
HAL Id: hal-00297662
https://hal.science/hal-00297662

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Three-dimensional Magnetic Resonance Imaging of
fossils across taxa

D. Mietchen, M. Aberhan, B. Manz, O. Hampe, B. Mohr, C. Neumann, F.
Volke

To cite this version:
D. Mietchen, M. Aberhan, B. Manz, O. Hampe, B. Mohr, et al.. Three-dimensional Magnetic Reso-
nance Imaging of fossils across taxa. Biogeosciences, 2008, 5 (1), pp.25-41. �hal-00297662�

https://hal.science/hal-00297662
https://hal.archives-ouvertes.fr


Biogeosciences, 5, 25–41, 2008
www.biogeosciences.net/5/25/2008/
© Author(s) 2008. This work is licensed
under a Creative Commons License.

Biogeosciences

Three-dimensional Magnetic Resonance Imaging of fossils
across taxa

D. Mietchen1,2,3, M. Aberhan4, B. Manz1, O. Hampe4, B. Mohr4, C. Neumann4, and F. Volke1

1Fraunhofer Institute for Biomedical Engineering (IBMT), 66386 St. Ingbert, Germany
2University of the Saarland, Faculty of Physics and Mechatronics, 66123 Saarbrücken, Germany
3Friedrich Schiller University Jena, Department of Psychiatry, 07740 Jena, Germany
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Abstract. The frequency of life forms in the fossil record is
largely determined by the extent to which they were min-
eralised at the time of their death. In addition to min-
eral structures, many fossils nonetheless contain detectable
amounts of residual water or organic molecules, the analy-
sis of which has become an integral part of current palae-
ontological research. The methods available for this sort of
investigations, though, typically require dissolution or ioni-
sation of the fossil sample or parts thereof, which is an is-
sue with rare taxa and outstanding materials like pathologi-
cal or type specimens. In such cases, non-destructive tech-
niques could provide a valuable methodological alternative.
While Computed Tomography has long been used to study
palaeontological specimens, a number of complementary ap-
proaches have recently gained ground. These include Mag-
netic Resonance Imaging (MRI) which had previously been
employed to obtain three-dimensional images of pathological
belemnites non-invasively on the basis of intrinsic contrast.
The present study was undertaken to investigate whether1H
MRI can likewise provide anatomical information about non-
pathological belemnites and specimens of other fossil taxa.
To this end, three-dimensional MR image series were ac-
quired from intact non-pathological invertebrate, vertebrate
and plant fossils. At routine voxel resolutions in the range of
several dozens to some hundreds of micrometers, these im-
ages reveal a host of anatomical details and thus highlight the
potential of MR techniques to effectively complement exist-
ing methodological approaches for palaeontological investi-
gations in a wide range of taxa. As for the origin of the MR
signal, relaxation and diffusion measurements as well as1H
and13C MR spectra acquired from a belemnite suggest in-
tracrystalline water or hydroxyl groups, rather than organic
residues.

Correspondence to: D. Mietchen
(daniel.mietchen@uni-jena.de)

1 Introduction

When an organism dies, it is usually quickly decomposed
but special conditions – namely the presence of biominer-
alised structures – sometimes allow for part of its morpho-
logical or biochemical characteristics to be preserved (for re-
views, see Behrensmeyer et al., 2000; Briggs, 2003; Durand,
2003; Weiner and Dove, 2003; Middelburg and Meysman,
2007). Though these conditions only apply to a tiny minor-
ity of individual life forms at a given time, vast amounts of
biogenic deposits have been accumulated over geological pe-
riods, most famously perhaps in the form of fossil fuels (e.g.
Treibs, 1934; Brocks et al., 1999; Vandenbroucke, 2003) and
sedimentary rock (Albrecht and Ourisson, 1971). Fossils,
too, were increasingly often found to contain organic mat-
ter (Kidwell and Holland, 2002; Behrensmeyer et al., 2000;
Briggs, 2003), be it in cephalopod shells (Abelson, 1954;
Westbroek et al., 1979), belemnite rostra (Bandel and Spaeth,
1988; Florek et al., 2004), bones (Abelson, 1954; Schweitzer
et al., 2005, 2007; Asara et al., 2007), or wood (Boyce et al.,
2001; Siurek et al., 2004).

Such observations led to the suggestion that part of the
organic material detected in fossils might actually represent
the most stable portion of the molecules originally consti-
tuting the individual at the time of its death (e.g. Abel-
son, 1954; Florkin, 1965; Westbroek et al., 1979; Eglin-
ton and Logan, 1991; Engel et al., 1994; Schweitzer et al.,
2007), which opened the door for palaeobiochemical investi-
gations (Blumer, 1965; Albrecht and Ourisson, 1971; Niklas
and Gensel, 1976; Weiner et al., 1976; Westbroek et al.,
1979; Lowenstein, 1981; Ourisson and Nakatani, 1994; Wag-
goner, 2002; Schweitzer, 2003; Pääbo et al., 2004; Asara
et al., 2007), provided that the specimens were excavated and
stored in a suitable manner (cf. Pruvost et al., 2007).

Unfortunately, chemical analyses generally consume the
specimens or parts thereof, thus reducing the morphologi-
cal information they contain (Albrecht and Ourisson, 1971;
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Sælen, 1989; Schweitzer et al., 2005; Dunca et al., 2008; Pru-
vost et al., 2007; Asara et al., 2007). While a number of tech-
niques exist that can non-destructively image the surface of a
specimen (see, e.g., Sælen, 1989; Scott and Collinson, 2003),
serial grinding techniques combined with digital photogra-
phy have long been the only method allowing to reconstruct
the three-dimensional structure of fossils at a high spatial res-
olution (Luo and Eastman, 1995; Luo and Marsh, 1996; Sut-
ton et al., 2001; Siveter et al., 2004; Sutton et al., 2005), yet
they trade this achievement for a complete loss of the speci-
men. Due to these technical limitations, obtaining chemical
and morphological information from within fossils has gen-
erally been mutually exclusive but progress in non-invasive
imaging techniques of geomaterials in general has important
spill-over effects for palaeontological investigations (Roth-
well and Vinegar, 1985; Carlson, 2006).

One non-destructive approach to construct 3-D representa-
tions of porous or otherwise heterogeneous materials at mi-
croscopic resolution is x-ray Computed Tomography (CT)
which enjoys considerable popularity for fossil analysis (for
an overview, see Zollikofer and Ponce de Léon, 2005) and
can still be enhanced by monochromatisation, leading to syn-
chrotron radiation CT (SR-CT; cf. Tafforeau et al., 2006;
Mazurier et al., 2006; Donoghue et al., 2006).

