsone(x, (s, θ,Ω)) =

(s, θ − [x 7→ v], {〈s, x, v,Ω〉}), if θ+(x) = v
(s, θ − [x 67→ V], {〈s, x, V,Ω〉}), if θ−(x) = V
(s, θ, {〈s, x, ∅,Ω〉}), otherwise

shift(s1, T, s2) = {(s2, θ,Ω) | (s1, θ,Ω) ∈ T}
same(T1, T2) = triple red(T1) = triple red(T2)

where triple red(T) = {(s, θ,wit red(Ω)) | (s, θ,Ω) ∈ T}

These definitions augment the corresponding definitions
for CTL-V to maintain the witnesses. As there are no existen-
tial quantifiers under a predicate, the function inj just uses an
empty witness forest. The function

d
takes the join of the pro-

vided witness forests, if the provided states and environments
are compatible. The function existsone considers the same

8 EMN 08/2/INFO

cases as for CTL-V, but rather than discarding the binding of
the quantified variable converts it to a witness, encapsulating
the current witness forest. The function shift is analogous
to the CTL-V definition. Finally, the function same, used to
identify a fixed point, first converts all witness forests in its
arguments to their underlying sets, using wit red, and then
compares the obtained results.

It remains to consider the definition of negone. This func-
tion negates the state component, and then the environment
component, as in the CTL-V definition, but completely dis-
cards the witness component. This strategy corresponds to
the semantics of negation presented in Section 5.2, where the
subformula should not be satisfiable at the given state and
environment for any witness forest.

5.4 Examples
As in Section 4.3, we consider the models of Figure 2
and the formulas of Figure 4. In checking the formula
f(x) ∧ AX(g(y) ∧ AX(h(x, y))) with respect the model in
Figure 2b, the result for the subformula g(y) ∧ AX(h(x, y))
is

{(2, [x 7→ 1, y 7→ 2], ∅), (4, [x 7→ 1, y 7→ 3], ∅)}

Model checking for the enclosing AX fails as before, because
the environments are incompatible. Similarly, in checking the
formula f(x) ∧ AX(∃y.(g(y) ∧ AX(h(x, y)))), with respect
to the same model, the same result is obtained for g(y) ∧
AX(h(x, y)), but now for ∃y.(g(y)∧AX(h(x, y))), the result
is

{(2, [x 7→ 1], {〈2, y, 2, ∅〉}), (4, [x 7→ 1], {〈4, y, 3, ∅〉})}

in which the information about the various bindings of y is
still available. The result of the enclosing AX is then

{(1, [x 7→ 1], {〈2, y, 2, ∅〉, 〈4, y, 3, ∅〉})}

which is in turn the result for the entire formula. This result
includes the possible bindings of y and the states at which
those bindings are applicable.

5.5 Soundness and completeness
As for CTL-V, the CTL-VW model checking algorithm may
return an environment with negative bindings. We thus extend
the η function of Section 4.4 to take witnesses into account.

Let φ be a formula, and T ∈ P(States × Env± ×
WitForest). Let us define ηφ(T) = {(s, θ,Ω) ∈ States ×
Env+

φ × WitForest+ | ∃(s′, θ′,Ω′) ∈ T. s = s′ ∧ θ v
θ′ ∧ Ω v Ω′}.

THEOREM 3 (Soundness). ∀s, θ,Ω.

θ(s, θ,Ω) ∈ ηφ(SAT(φ)) =⇒ s |=θ,Ω φ

Proof sketch The proof is by structural induction on φ.
We present the case φ = A[φ1 Uφ2]. We first define a
bounded semantics for AU, and a bounded SAT algorithm
for AU. s |=θ,Ω A[φ1 Uφ2]6N iff there is a finite unfolding
Σ whose maximum length is less than or equal to N , and
such that the semantic definition of AU is satisfied with
Σ. SATAU(φ1, φ2)6N corresponds to N iterations of the
algorithm described in SATAU(φ1, φ2). The following lemma
relates the bounded semantics to the bounded algorithm.