Two other tomographic techniques have recently been
demonstrated to allow for non-invasivein saxo imaging
(from Latin saxum, rock) of three-dimensional fossil mor-
phologies: Neutron Tomography (NT; cf. Domanus, 1992)
has successfully been used to acquire images of sauropod
vertebrae (Schwarz et al., 2005), while Magnetic Resonance
Imaging (MRI; for detailed description, see Callaghan, 1991)
can either be used to generate negative images of mouldic
or cavernous fossil samples by immersing them in or filling
them with materials that provide MR signal (e.g. water or
oil, possibly containing contrast agents; Sebes et al., 1991;
Steiger et al., 1997; de Swiet et al., 1998; Steiger, 2001; Clark
et al., 2004), or the fossil morphology can be imaged directly,
solely on the basis of intrinsic contrast, as shown for patho-
logical belemnite rostra (Mietchen et al., 2005). Like CT,
both NT and MRI can reach microscopic resolutions, and for
all three tomographic modalities, spectroscopic sister tech-
niques exist that allow a detailed chemical characterisation
of a given specimen (Boyce et al., 2002; Gabel et al., 2002;
Abragam, 1961).

In this study, we concentrated onin saxo MRI whose
signal intensity had been found to co-vary with pathologi-
cal alterations of biomineralisation in the belemnite speci-
mens mentioned above. Specifically, we addressed the is-
sue whether the method would equally be applicable to non-
pathological rostra and to fossils other than belemnites – as
previous studies of fluids in porous rocks (de Swiet et al.,
1998) and of extant biomineralised samples (Majumdar et al.,
1998; Borah et al., 2001; Tsai et al., 2004; Müller et al., 2006)
would suggest – and used MRI to investigate the internal
morphology of non-pathological fossils of invertebrate, ver-

tebrate and plant origins from different geological settings.
The fossil material figured here is housed at the Museum

für Naturkunde der Humboldt-Universität zu Berlin, Ger-
many (acronym MB.) and in the Museum für Natur und
Umwelt in Lübeck, Germany (acronym MNU).

2 Diagenesis of biomineralised structures

When considering the use of new methodologies like MRI
for the structural investigation of fossils, it is necessary to
reflect on the material characteristics of the skeleton, the ex-
tent to which the original morphologic structures have been
diagenetically altered and how this could affect the acqui-
sition and interpretation of the data. The following sections
will hence review biomineralisation and diagenetic processes
in selected taxonomic groups, with a focus on preservation
of organic matter in the mineral matrix (the preservation
of water will be discussed in Sect.5.4). Several reviews
are available that treat taphonomy, particularly chemical and
microbial degradation of the organic and mineral fractions,
in more detail (Behrensmeyer, 1978; Behrensmeyer et al.,
2000; Collins et al., 2002; Dauphin, 2002; Kidwell and Hol-
land, 2002; Briggs, 2003).

2.1 Invertebrates

2.1.1 Overview

Shells of macroinvertebrates composed of calcium carbon-
ate abound in the Phanerozoic fossil record. Calcite is the
more stable crystal form, though shells composed thereof
may have experienced diagenetic recrystallisation. Arago-
nitic shells have commonly been dissolved during diagenesis
or replaced by other minerals, mainly calcite. The organic
matrix has been attributed several functions in biominerali-
sation, including nucleation of the mineral, determination of
the mineral phase, control of the orientation and growth of
carbonate crystals, and enhancement of mechanical proper-
ties of the crystals (e.g. Crenshaw, 1990). Biochemically,
it consists of proteins, poly-saccharides, and water. A ma-
jor portion of the soluble fraction of organic matrix macro-
molecules are aspartic acid-rich glycoproteins, whereas im-
portant constituents of the insoluble fraction are glycine,
alanine and chitin (for details, see Lowenstam and Weiner,
1989).

The properties of organic matrix components are subject to
often severe postmortem alterations – proteins, for instance,
decompose to individual amino acids which can undergo iso-
merisation and further decomposition down to simple hydro-
carbons (Collins and Gernaey-Child, 2001). Several stud-
ies have documented the presence of amino acids in fossil
shells as old as about 360 Ma (summarised in Weiner, 1979).
However, the amino acid composition of a Late Cretaceous
(80 Ma before present) ammonoid shell bore no resemblance
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to that found in a close extant relative, the cephalopodNau-
tilus (Weiner, 1979).

2.1.2 Belemnites

Another group of cephalopods, now extinct, are the belem-
nites. They had an endoskeleton whose most distal part – the
rostrum or guard that helped to maintain a horizontal swim-
ming posture (Naef, 1922) – is frequently preserved. It con-
sists of the rostrum cavum with the alveolus – a conical ca-
vity at its anterior end – and the rostrum solidum (e.g. Sælen,
1989, cf. Fig. 1). It is further characterised by (1) the apical
line, which represents the axis of the rostrum and marks the
trajectory of the apex (the most posterior part of the rostrum)
during successive growth stages, (2) composite radial struc-
tures formed by crystals radiating out from the apical line
to the margin and (3) commarginal (concentric) growth lines
(also known as growth rings) which stem from periodical ac-
cretions of radial structures that resulted in spatial variations
of the organic content. This variation is often subtle, so that
growth rings may be difficult to define (Sælen, 1989).

Apart from the primordial rostrum and very early growth
stages, the original mineralogy of belemnite rostra was low-
Mg calcite (Veizer, 1974). As such they are relatively stable
even under freshwater influence (meteoric diagenesis). The
microstructure consists of regular, fine prisms with parallel
crystal axes, arranged in well-ordered prismatic layers (Ban-
del and Spaeth, 1988) which can still be discerned in even
strongly recrystallised specimens. Diagenetic exchange be-
tween rostra and enclosing rock appears to be limited (up to
about 10% by weight, according to Veizer, 1974) and may be
caused by solution-precipitation phenomena or filling of the
pore space. The latter was either primary or diagenetically
generated by the decay of organic matter. Growth lines are
frequently preserved.

With respect to organic matrix macromolecules in belem-
nites, Westbroek et al. (1979) analysed rostra of two late Cre-
taceous taxa,Gonioteuthis andBelemnitella. In the soluble
macromolecular fraction of well-preservedGonioteuthis ros-
tra, these authors identified components with peptidic and
saccharidic properties as well as an amino acid composition
very similar to that ofNautilus, dominated by glycine and
alanine. Even original antigenic properties of certain frac-
tions were still preserved, suggesting that the biochemical
materials derived fromGonioteuthis were original belem-
nite compounds which only experienced minor alterations
during diagenesis. The observed enrichment in polyphe-
nols may be due to reactions between peptides and carbo-
hydrates during diagenesis. In contrast to the exception-
ally well-preserved rostra ofGonioteuthis, those ofBelem-
nitella were strongly recrystallised. Although the amino acid
composition is similarly dominated by glycine (12.6 mol%)
and alanine (11.5 mol%), less stable (threonine, serine, argi-
nine – 5.5, 6.2 and 4.9 mol%, respectively) and even very la-
bile amino acids (methionine, 2.2 mol%) were also present.

Fig. 1. Schematic sketch of the anatomy of a belemnite guard (lon-
gitudinal section), showing the proximal rostrum cavum, the distal
rostrum solidum and the apical line (also known as central channel).

Westbroek et al. concluded thus that the primary organic
composition of theBelemnitella rostra was contaminated
during or after recrystallisation by percolating ground water.

2.1.3 Crinoids

As in all echinoderms, the crinoid stalk ossicles belong to the
mesodermal endoskeleton and are composed of magnesium
calcite which is arranged in the typical form of a stereom (a
meshwork of anastomosing trabeculae and pillars). In the liv-
ing crinoid, the interspace in the stereom is filled with soma
which contains living cells, mainly sclerocytes and phago-
cytes (Heinzeller and Welsch, 1994). Columnals bearing cirri
are nodals, those without cirri are internodals. Connections
of the ossicles are nonmuscular and exclusively by elastic lig-
aments of mutable collagenous tissue. Short, intercolumnar
ligaments connect each pair of adjacent columnals. Longer,
continuous ligaments connect each set of internodals and one
associated nodal (Ausich et al., 1999).

Columnals ofIsselicrinus buchii are cylindrical, rarely
subpentagonal, with a smooth surface. The corresponding ar-
ticulations of adjacent ossicles bear a characteristic pattern:
Interlocking grooves and ridges of densified stereom occur
in a petaloid pattern, giving the stem a certain flexibility. A
crenulation is also visible at the margin of most ossicles, and
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the stem possesses a small central canal which represents a
tubular cavity with extensions of the coelom and nervous sys-
tem (Ausich et al., 1999).

Skeletal particles of echinoderms are usually preserved
as large single crystals of calcite. During diagenesis, the
metastable high Mg-calcite of the echinoderm skeleton is
replaced by low Mg-calcite. This transformation occurs by
means of a solid-state process known as incongruent disso-
lution. Unidirectional growth of calcite crystals gives rise
to syntaxial cements, the formation of which starts with the
infilling of the pore space. Occasionally, the microstruc-
ture may be preserved when the porespace is infilled with
clay preventing precipitation of spar. Even more rarely, the
echinoderm crystals can be diagenetically transformed into
microcristalline calcite (also known as micrite; Neugebauer,
1978). Under favourable conditions (rapid burial, low pore
water circulation, an- or dysoxic conditions), organic re-
mains such as color pigments can be preserved within the
stereom (Blumer, 1965; Wolkenstein et al., 2006). Espe-
cially in the Cretaceous chalk sea, dissolution or corrosion
of echinodermal magnesium calcite occured either on the sea
floor or during diagenesis (Ernst, 1963; Neugebauer, 1978).

2.2 Vertebrates

2.2.1 Overview

Diagenetic processes acting upon vertebrate remains are far
from being completely understood but for most practical pur-
poses, they can be reduced to the diagenesis of bone and its
collagenous protein matrix. Although this is still a complex,
multistage process, notoriously dependent on external bio-
chemical, hydrological and taphonomical factors of the em-
bedding environment and internal parameters such as bone
size, histological structure and collagen content (Martill,
1991; Hedges and Millard, 1995; Schweitzer et al., 2007), it
has been relatively well-studied in archaeological sciences,
especially in relation to collagen decomposition (Nielsen-
Marsh et al., 2000). Similar to most other proteins, colla-
gen is composed mostly of carbon, hydrogen, nitrogen and
a minor content of sulphur, and its initial decay during early
diagenesis is of great importance for the final preservation
and chemical composition of the bone (Hedges et al., 1995;
Nielsen-Marsh and Hedges, 2000; Pfretzschner, 1998, 2000;
Schweitzer et al., 2005, 2007). Generally, microbial degrada-
tion of collagen accelerates destruction (Collins et al., 1995)
and therefore hinders fossil preservation of bone. How-
ever, microbial activity depends on a number of chemical
parameters – including temperature, pH and the availabi-
lity of oxygen and water – whose combination might lead
to reduced microbial degradation (Bocherens et al., 1997;
Nielsen-Marsh and Hedges, 2000), which is an advantage
for later fossilisation. The proteolysis of collagen, especially
under water, is determined by local pH as well as the re-
dox potential of bone during early diagenesis (Pfretzschner,

1998), and this influences the ion and isotope exchange rates
between the phosphorous mineral phase of the skeletal re-
mains and the ambient fluid and sediment. Reaction condi-
tions, moreover, differ between freshwater and marine envi-
ronments. Finally, even if two samples have been taken from
the same fossil specimen, the circumstances of their excava-
tion, handling, storage and analysis can severely influence
the residual biochemical information contained therein, as
has been shown for DNA contents (Pruvost et al., 2007) but
can be assumed to be the case for other macromolecules and
water as well.

2.2.2 Bone preservation and taphonomy

Bone material consists of the biomineral hydroxy apatite –
Ca5(PO4)3OH – which can be modified during fossilisa-
tion by various chemical interactions with the environment
and the sediment covering the carcass (Rottländer, 1979).
Depending on the environmental distribution of reactants
(Pfretzschner, 1998), the mobile ions within the apatite crys-
tal – H+, Ca2+, HPO2−

4 and OH− – can be substituted, as
Piepenbrink (1989) has shown for subfossil human bone.
Ca2+, for example, is often replaced by UO2+

2 (Millard and
Hedges, 1995; Pfretzschner, 1997) or Sr2+, or 2Ca2+ by
Na+and Y3+. Likewise, the phosphate group HPO2−

4 can
exchange with SO2−

4 or CO2−

3 . SiO2, V4+ or As3+ can also
move into the crystal lattice, while F− and Cl− can substi-
tute for OH− (Newesely, 1989; Pfretzschner, 2000; True-
man, 1999). The histological structure of bone is important
for the interaction with the ambient fluid. The pore struc-
ture, which often follows a trajectory pre-defined by in vivo
biomechanical load, determines the internal surface area and
therefore the capacity for surface reactions (Hedges and Mil-
lard, 1995).

2.2.3 Fossil ear bones

With the exception of some phylogenetically early species
(cf. Luo et al., 2007), the mammalian ear bones typically
comprise the tympanic bulla, the middle ear with the three
ossicles malleus, incus and stapes, and the periotic bone with
the cochlear portion containing the spiral cavity which forms
the organ of sound reception (Berta and Sumich, 1999). The
cochlea is coiled and divided lengthwise into three parallel
tubular channels (Liem et al., 2001, Fig. 12–22).