LEMMA 1. Let φ = A[φ1 Uφ2]. Then, ∀s, θ,Ω, N

(s, θ,Ω) ∈ ηφ(SATAU(φ1, φ2)6N) ⇒ s |=θ,Ω A[φ1 Uφ2]6N

We omit the proof of this lemma, also done by induction.
Let (s, θ,Ω) ∈ ηφ(SATAU(φ1, φ2)). Then, ∃N. (s, θ,Ω) ∈

ηφ(SATAU(φ1, φ2)6N). By Lemma 1, s |=θ,Ω A[φ1 Uφ2]6N ,
so s |=θ,Ω A[φ1 Uφ2]. �

The completeness theorem cannot be stated as directly
as the soundness theorem. Indeed, if φ contains AU (resp.
EU), a witness forest accepted by the semantics may contain
more witnesses than are generated by SATAU (resp.SATEU) in
reaching a fixed point. In this case, the witness forest is not
returned by the algorithm in its exact form, but the algorithm
produces a shorter and equivalent (in the sense of ') witness
forest.

THEOREM 4 (Completeness). ∀s, θ,Ω.

θ ∈ Env+
φ ∧ s |=θ,Ω φ =⇒ ∃Ω′ ' Ω. (s, θ,Ω′) ∈ ηφ(SAT(φ))

Proof sketch The proof is done by induction. In the AU
case, we use a lemma analogous to Lemma 1. �

To conclude, we consider the relationship between CTL-
VW and CTL-V. CTL-VW is a conservative extension of
CTL-V: the collection of witnesses does not have any impact
on the satisfiability of a formula.

PROPERTY 1
∀s, θ.s |=θ

CTL-V
φ ⇐⇒ ∃Ω ∈ WitForest+. s |=θ,Ω

CTL-VW
φ

6. Applying CTL-VW in the context of
Coccinelle

In this section, we define a core SmPL language, that is suffi-
cient to treat the example presented in Section 2.1 (Figure 1),
present its translation into CTL-VW, describe the matching
and transformation process, and then present a few bench-
marks. Many more examples of the use of SmPL and the
associated performance are available in our previous work
[18, 20]. The section concludes with a brief example illustrat-
ing the benefit of being able to mix existential and universal
path quantification, as provided by temporal logics based on
CTL.

For the purposes of this presentation, we have slightly
simplified the semantics of SmPL, in that our encoding in
CTL-VW allows dots (“...”) to match any path, while

EMN 08/2/INFO 9

in SmPL dots represent the shortest path between terms
matching the preceding and following patterns. This shortest
path constraint can be encoded straightforwardly in CTL-VW.
Furthermore, it is possible to drop the shortest path constraint
in full SmPL by annotating the dots with when any.

6.1 Syntax of a simplified SmPL
The syntax of the transformation specification part of a se-
mantic patch is quite complex, because - and + annotations
can be freely mixed. In a trasformation specification, the
combination of the unannotated code and the - code repre-
sents the pattern to match against, and the combination of the
unannotated code and the + code represents the code to gener-
ate. Each must have the structure of valid C code. Expressing
these constraints is, however, unrelated to the use of CTL-VW.
Instead, we define the grammar of patterns to match against,
and assume that the elements of these patterns are implicitly
annotated with the transformation to perform. For example, in
the type ref semantic patch of Figure 1, the pattern return
-C; would be annotated to indicate that of node put(n);
should be inserted before it.

In our simplified SmPL, the transformation specification
part of a semantic patch has the form of a sequence S, as
defined by the following grammar:

S ∈ Sequences ::= E S | ε
E ∈ Elements ::= T | D | (S|S)
T ∈ Terms ::= Atomic | if (exp) T
D ∈ Dots ::= ... | D when != S

A Sequence should not contain consecutive dots (D), but we
do not complicate the grammar with this constraint. Atomic
is an arbitrary atomic term, such as an assignment or function
call, and exp is an arbitrary expression. Atomic and exp may
contain metavariables. We consider conditionals with only
one branch, because that is all that is required for our example.
The treatment of a conditional with two branches is similar.

6.2 Quantification of metavariables
The first step in the translation of SmPL to CTL-VW is to
introduce existential quantifiers to delimit the scope of each
metavariable. For this, we extend the syntax of Sequences,
Elements, and Terms to include existential quantifiers, as
shown below:

S ∈ Sequences ::= E S | ε | ∃x.S
E ∈ Elements ::= T | D | (S|S) | ∃x.E
T ∈ Terms ::= Atomic | if (exp) T | ∃x.T
D ∈ Dots ::= ... | D when != S

The scope of a metavariable is the smallest Sequence, El-
ement, or Term that contains all references to it, including
references in + code. Inserting existential quantifiers accord-
ing to this strategy is straightforward. For the semantic patch

Cs[[E S]] a = Ce[[E]] (Cs[[S]] a)
Cs[[ε]] a = a

Cs[[∃x.S]] a = ∃x.Cs[[S]] a

Ce[[T]] a = Ct[[T]]a
Ce[[D]] a = A[Gd[[D]] a U a]