In cetaceans, the periotic is the most compact skull bone
and of a comparatively stable and chemically resistent na-
ture. As an adaptation to underwater hearing, it is displaced
from the skull by pneumatic spaces (e.g. Purves and Pilleri,
1983) and only loosely connected to it via ligaments to the
mastoid process (Pilleri et al., 1987). The detachment al-
lows separate reception of sound and isolated vibrations of
the ear bones (Miller, 1923; Fleischer, 1978; Pilleri et al.,
1987). The anatomy of the cetacean organ of hearing is well
described (Pilleri et al., 1987) but was usually studied by

Biogeosciences, 5, 25–41, 2008 www.biogeosciences.net/5/25/2008/



D. Mietchen et al.: Fossil MRI 29

producing serial sections by grinding the petrosals (e.g. Luo
and Eastman, 1995; Luo and Marsh, 1996), resulting in the
loss of the unique fossil specimens. Petrosals obtained from
contemporary animals (e.g. Ketten and Wartzok, 1990; Num-
mela et al., 1999) have successfully been imaged by CT, as
have fossil cetacean petrosals (Spoor et al., 2002) and entire
fossil cetacean skulls (at resolutions not suitable for petrosal
investigations, cf. Marino et al., 2003).

Incidentally, the first MR imaging of fossils that we know
of (Sebes et al., 1991) has been performed on the vertebrae
of a Miocene dolphin, though the specimen was immersed
in water which provided the contrast. The species was not
mentioned in that report but determined asXiphiacetus bossi
(Kellogg) USNM 10480 (D. Bohaska and B. Rothschild, per-
sonal communication). At the time of writing, it was not
known whether the water immersion had had any impact on
the state of preservation of these vertebrae, as compared to
non-immersed vertebrae of the same specimen.

2.3 Plants

Petrified plant remains, mainly silicified wood, are a frequent
feature in the fossil record. In ion exchange reactions simi-
lar to those desribed above for bone, silica minerals are de-
posited in cracks, openings between cells, and spaces left
by cell fluids. These processes take place while the wood
is still relatively intact. Consequently, petrified plant parts
exhibit preserved morphological patterns down to the cellu-
lar scale, and they often contain organic and carbon com-
pounds. Silicification depends on the thermal conditions
(Sigleo, 1978) and can occur over a wide pH range and some-
times very rapidly (in vitro as fast as in 24 h, according to
Drum, 1968). The most probable mechanism for wood sili-
cification is hydrogen bonding between silicic acid, Si(OH)4,
and the hydroxyl groups in cellulose. When studyingArau-
carioxylon arizonicum fossils from the Triassic Chinle For-
mation of Petrified Forest National Park in Arizona for lignin
derivates, Sigleo (1978) was able to identify various organic
compounds in silicified wood by sequential high vacuum py-
rolysis, gas chromatography and mass spectrometry. These
organic components included phenols, methylphenols, alkyl
substituted benzenes and benzofurans. Further support for
organic remains in plant fossils comes from elemental map-
ping of silicified wood from Palaeozoic up to Miocene sites
(Boyce et al., 2001), and Siurek et al. (2004) – who investi-
gated silicified wood from Chile and the Barton Peninsula
(King George Island, Antarctica) – found carbon in each
volume element they tested, in most cases convincingly at-
tributable to the remnant primary organic matter.

As for noninvasive imaging, x-ray tomography was ap-
plied successfully to pyritized fossil fruits from the Lower
Eocene London Clay flora, namely to the visualisation of in-
ternal structures, including small seeds, within Myrtaceaen
fruits (DeVore et al., 2006), and further applications are about
to emerge, e.g. for the study of internal structures (down to

the cellular level) within charcoalified three-dimensionally
preserved Cretaceous flowers (Friis et al., 2006). MR imag-
ing has, however, found multiple applications to extant plant
specimens (Chudek and Hunter, 1997), including conifer
cones (e.g. Mill et al., 2001).

3 Specimen description

3.1 Invertebrates

3.1.1 Belemnites

The analysed belemnite rostra, identified asBelemnopsis sp.
by Dietrich (1933), were collected by the German Tendaguru
Expedition (1909–1912, cf. Janensch, 1914). The fossil lo-
cality of Tendaguru, famous for its diverse dinosaur assem-
blages, is located approximately 60 km northwest of the sea-
port of Lindi in southeastern Tanzania. The Late Juras-
sic to Early Cretaceous (ca. 155–130 Ma before present)
Tendaguru Beds reach a thickness of 110 m and consist of
three fine-grained dinosaur-bearing sequences which are in-
tercalated with sandstone-dominated sequences containing a
predominantly marine fauna (Aberhan et al., 2002). The ros-
tra were embedded in a medium- to coarse-grained sandstone
of Late Jurassic (Tithonian) age at the transition between
the so-calledTrigonia smeei Bed and the base of the Up-
per Saurian Bed at Tendaguru site IX, about 1.4 km northeast
of Tendaguru Hill. Most specimens are fragmented and the
outer surface appears pitted due to intense weathering. Re-
cent sedimentological and palaeoecological analyses of the
Tendaguru Beds (Aberhan et al., 2002) suggest that depo-
sition of theTrigonia smeei Bed took place in lagoon-like,
shallow marine environments above fair weather wave base
and with evidence of tides and storms. Sediments of the Up-
per Saurian Bed represent extended siliciclastic tidal flat en-
vironments including brackish coastal lakes and ponds. The
Late Jurassic palaeoclimate of the Tendaguru area was sub-
tropical to tropical, characterised by seasonal rainfall alter-
nating with a pronounced dry season.

The analysed rostrum ofBelemnella (Pachybelemnella)
sumensis Jeletzky is from the boreal Upper Cretaceous
(Lower Maastrichtian, ca. 69 Ma before present) white chalk
of the Stubbenkammer, Isle of Rügen (Northeastern Ger-
many). The sedimentary matrix is a weakly lithified coc-
colith limestone, representing fully marine, distal open shelf
conditions well below storm wave base.

3.1.2 Crinoids

The crinoid specimen (MNHB/MB.E 5730) used for this
study belongs to the speciesIsselicrinus buchii Roemer and
was found together with the above-describedBelemnella
(Pachybelemnella) sumensis sample in the white chalk of
Stubbenkammer, Isle of R̈ugen, Germany.Isselicrinus buchii
is the most abundant crinoid taxon of the chalk soft bottom
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ecosystem during the Maastrichtian. As a stalked crinoid,Is-
selicrinus was highly adapted for a life on a muddy substrate.
It possessed a relay strategy, using pre-existing upright stem
columns as anchorage (Fujiwara et al., 2004). The long stem
raised the cup highly above the sea floor into the water cur-
rent. As a passive suspension feeder, this crinoid was depen-
dent on currents transporting plankton to the catch apparatus
formed by the crinoid’s arms (Oji, 1985, 1990). We used
only columnals (stem elements) for MR imaging.