Ce[[(S1|S2)]] a = Cs[[S1]] a ∨ (¬(Cs[[S1]] a) ∧ Cs[[S2]] a)
Ce[[∃x.E]] a = ∃x.Ce[[E]] a

Ct[[Atomic]]a = (Atomic ∧ ∃ v. v = “Atomic”) ∧ AX a
Ct[[if (exp) T]]a = (if (exp) ∧ ∃ v. v = “if (exp)”) ∧

AX((trueBranch ∧ AX(Gt[[T]])) ∨
fallThrough ∨ (after ∧ AXAX a)) ∧ EX(after)

Ct[[∃x.T]]a = ∃x.Ct[[T]]a

Gs[[E]] a = Ge[[E]] a
Gs[[E S]] a = Ge[[E]] (Gs[[S]] a)
Gs[[ε]] a = true

Gs[[∃x.S]] a = ∃x.Gs[[S]] a

Ge[[T]] a = Gt[[T]]
Ge[[D]] a = A[Gd[[D]] a U a]

Ge[[(S1|S2)]] a = Gs[[S1]] a ∨ (¬(Gs[[S1]] a) ∧ Gs[[S2]] a)
Ge[[∃x.E]] a = ∃x.Ge[[E]] a

Gt[[Atomic]] = Atomic ∧ ∃ v. v = “Atomic”
Gt[[if (exp) T]] = (if (exp) ∧ ∃ v. v = “if (exp)”) ∧

AX((trueBranch ∧ AX(Gt[[T]])) ∨
fallThrough ∨ after)

Gt[[∃x.T]] = ∃x.Gt[[T]]

Gd[[...]] a = true
Gd[[D when != S]] a = Gd[[D]] a ∧ ¬(Gs[[S]] a)

Figure 6. A simplified translation of semantic patches to
CTL-VW

in Figure 1, the scope of the metavariable n extends around
the entire semantic patch, but the scope of the other metavari-
ables is only the immediate containing Term. In particular,
the scope of the metavariable C in the modified term return
-C; is local to the pattern itself, i.e., ∃C. return -C;, al-
lowing it to match a return of any negative constant within
the different control-flow paths. This property is essential, as
the matched code may need to return an error code for many
reasons, returning a different value in each case (see Figure
8).

6.3 Translation to CTL-VW
Figure 6 defines the translation of a pattern into CTL-VW.
The entry point of the translation is the function Cs, which
takes as arguments a Sequence and a formula describing how
to match the remainder of the semantic patch. Initially, a
transformation specification S is translated as Cs[[S]] true.4

The translation contains two sets of rules: 1) the C rules Cs,
Ce, and Ct, for translating Sequences, Elements, and Terms,
respectively, at the top level, and 2) the G rules Gs, Ge, Gt, for
Sequences, Elements, Terms, and Dots, respectively, when
these occur under a when clause. The connection between
the two sets of rules is made by the rule Gd, which is used in
the translation of “...” and processes each of the associated
when clauses. The difference between the two sets of rules
is only in the use of the argument a, describing the rest of
the SmPL code. For the C rules, a represents a pattern at the

4 We define true as an abbreviation for p()∨¬p(), for an arbitrary predicate
p().

10 EMN 08/2/INFO

same level as the pattern being translated, which thus must
be matched after the current pattern, while for the G rules, a
represents the code that follows the associated dots, and thus
only serves to delimit any dots that appear at the end of the
when code. In particular, the rule Gt for Terms does not have
an argument a, because a Term cannot end in dots.

We examine in more detail the C translation rules for dots,
disjunctions, atomic patterns, and conditionals. These rules
illustrate the main concepts of the translation process.

Dots Dots represent a sequence of arbitrary code, possibly
constrained by when clauses, along a control-flow path. In
the translation, the end of this sequence is indicated by the
formula a that describes the rest of the SmPL code. Such a
delimited path can be expressed by an “until” path operator,
AU or EU. Our simplified language only supports universal
quantification over paths, and thus we use AU.5 The left
argument of AU is constructed using the rule Gd, which
creates a formula checking that none of the patterns in the
when clauses are matched within the path. The right argument
of AU is the formula a matching the rest of the semantic
patch.

Disjunction A disjunction (S1|S2) matches S1 if possible,
and otherwise S2. The translation reflects the priority of S1

over S2 by encoding S2 as ¬(Cs[[S1]] a) ∧ Cs[[S2]] a. This
translation duplicates the previous processing of S1. In the
implementation, we use instead a “sequential disjunction”
operator, that uses the negation of the previously computed
result of processing S1, and thus eliminates this duplication.
The translation of a disjunction propagates the formula a
separately into the translation of each branch. In this way, the
rest of the semantic patch is matched at a point starting from
the end of the code matching S1 or S2.

Atomic An atomic pattern may involve a transformation, as
illustrated in line 13 of our type ref semantic patch (Figure
1). Thus, the matching process must remember information
about the position at which each atomic pattern matches. To
collect this information, which is our fourth requirement for
Coccinelle (Section 2.2), we use witnesses. Specifically, we
introduce a new existentially quantified metavariable v and
create a predicate “=” that simply matches this variable to
a textual representation of the atomic pattern, including any
annotations about the transformation required. For example,
the pattern return -C; with the annotation that of node -
put(n); should be inserted before it would be translated as
follows:

return -C; ∧ ∃ v. v = "+ of node put(n);return -C;"

The witnesses for v will contain the current state and the
binding of v to the textual representation of the atomic pat-
tern, indicating where and how to perform the transformation.

5 Coccinelle automatically converts AU to AW, which can be defined using
EU and negation, when the source program is found to contain a loop. AW
can accept a path that goes around a loop infinitely without satisfying φ2,
but AW is implemented much less efficiently than AU.

∃n.(n = of find node by type(...) ∧ ∃ v. v = . . .) ∧
AXA[true U

((if (n == NULL)|if (NULL == n)|if (!n)) ∧ ∃ v. v = . . .) ∧
AX((trueBranch ∧ AX(∃S.(S ∧ ∃ v. v = . . .))) ∨

fallThrough ∨
(after ∧ AXAX(A[¬(of node put(n); ∧ ∃ v. v = . . .) ∧

¬(∃n1.∃f1.(n1 = f1(n,...)) ∧ ∃ v. v = . . .) ∧
¬(∃E1.(E1 = n ∧ ∃ v. v = . . .))
U
∃C.(return -C; ∧ ∃ v. v = . . .) |
(of node put(n); ∧ ∃ v. v = . . .) |
∃n2.∃f2.(n2 = f2(n,...) ∧ ∃ v. v = . . .) |
∃E2.(E2 = n ∧ ∃ v. v = . . .) |
∃E2.(return E2; ∧ ∃ v. v = . . .)]))) ∧

EX(after)]

Figure 7. CTL-VW translation of the semantic patch
type ref. The right argument of the equality constraint on
v is elided in each case, for conciseness.

Conditionals The translation of a conditional is determined
by the representation of a conditional in a Coccinelle control-
flow graph. For conciseness, we omit further details. Note,
however, that the translation of the header of a conditional
introduces a metavariable v, as in the translation of an atomic
pattern, thus making it possible to find and transform the
matched code.

Figure 7 shows the result of translating the semantic patch
type ref into CTL-VW. The formula uses the “sequential
disjunction” operator, denoted as |, that was described above.
The pattern n == NULL has been expanded into a variety of
ways to make a NULL test, using Coccinelle’s isomorphisms
[20]. For type ref, the size of the formula is comparable to the
size of the semantic patch. In general, however, subformulas
can be duplicated 1) in the branches of a disjunction, 2) when
a when clause ends in dots, and 3) in full SmPL to implement
the shortest path constraint, although in the latter case, only
the atomic terms immediately preceding and following the
dots are duplicated. In practice, however, we have found that
it is the complexity of the source code rather than the size of
the formula that has an impact on the performance [20].

6.4 Matching and transformation
As illustrated by the CTL-VW formula in Figure 7, a for-
mula resulting from the translation always has the following
properties: 1) All metavariables are existentially quantified,
2) The existential quantifiers for the introduced metavariables
v recording the positions of the atomic terms are always in-

nermost, and 3) The translation of an atomic term, including
the quiantifier of its v variable, is nested within quantifiers
for all of its free metavariables. The first point implies that
in the result of matching the CTL-VW formula against the
source code, the environment component of each triple is
always empty. The second and third points imply that the
witnesses are trees in which the leaves are the bindings of the
v metavariables, representing the code to transform, and the

path from the root of a witness to a given leaf contains the

EMN 08/2/INFO 11

np = of find node by type(NULL, "smu"); 1
if (np == NULL) 2

return −ENODEV; 3
printk(KERN INFO "SMU: Driver %s %s\n", VERSION, AUTHOR); 4
if (smu cmdbuf abs == 0) { 5

printk(KERN ERR "SMU: Command buffer not allocated !\n"); 6
return −EINVAL; 7

} 8
smu = alloc bootmem(sizeof(struct smu device)); 9
if (smu == NULL) { 10

return −ENOMEM; 11
} 12
. . . // unrelated straightline code 13
smu−>of node = np; 14