3.2 Vertebrates

The bone used for the current study was a periotic originating
from a partial skeleton of a kentriodontid dolphin (Cetacea:
Odontoceti) belonging to the genusAtocetus de Muizon of
the subfamily Pithanodelphininae Barnes. ThisAtocetus fos-
sil was discovered in a commercial gravel pit near Groß Pam-
pau in Schleswig-Holstein, northern Germany, and is stored
since then in the Museum für Natur und Umwelt in L̈ubeck
(MNU-071-18). The site is famous for several whale remains
(e.g. Ḧopfner, 1991; Hampe, 1999). The horizon contain-
ing the whale fossils belonged to a dark mica clay (“Oberer
Glimmerton” in regional stratigraphy; cf. Hinsch, 1990) that
was deposited between 10.6 Ma and 11.8 Ma (Spiegler and
Gürs, 1996) afterBolboforma biozones (around the mid-
dle/upper Miocene boundary) and is rich in organic matter,
the sheet silicate muscovite and occasionally in pyrite, glau-
conite, and carbonate (Gripp, 1964).

3.3 Plants

Two silicified fossils were chosen that revealed anatomi-
cal details under the light microscope. They had been col-
lected in 1937 by M. Wehrfeld at the “classic” locality Cerro
Cuadrado in North Patagonia, Argentina, and were later do-
nated to W. Gothan (cf. Gothan, 1950). At this site (com-
prehensively described by Dernbach et al., 1992), silicified
conifer remains are preserved in a volcanic ash considered
to be mid- to late Jurassic (ca. 150–160 Ma; Calder, 1953;
Menéndez, 1960).

MB.Pb. 2006/511 is a silicified twig of about 9 cm
length and approximately 1.3 cm diameter from an araucar-
ian conifer and appears poorly preserved. The piece is bro-
ken off at the base and at the top. TheBrachyphyllum-type
foliage is dense and seems to be helically arranged. The
leaves show rhomboidal leaf cushions and acute apices. In
most cases, only the leaf base is preserved, and no obvi-
ous wood or leaf structures are visible under the light mi-
croscope.

The second piece (MB.Pb. 2006/512), a cone of a conifer
of uncertain affinities,Pararaucaria patagonica Wieland, is
approximately 3.3 cm in length and 1.5 cm in maximal di-
ameter and exhibits a good three-dimensional preservation
under the microscope (cf. Fig. 5a). Such cones have pre-
viously been described in detail (e.g. Stockey, 1977), and

this exemplar belongs to a group of three specimens in the
Museum’s collection that had already partly been sectioned
horizontally and vertically (MB.Pb. 2004/948), which pro-
vided for comparisons with the MR images. These cones
are completely silicified by alpha-quartz (Stockey, 1975)
which is also known as chalcedony and can vary in colour
between seeds (Darrow, 1936). Finally, abundantly inter-
spersed haematite renders the fossils reddish brown.

4 Magnetic Resonance Imaging and Spectroscopy

As for MR imaging, the same methodology as in Mietchen
et al. (2005) was employed. The MRI experiments were thus
performed on a Bruker Avance NMR spectrometer (Bruker,
Rheinstetten, Germany) operating at a1H resonance fre-
quency of 400 MHz with standard Micro2.5 microimaging
equipment and a maximum gradient strength of 0.95 T/m.

Typical images were recorded using a standard 3D spin-
echo imaging sequence (for details, see Ernst et al., 1997)
with a Field of view (FOV) of 15×15×30 mm3, a matrix size
(MTX) of 128×128×256 voxels, an echo timeTE=1.3 ms, a
repetition timeTR=1 s, giving an isotropic voxel resolution of
80 µm (note that resolution in the different directions can be
handled independently). With number of averages (NA)=2,
this results in a total experimental time (Texp) of 18 h. The
maximum gradient used for MR imaging was 0.95 T/m. De-
viations from this parameter set are given in the figure cap-
tions. All measurements were performed at a temperature of
(22±1)◦C if not mentioned otherwise. The images were vi-
sualised and processed with the help of ImageJ (developed
at the National Institutes of Health and available online via
http://rsb.info.nih.gov/ij/).

Magic Angle Spinning (MAS) is a variant of MR spec-
troscopy in which the sample is quickly spun around an axis
inclined to the static magnetic field, such that anisotropic
interactions between MR-sensitive nuclei average out (re-
viewed in Andrew, 1981; Garroway et al., 1981; Veeman,
1997). For MAS NMR spectroscopy, the powdered sam-
ple was placed inside a standard ZrO2 MAS rotor of 4 mm
outer diameter. The data were acquired at a spinning speed
of 10 kHz and a repetition time of 3 s. For the1H spectra, 32
transients were averaged, and 22 200 for the13C spectra.

5 Results and discussion

5.1 Invertebrates

5.1.1 Belemnites

In cross-sectional MR images of theBelemnopsis samples
(cf. Fig. 2c, e), concentric circles reflecting radially oscil-
lating signal intensity can easily be identified – with higher
signal intensity indicating a higher number of mobile1H nu-
clei, and lower signal indicating lower1H contents, lower
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mobility or a combination of both. As for the molecular af-
filiation of these nuclei (see also Sect. 5.4), water would per-
haps provide the most parsimonious explanation but organic
remains of the original material would also be compatible
with recently published findings (Florek et al., 2004): or-
ganic and inorganic signals in electron microprobe measure-
ments showed very similar oscillatory patterns in belemnite
rostra, yet with opposite sign, along a radial line extending
from the central channel. The signal oscillations correspond
to growth rings reflecting a layered microstructure similar to
the one described for nacre (Jackson et al., 1988; Feng et al.,
1999, 2000), where inorganic layers (aragonite in bivalves,
calcite in belemnites) basically alternate with organic layers,
with each of both phases forming a continuum through small
bridges (cf. Fig. 10ff in Jackson et al., 1988). The latter, how-
ever, can not be identified in our MRI data. In the longitudi-
nal sections, the apical line or central channel is marked by
low signal intensities over its entire preserved length, from
the apex to the alveolus at the distal tip of the phragmocone.
Interestingly, the apical line is marked by high signal inten-
sity in the otherwise rather featurelessBelemnella sample (cf.
Fig. 2d, f), thereby effectively reversing the image contrast
with respect to theBelemnopsis guard.