Figure 8. An extract of the function smu init in the file
drivers/macintosh/smu.c

state: 1
environment: ∅
witnesses: {〈1, n, np,

{〈1, v, n = of find node by type(...), ∅〉,
〈2, v, if (n == NULL), ∅〉,
〈3, S, return -ENODEV;, {〈3, v, S, ∅〉}〉,
〈7, C, EINVAL, {〈7, v, return -C;, ∅〉}〉,
〈11, C, ENOMEM, {〈11, v, return -C;, ∅〉}〉,
〈14, E2, smu->of node, {〈14, v, E2 = n, ∅〉}〉}

Figure 9. Result of applying the semantic patch of Figure 1
to the function smu init. The state numbers correspond to the
line numbers in Figure 8

bindings of the free metavariables that may be involved in
the transformation process.

As a concrete example, Figure 8 shows an extract of the
function smu init in the file drivers/macintosh/smu.c,6 which
is matched by the type ref semantic patch, and Figure 9 shows
the single triple that results from the matching process. In
Figure 9, we have replaced the state numbers generated by
Coccinelle by the corresponding line numbers in Figure 8 for
easy reference. The result shows that the various atomic terms
of the semantic patch match on lines 1, 2, 3, 7, 11, and 14.
Only the pattern return -C; encapsulates a transformation,
as shown in Figure 1: adding the code of node put(n);.
There are two matches of this pattern, on lines 7 and 11. For
the former, tracing up from the v to the root of the witness
gives the binding of C to EINVAL and n to np. For the latter,
this gives the binding of C to ENOMEM and n to np. In each
case, this is sufficient information needed to carry out the
transformation.

6 This code comes from http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-
2.6.git;a=summary, using the version of Linux from just before the commit
bad5232ba266ae2c666c17be236152fb2d8ada3b, in which the first of the
patches based on this semantic patch was accepted. This version dates from
June, 2008. To simplify the example, we have added the braces around
the return on line 11, so that it is valid to add code before this statement.
Coccinelle automatically adds such braces, when needed, but for simplicity
this issue is not addressed in the translation presented in Figure 6.

Based on the result of the matching process, Coccinelle
collects the set of sequences of bindings leading from the root
of a witness to each of its leaves that contains a transforma-
tion. Coccinelle only accepts a set of transformations if the
states involved are disjoint and are only reachable from the
states associated with the set of triples. These conditions help
avoid ambiguity in the transformation process. If the set of
transformations is acceptable, code is generated accordingly,
in our case adding a call to of node put above lines 7 and
11 of Figure 8. Otherwise, Coccinelle aborts.

6.5 Experiments
The type ref semantic patch shown in Figure 1 transforms
four files in the Linux kernel: arch/powerpc/platforms/-
pseries/nvram.c, drivers/macintosh/smu.c, drivers/macintosh/-
therm pm72.c, and drivers/video/fsl-diu-fb.c.7 Figure 10
summarizes the sizes of these files and the performance of
Coccinelle when applying the type ref semantic patch to
them. All experiments were performed on a 1.4GHz unipro-
cessor Centrino laptop with 635MB of RAM. Execution
times are the average of five runs. The result of applying the
semantic patch to nvram.c and smu.c has been integrated
into the Linux kernel. The result for fsl-diu-fb.c has been
validated by a Linux developer. We observed that the result
of applying the semantic patch to therm pm72.c is probably
a false positive, due to an interprocedural effect that the se-
mantic patch does not take into account. Nevertheless, the
code structure in this case is typical, and thus it also serves
as a representative example.

The files range in size from 149 to over 2000 lines of
C code, including comments and whitespace. In each case
there is a single function that is relevant to the semantic
patch, and this function ranges in size from 27 to 94 lines.
Coccinelle skips over irrelevant functions quickly, essentially
only parsing them, and thus the CTL-VW algorithm is only
applied to the relevant functions. Because the files are much
larger than the relevant functions in this case, the time for
parsing dominates the overall running time for most files. We
can nevertheless get a sense of the performance of the CTL-
VW algorithm in practice, by considering its performance on
the relevant functions, in terms of both time and space usage.