5.1.2 Crinoids

Figure 3 depicts MR images obtained from theIsselicrinus
columnals from R̈ugen (MNHB/MB.E 5730). Visible are
the small central canal and the grooves and ridges serving
as attachment surfaces for connective ligaments as well as
crenellae along the margin. The spatial resolution achieved
with this sample was 108 µm in the image plane depicted
here (subsequently, it was artificially increased by a factor of
two via zerofilling of the data set before Fourier transforma-
tion) and 50 µm perpendicular to it – the highest resolution
achieved in the MR images described in this study.

5.2 Vertebrates

The MR images of the whale periotics (cf. Fig. 4) reveal a
strong signal in the posterior cochlear part and the posterior
process of the bone. At the site of Groß Pampau, the fossil
bones are associated with diagenetically produced minerals
like glauconite and pyrite. The latter is a product of a reac-
tion between iron (from sediment or haemoglobin degrada-
tion) and sulphur (H2S released by protein degradation, cf.
Pfretzschner, 2000). FeS2 (pyrite) develops under alkaline
conditions, e.g. in the presence of water-dissolved NH3 pro-
duced during collagen decay. The chemical history of the
hydrogen and carbon of the decomposed protein is less clear.
It appears possible, though, that part of these molecules still
reside in the bone and contribute to the high signal intensity.

BA

C D

F

E

Fig. 2. Three-dimensional MR imaging of two belemnite guards of
different origin:Belemnopsis sp. (MB.C. 3701.3) from Tendaguru,
site IX (A, C, E) andBelemnella (Pachybelemnella) sumensis Jelet-
zky (MB.C. 3884) from R̈ugen(B, D, F). (A, B): Longitudinal view
(photomocrographs). Scale bars throughout this paper are isotropic
5 mm or otherwise 5 mm in the indicated directions. (C, D) Lon-
gitudinal MR image slices. (C) MTX: (256 pxl)3, TR=784 ms,
NA=8, Texp=113 h. For further details, see Sect. 4 in text. Ar-
row heads in (C) and (D) indicate slice positions in (E) and (F),
and vice versa. (D) FOV: 12×12×30 mm3. (E, F) Transverse sec-
tions. The colour scale (identical for all MR images presented
in here) represents MR signal intensity in arbitrary units, white
is maximum. 3-D slice series oriented as in (D) and (E) are
given as Movies 1 and 2 (http://www.biogeosciences.net/5/25/2008/
bg-5-25-2008-supplement.zip) (in steps of 94 µm and 117 µm, re-
spectively).
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Fig. 3. Four different views at a fossil crinoid (Isselicrinus buchii)
from Rügen, Germany (MNHB/MB.E 5730).(A) lateral view
(photomicrograph). 1, central canal; 2, peripheral crenellae; 3,
groove (or interradial petal); 4, adradial ridges.(B) MR image slice
from MNHB/MB.E 5730 (denoted by asterisque) and other fossil
crinoids from R̈ugen (MNHB/MB.E 6300). FOV: (15 mm)3, MTX:
(128 pxl)3, TR : 877 ms,NA: 4, Texp: 16 h. (C) High-resolution
MR image slice of MNHB/MB.E 5730. FOV: 6.9×6.9×3.2 mm3,
MTX: (64 pxl)3 (here zero-filled to an isotropic matrix of 128 pxl),
TR : 2.9 s,NA: 32, Texp: 106 h. The corresponding original image
slice series (in steps of 50 µm) is supplied as Movie 3 (http://www.
biogeosciences.net/5/25/2008/bg-5-25-2008-supplement.zip).(D)
3-D rendering of the dataset shown in (C) and Movie 3. The sur-
face is defined by pixels with at least 50% of the maximal signal
intensity.

5.3 Plants

In the MR image depicted in Fig. 5b, several anatomical de-
tails of the fir cone (MB.Pb. 2006/512) are visible: The cone
axis is situated in the centre, surrounded by scales. The em-
bedded seeds on each ovuliferous scale show a high signal
intensity. This even allows to discern seed-internal patterns,
though it remains unclear whether these reflect part of the
former biological structures (like seed integuments or em-
bryos) or diagenetic alterations thereof.

The MR images (not shown) obtained from the Jurassic
araucarian twig (MB.Pb. 2006/511) exhibited a much lower
overall signal intensity than thePararaucaria cone. One pos-
sible explanation for this could be long-term waterlogging,
by means of which the original organic matter would already
have been decayed to a high degree before the onset of sili-
cification – it is known that the physical appearance of fos-
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Fig. 4. Fossil left periotic (MNU 071-18) ofAtocetus sp. (Cetacea)
in (A) ventral/tympanal view;(B) medial view;(C) dorsal/cerebral
view, showing the level of the corresponding MR sections to the
right. (D) MR diagonal section;(E) MR horizontal section;(F) MR
vertical section. 1, posterior process; 2, canal for facial nerve; 3,
useful site for future analyses of signal origin; 4, inner auditory pas-
sage; 5, groove for tensor tympani; 6, anterior process; 7, transver-
sal septum; 8, fenestra rotunda; 9, cochlea. MR parameters: FOV:
22×22×22 mm3, MTX: 64×64×64 pxl3, TE : 0.6 ms,NA: 32,
Texp: 36 h. The corresponding original image slice series (in steps
of 344 µm) is supplied as Movie 4 (http://www.biogeosciences.net/
5/25/2008/bg-5-25-2008-supplement.zip). The image plane runs
from ventro-lateral to dorso-medial, starting at the anterior process,
passing the groove for tensor tympani, which divides in the movie
the anterior (top) from the posterior half (bottom) of the periotic,
followed by the appearance of the cochlea (left) with its coiled in-
ner auditory canal (labyrinth). Subsequently, the canal for the fa-
cial nerve appears below the cochlea in a “slash-like” manner. The
movie ends with the sigmoidally shaped tympanic canal (scala tym-
pani) which opens into the fenestra rotunda (bottom).

sil conifer remains is a function of the residence time either
in a terrestrial or aquatic setting (Gastaldo, 1991). Experi-
ments on extant leaf litter have demonstrated degradation in
floating plant material: The breakdown starts already with
the leaching of water-soluble substances and is accelerated
by higher water temperatures. This phase is followed by in-
vasion of micro-organisms, mainly fungi and bacteria (Fer-
guson, 1985). The fossil conifer twig used for this study
has most likely undergone both types of degradation while
floating in the water column, perhaps for as long as several
months. If the different fossilisation history of the cone, on
the other hand, led to a complete silicification shortly after
abscission from the tree, it would appear plausible that some
organic compounds might still be in place and possibly con-
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Fig. 5. MR imaging of fossil cones of the coniferPararau-
caria patagonica. (A) Surface view of an ovulate cone (MB.Pb.
2006/512; Coll. Wehrfeld 1937) with cone scales (photomicro-
graph). (B) Cross-sectional MR image of the same sample.
FOV: 17×17×34 mm3, NA: 12, Texp: 109 h. The original
image slice series (oriented as here, in steps of 133 µm) is
supplied as Movie 5 (http://www.biogeosciences.net/5/25/2008/
bg-5-25-2008-supplement.zip). 1, seed; 2, axis.(C) Longitudi-
nal section (photomicrograph) of a similar ovulate cone (MB.Pb.
2004/948; Coll. Wehrfeld, 1937) with several helically arranged
cone-scale complexes and seeds (1) whose internal structures ap-
pear widely destroyed, leaving cavities filled with colourless quartz
(1’).

tributing to the MR image contrast.

5.4 Origin of the MR signal

The molecules that give rise to these signals can be char-
acterised in multiple ways, e.g. by using a Pulsed Gradi-
ent Spin Echo MR experiment (Stejskal and Tanner, 1965)
which measures their self-diffusion coefficient, an estimate
of their translational mobility. The highest self-diffusion co-
efficients we found in fossil samples (in some belemnites)
reached 10−11m2 s−1, which is comparable to that of water
bound to cell membranes (Volke et al., 1994), and more than
two orders of magnitude smaller than the 2×10−9m2 s−1 ty-
pically found in free water (Mills, 1973).

In most of the fossils we tested, no translational mobility
was detectable. With the given equipment and experimen-
tal parameters, it can thus be estimated that the self-diffusion
coefficients of the1H-containing molecules within our fossil
samples is generally below 10−13m2 s−1. Interestingly, dif-
fusion determines decay in a recent physical model of kero-
genesis (Rothman and Forney, 2007).

The transverse relaxation times (T2) in the fossil samples
ranged in the order of 1 ms, which is three orders below free
water but still several orders above those observed in solid
crystals (Mansfield, 1965), indicating that the MR-visible
molecules retain a certain rotational mobility despite the ab-
sence of translational motion. This would be compatible with
the idea of organic contributions to the signal, as the oscil-

Fig. 6. 13C MAS spectrum of a powder sample obtained from
the rostrum of the Tendaguru belemnite (Belemnopsis sp.; MB.C.
3700.11). Inset: Corresponding1H MAS spectrum. Both spec-
tra were obtained at a spinning frequency of 10 kHz and calibrated
against tetramethylsilane, Si(CH3)4, in a separate experiment under
otherwise identical conditions.

lating biomineralisation patterns described by Florek et al.
(2004, see slso Sect. 5.1.1) would suggest.

To further test whether free water contributes to the MR
signal, we froze one of the non-pathological Tendaguru
belemnites with a self-diffusion coefficient near 10−11m2 s−1

(Belemnopsis sp.; MB.C. 3700.11) down to –20◦C, which
did not bring about any significant signal change indicative
of a phase transition, nor did the signal change when the sam-
ple was heated up to 70◦C. We thus heated it in an oven for
8 h at 200◦C, which did not result in any observable weight
loss on a milligram scale, and the MR spectra and images
obtained thereafter showed no difference to those obtained
before the temperature experiments.

In order to address the issue of the chemical nature of
the MR signal in more detail, a piece of this belemnite was
powdered and subjected to1H and 13C NMR MAS spec-
troscopy. The13C spectrum (cf. Fig. 6) shows a peak (at
about 180 ppm) reflecting C=O or C=S double bonds, while
no other signal can be clearly identified, and namely no CHx
groups which would hint at organic material. These obser-
vations contrast with13C MAS spectra previously obtained
from fossil pollen or Baltic amber, where CHx peaks were
readily observable (Hemsley et al., 1995; Lambert et al.,
2000) but they fit nicely with the results of organochemical
analysis of the belemnite’s powder by successive extractions
with dichlormethyl/methanol, dichlormethyl/ethanol and ul-
trasonication – which did not reveal any traces of lipids
(P. Albrecht and A. Charrié, personal communication) – and
with the finding that total organic contents in (even recent)
echinoid calcite was less than 0.2 wt% (Gaffey, 1995).

The 1H spectrum (cf. inset in Fig. 6), on the other hand,
is dominated by the water and hydroxyl peak at 4.8 ppm but
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also shows a small peak between 0 and 1 ppm, which is in-
dicative of cyclopropyl, metal-bound methyl groups or min-
eral hydroxyl groups (Kalinowski et al., 1984; Gaffey, 1995).
So, at least in this belemnite, water or hydroxyl groups (the
latter perhaps bound to the mineral matrix) seem to have been
the major signal contributor to our1H MR images, and the
question about the origin of the signal translates into a ques-
tion about the origin of these water or hydroxyl groups. We
are not aware of any studies focusing on this issue specif-
ically but given that temperature-stable water was found to
exist in dental enamel (Myers, 1965, using NMR) as well
as in recent and fossil shells (Hudson, 1967, using gas chro-
matography), it was proposed that hydroxyl groups some-
times take the place of oxygen atoms in the crystal grid (Mar-
tin and Donnay, 1972), which has since been affirmed by
infrared and NMR techniques (Aines and Rossman, 1984;
Gaffey, 1988, 1995; Rossman, 2006). Furthermore, water
molecules completely shielded from the bulk of the aqueous
solvent have been found in dissolved globular proteins, in the
intermolecular interfaces of multimolecular complexes and,
notably, in protein crystals (Wider, 1998). Analyses of spots
with high signal intensity (e.g. “3” in Fig. 4) could provide
further insights into the signal origins in other fossils.

The strong but narrow peak in the1H spectrum (cf. Fig. 6)
can thus perhaps best be explained in terms of rigidly bound
H2O molecules or OH groups being close enough to H2O
molecules in a more liquid state, so as to allow for proton
exchange. This fits well with MR spectroscopic observa-
tions in echinoid calcite where liquid-like protons were found
to amount to about 60% of the total H2O content (Gaffey,
1995). The latter varied around 2–3wt%, both between in-
dividuals and species but even more so between ossicles
of the same specimen, which would suggest that total H2O
might be indicative of ossicle growth or structure (Gaffey,
1995). Nonetheless, a preliminary analysis of MR images
and spectra acquired from neo- to palaeolithic mammalian
bone and teeth samples suggests that neither1H nor 13C MR
signals predict PCR-amplifiable DNA content (D. Mietchen,
M. Hofreiter, E.-M. Geigl, unpublished data).