We consider two implementations of the model checking
algorithm for CTL-VW: an unoptimized one that closely
follows the algorithm presented in Section 5.3, and the
optimized one that is implemented in the Coccinelle tool. The
optimizations affect both the encoding in CTL-VW and the
execution of the algorithm, and are summarized as follows:

Optimizations to the translation These optimizations seek
to reduce the number of witnesses, and thus the amount of
information that the algorithm has to propagate.

• Some metavariables, such as n1, E1, and f1 in Figure 1,
only occur under a negation. The CTL-VW algorithm

7 This code comes from the same source as mentioned in Footnote 6.

12 EMN 08/2/INFO

File total lines in the unoptimized optimized
lines relevant total CTL steps triples total CTL steps triples

function time time time time
nvram.c 149 27 0.309 0.009 77+29 541 0.306 0.005 67+14 261

therm pm72.c 2279 32 1.466 0.010 77+29 678 1.457 0.006 67+12 276
fsl-diu-fb.c 1721 57 1.226 0.039 77+47 1093 1.205 0.011 67+27 532

smu.c 1323 94 7.707 6.818 77+81 2270 0.888 0.043 67+61 1176

Figure 10. The performance of applying the semantic patch of Figure 1 to the files that it affects in Linux. Times are in seconds.
Steps is the number of CTL operators considered in processing the formula added to the number of steps involved in computing
fixpoint iterations for the operator AU. Triples is the sum of the number of triples in the result of processing each CTL operator.
The unoptimized and optimized variants both use an implementation of disjunction that does not duplicate the processing of
subformulas.

drops witnesses created under a negation, so as an opti-
mization, we augment the translation of Figure 6 to quan-
tify such metavariables using a variant of ∃ that does not
create any witnesses.

• Some patterns, such as n1 = f1(n,...), are used in
matching, but are not affected by the transformation. In
this case, we do not need to introduce a metavariable v
to record where the pattern has matched, thus eliminating
a further set of witnesses.

Optimizations to the algorithm These optimizations seek
to reduce the number of triples that are manipulated.

• The CTL-VW formulas generated by our translation al-
gorithm often have the form φ1 ∧ AX(φ2) (see Figure
7). Information about the processing of φ1 is propagated
into the processing of φ2, to ensure that the states con-
sidered for the subformulas of φ2 are reachable from the
states at which φ1 is satisfied, and the environments con-
sidered for the subformulas of φ2 are compatible with the
environments that satisfy φ1.

• The path operator AU is implemented by an incremental
algorithm that considers only the newly added triples on
each iteration. Various optimizations are also integrated
into the implementations of conjunction and negation, as
compared to the specifications shown in Figure 3.

• There is no need to keep track of multisets of witnesses in
the implementation, as these are just a device to facilitate
the proofs of soundness and completeness; the set of wit-
ness is sufficient to support matching and transformation.

As shown in Figure 10, the combination of these opti-
mizations reduces the CTL-VW processing time by up to
over 150 times, due to reduced memory requirements, and
the sum of the number of triples manipulated at each step
by around 50%. In other work [20], we have created over
60 semantic patches based on collateral evolutions that have
taken place in Linux 2.5 and Linux 2.6. In applying these
semantic patches to a total of over 5800 relevant Linux files
on a 3.4GHz uniprocessor Pentium 4 PC with 1024MB of

RAM, the time for applying a semantic patch to a relevant file
is rarely more than 0.5 seconds. Thus, our optimizations for
CTL-VW model checking provide acceptable performance
for interactive use without resorting to efficient but more
complex encoding strategies such as BDDs [5].

6.6 An extension: Mixing path quantifiers
A advantage of CTL is the ability to mix universal and exis-
tential quantification over paths within a single formula. To
conclude, we consider how full SmPL can take advantage of
this facility. By default, SmPL uses universal quantification
when a semantic patch performs transformation, as indicated
by - and + annotations, and existential quantification when a
semantic patch performs only searching (making it instead
a semantic match), in which lines are annotated with * to
indicate items of interest. These conventions can be overrid-
den, by indicating forall or exists at the beginning of the
rule. But the quantifier used for individual dots can also be
controlled locally using when forall or when exists.

The semantic match shown in Figure 11 mixes path
quantifiers. This semantic match searches for cases where
there exists a dereference of the result of the Linux kernel
memory allocation function kmalloc without first checking
that the result is valid. As the semantic match marks lines
using *, paths are existentially quantified by default. In lines
7-10, however, we would like to identify a conditional that
always aborts if the allocated value is NULL, as subsequent
dereferences are known to be safe. Thus, the dots in the body
of this conditional are annotated with when forall.

7. Related Work
Lacey and De Moor write CTL-FV formulas to specify com-
piler optimizations [16]. In this setting, a CTL formula de-
scribes properties of the context of a term that allow an op-
timization such as constant propagation to be applied to the
term. Åberg et al. used CTL to specify the transformations
required to integrate the run-time system of the Bossa schedul-
ing framework into the Linux kernel source code [1]. In both
cases, the state representing code that is affected by the trans-
formation is the one that satisfies the entire formula, so there

EMN 08/2/INFO 13

@kmalloc ref@ expression x,E; identifier fld; statement S; @@ 1
2

x = kmalloc(. . .) 3
. . . when != x = E 4

when != x−>fld 5
(6

if ((x == NULL) | | . . .) { 7
. . . when forall 8
return . . .; 9

} else S 10
| 11
* x−>fld 12
) 13

Figure 11. A semantic patch that mixes universal and exis-
tential path quantification

is no need for witnesses. Furthermore, the specifications are
fairly simple, so it is possible to write CTL code directly. De
Moor et al. observed that full CTL was not always necessary
for such specifications, and proposed universal regular path
queries, which are based on regular expressions [9]. Such
queries, however, do not permit mixing universal and ex-
istential path quantifiers and also do not permit specifying
transformations within formulas.

Other approaches to bug finding that take program control-
flow into account include Metal [10] and SDV [2]. Metal
is based on specifications expressed as state machines. The
expressiveness of state machines and CTL is incomparable.
SDV focuses mainly on eliminating false positives by taking
possible run-time values into account. Coccinelle does not
currently address this issue.

Bohn et al. also propose a variant of CTL with univer-
sal and existentially quantified variables [4]. Their goal is to
reason about properties involving variables that range over
very large or infinite domains, and they provide a syntactic
approach to model checking that allows constraints about
such variables to be simplified in ad hoc ways. Their seman-
tics is somewhat different than ours in that environments are
explicit in the semantics of state operators, but integrated into
the labelling function of a specialized version of the initial
model in the semantics of path operators. Our use of construc-
tive negation can be viewed as a restricted version of their
more general predicates on variable values.

Since SmPL semantic patches can be translated into CTL-
VW, they could also be written using CTL-VW directly.
Doing so, however, would be very tedious for complex
semantic patches, as already illustrated by Figure 7. The
difficulty of creating CTL specifications has been recognized
in other areas. Corbett et al. propose a high level language
for describing desired properties of Java programs, for use
with the Bandera model checking framework [8].

Jones and Hansen present a translation of a toy version of
SmPL into CTL-V [13]. They concentrate on matching, and
do not provide support for transformation, as is enabled by
CTL-VW. They implement CTL-V by translation into CTL,

at the cost of increasing the size of the formula exponentially
in the size of Val.

8. Conclusion
In this paper, we have identified four requirements for a logic
that is to serve as the foundation of a control-flow based pro-
gram matching language, and we have incrementally derived
from CTL a logic, CTL-VW, that meets these requirements.
In practice, we have found the decision to base the implemen-
tation of Coccinelle on an extension of CTL very beneficial,
as it naturally separates the specification of the semantics of
the program matching language, represented by the transla-
tion into the logic, from the implementation, represented by
the model checking algorithm. Indeed, in the case of Coc-
cinelle, we iterated many times over the language semantics,
but modified the implementation of the model checking al-
gorithm only rarely, to improve performance. Our extensive
experiments [20] show that the approach is efficient enough
for practical use, on a standard PC.

A limitation of the formalization of CTL-VW presented
here is that it does not allow for collecting witnesses under
negation. While this feature is not needed in the examples
we have considered in practice with Coccinelle, there could
be other contexts in which such witnesses would be useful.
We want to extend the formalization to accommodate them.
Currently, only the proof of soundness and completeness of
the CTL-V model checking algorithm has been validated by a
proof assistant. We plan to validate the proof for the CTL-VW
model checking algorithm as well.

Availability Coccinelle is available from the following
URL:
http://www.emn.fr/x-info/coccinelle/.

References
[1] R. A. Åberg, J. L. Lawall, M. Südholt, G. Muller, and A.-

F. Le Meur. On the automatic evolution of an OS kernel
using temporal logic and AOP. In 18th IEEE International
Conference on Automated Software Engineering (ASE 2003),
pages 196–204, Montreal, Canada, Oct. 2003. IEEE.

[2] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner.
Thorough static analysis of device drivers. In The first ACM
SIGOPS EuroSys conference (EuroSys 2006), pages 73–85,
Leuven, Belgium, Apr. 2006.

[3] Y. Bertot and P. Castéran. Interactive Theorem Proving and
Program Development. Springer, 2004.

[4] J. Bohn, W. Damm, O. Grumberg, H. Hungar, and K. Laster.
First-Order-CTL model checking. In Foundations of Software
Technology and Theoretical Computer Science, number 1530
in Lecture Notes in Computer Science, pages 283–294,
Chennai, India, Dec. 1998.

[5] R. E. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Transactions on Computers, 35(8):677–
691, 1986.

14 EMN 08/2/INFO

[6] D. Chan. Constructive negation based on the completed
database. In Fifth International Conference and Symposium
on Logic Programming, pages 111–125, Seattle, WA, Aug.
1988.

[7] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic
verification of finite-state concurrent systems using temporal
logic specifications. ACM Transactions on Programming
Languages and Systems (TOPLAS), 8(2):244–263, 1986.

[8] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. A
language framework for expressing checkable properties of
dynamic software. In Proceedings of the SPIN Software
Model Checking Workshop, number 1885 in Lecture Notes in
Computer Science, pages 205–223, Stanford, CA, USA, Aug.
2000.

[9] O. de Moor, D. Lacey, and E. Van Wyk. Universal regular path
queries. Higher Order and Symbolic Computation, 16:15–35,
2003.

[10] D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
system rules using system-specific, programmer-written
compiler extensions. In Fourth USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pages
1–16, San Diego, CA, Oct. 2000.

[11] A. Gupta. Formal hardware verification methods: A survey.
Formal Methods in System Design, 1(2–3):151–238, 1992.

[12] M. Huth and M. Ryan. Logic in Computer Science: Modelling
and reasoning about systems. Cambridge University Press,
2000.

[13] N. Jones and R. R. Hansen. The semantics of “semantic
patches” in coccinelle: Program transformation for the
working programmer. In Fifth ASIAN Symposium on
Programming Languages and Systems, number 4807 in
Lecture Notes in Computer Science, pages 303–318,
Singapore, Nov. 2007.

[14] C. Kern and M. R. Greenstreet. Formal verification in
hardware design: a survey. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 4(2):123–193,
1999.

[15] D. Lacey. Program Transformation using Temporal Logic
Specifications. PhD thesis, Oxford University Computing
Laboratory, 2003.

[16] D. Lacey and O. de Moor. Imperative program transformation
by rewriting. In R. Wilhelm, editor, Compiler Construction,
10th International Conference, CC 2001, number 2027 in
Lecture Notes in Computer Science, pages 52–68, Genova,
Italy, Apr. 2001.

[17] D. Lacey, N. D. Jones, E. Van Wyk, and C. C. Frederiksen.
Compiler optimization correctness by temporal logic. Higher
Order and Symbolic Computation, 17(3):173–206, 2004.

[18] J. L. Lawall, J. Brunel, R. R. Hansen, H. Stuart, and G. Muller.
WYSIWIB: A declarative approach to finding protocols and
bugs in Linux code. Technical Report 08/1/INFO, Ecole des
Mines de Nantes, Nantes, France, 2008.

[19] D. MacKenzie, P. Eggert, and R. Stallman. Comparing
and Merging Files With Gnu Diff and Patch. Network
Theory Ltd, Jan. 2003. Unified Format section, http://www.

gnu.org/software/diffutils/manual/html node/

Unified-Format.html.

[20] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller.
Documenting and automating collateral evolutions in Linux
device drivers. In Eurosys 2008, pages 247–260, Glasgow,
Scotland, Mar. 2008.

[21] M. Sassa and S. Sahara. Validating correctness of compiler
optimizer execution using temporal logic. In Compiler
Optimization meets Compiler Verification, Budapest, Hungary,
Apr. 2008.

[22] D. A. Schmidt and B. Steffen. Program analysis as model
checking of abstract interpretations. In SAS ’98: Proceedings
of the 5th International Symposium on Static Analysis, pages
351–380, London, UK, 1998. Springer-Verlag.

[23] M. Verbaere, R. Ettinger, and O. de Moor. JunGL: a scripting
language for refactoring. In International Conference on
Software Engineering (ICSE), pages 172–181, Shanghai,
China, May 2006.

EMN 08/2/INFO 15