5.5 Perspectives for fossil MRI

Perhaps the most obvious limitation for1H MRI of fossils
is their typically low contents of soft-bound1H. A possi-
ble strategy to deal with low intrinsic signal intensities is to
fill cavities in the specimen of interest with solutions con-
taining sufficient amounts of MR-visible1H (Sebes et al.,
1991; Doughty and Tomutsa, 1996; Steiger et al., 1997; de
Swiet et al., 1998; Steiger, 2001; Clark et al., 2004) but, at
least in not entirely mouldic fossils, such treatment might
impede future chemical analyses, especially of biological
macromolecules (Pruvost et al., 2007). In this respect, it
would be interesting to find out whether samples that expe-
rienced such liquid treatment show any peculiarities in their
state of preservation if compared to non-treated samples from

the same specimen, though the replacement of the liquids by
inert gases (cf. Seeley et al., 2004) could eventually alleviate
these concerns.

Besides1H, both MR spectroscopy and MR imaging are
in principle possible with all isotopes that possess a net nu-
clear magnetic moment, i.e. those exhibiting odd numbers of
protons or neutrons (e.g.2H, 11B, 13C, 14N, 15N, 17O, 19F,
23Na, 25Mg, 29Si, 31P and39K). Since many of these ele-
ments play important roles during diagenesis (cf. introduc-
tion), such non-1H constituents might be of special interest
for a variety of palaeontological and related studies. The ma-
jor limiting factor here is sensitivity, whose upper limit in a
given static magnetic field depends on the gyromagnetic ra-
tio of the target isotope and on its abundance within the sam-
ple, while the practically achievable value is further depen-
dent upon acquisition parameters (for details, see Abragam,
1961; Callaghan, 1991).13C MR spectroscopy (as in Fig. 6)
has already found multiple applications in archaeological re-
search (Lambert et al., 2000), and31P MRI has been applied
to fresh bone and teeth (Li, 1991; Wu et al., 1999).

Furthermore, all states of matter can in principle be inves-
tigated but since the MR signal correlates with spin (and thus
mass) density, the MR signal obtainable from solid samples
(like most fossils) will normally be above that from gaseous
and – due to chemical binding strength – below that from
liquid samples of similar chemical composition. From this
perspective and with our fossil experiments in mind, it is per-
haps surprising that, after early MRI studies on mummies
had resorted to rehydration (Piepenbrink, 1986) or aban-
doned imaging alltogether after examining the induction de-
cay signal (Notman et al., 1986), reports of successful MR
imaging of non-rehydrated mummies appeared only a few
months ago (Karlik et al., 2007; M̈unnemann et al., 2007).
These new findings suggest a reconsideration of MRI for
the study of mummified or otherwise preserved ancient tis-
sue samples, e.g. soft tissue recovered from within dinosaur
bones (cf. Schweitzer et al., 2005, 2007; Asara et al., 2007),
which we expect to yield a stronger MR signal per voxel than
the completely mineralised samples shown here.

Mildly frozen specimens like mammoths uncovered from
permafrost soil often show remarkable states of soft tis-
sue preservation (Ezra and Cook, 1959; Zimmerman and
Tedford, 1976; Cooper, 2006), which sometimes even al-
lows for genome-level genetic analyses (Poinar et al., 2006).
Such samples, despite being frozen, still contain consider-
able amounts of unfrozen water (Koop, 2004) and thus rep-
resent another window of opportunity for MR techniques, as
demonstrated in sea ice (Eicken et al., 2000) or permafrost
samples (Kleinberg and Griffin, 2005).

Another important aspect to be considered is sample size.
Firstly, at a given resolution, imaging a larger sample means
acquiring more data points and thus longer scanning. Sec-
ondly, larger samples generally require larger coils (which
will reduce the achievable resolution under otherwise iden-
tical conditions), and the ultimate coil size within a given
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imaging setup is limited by the inner diameter of the gradient
coils (in our case 38 mm, in human MRI scanners typically
around 80 cm). Third, although an increase in field strength
generally provides for an increase in signal, noise and signal-
to-noise ratio, a number of artifacts also get more pronounced
then (e.g. susceptibility distortions near interfaces with dif-
ferent magnetic susceptibilities). Fourth, there are a num-
ber of further parameters relevant to MR measurements (e.g.
field homogeneity, sample and coil temperature, gradient
strength, filling factor, pulse sequence), and so the choice of
the experimental conditions is vital (for details, see Abragam,
1961; Callaghan, 1991; Ernst et al., 1997).

In terms of materials, the only major restriction is that
specimens should not exhibit a permanent magnetisation
(due to ferro- or paramagnetic constituents) beyond about
10−7 (i.e. 0.1 ppm) of the static magnetic field, as this would
distort the latter and thus interfere with the way spatial or
spectral information are encoded. Fulfilment of this criterion
will probably show (like the apical lines in Fig. 2c, d) some
taxonomically relevant bias due to biomineralisation or di-
agenetic environment but this bias is unlikely to extend to
higher taxonomic units, and so we suggest that the fossil in-
vertebrate, vertebrate and plant taxa described here should
not be seen as a limit but rather taken as starting points for a
more detailed screening of fossil lineages by MR techniques.

Comparative evolutionary studies – especially between
closely related species, of which only one exhibits a particu-
lar trait of interest, while the other does not – have proven
useful in and now form the core of most if not all bio-
logical disciplines. Palaeontological investigations, specifi-
cally, could profit from comparative studies including extant
species, thereby complementing the existing knowledge with
anatomical and dynamic details concerning processes like
post mortem tissue decay (Weigelt, 1927) andin vivo cellular
metabolic activities like biomineralisation (e.g. Freytet et al.,
1996; Levi et al., 1998; Kolo and Claeys, 2005) as well as
embryological development (Xiao, 2002), amber formation
(Schmidt and Dilcher, 2007) or locomotion (Gatesy et al.,
1999). For all these applications, suitable MR techniques are
now in place (e.g. Ciobanu et al., 2003; Manz et al., 2003;
Müller et al., 2006; Lee et al., 2006, 2007; Honda and Hata,
2007). This versatility of MR techniques, along with their
non-invasiveness, renders them a very promising tool for
such comparative investigations (e.g. Hopkins and Rilling,
2000; Spoor et al., 2000; Glidewell et al., 2002).

Ongoing developments in MR technology (Glover and
Mansfield, 2002) and the ever wider availability of high-field
imaging facilities suggest that MRI will continue to help by-
pass and circumvent current methodological limitations and
to generate more applications in the geosciences (Carlson,
2006) and neighbouring fields. As an example, consider
portable NMR devices (Eidmann et al., 1996; Prado, 2003;
Blümich et al., 2002; Manz et al., 2006; Marble et al., 2006;
Marko et al., 2007; McDonald et al., 2007) which opened
up the possibility to examine samples on the spot, be it in

the field or in archives. While these devices are currently
far from capable of producing images comparable to those
presented here, the characteristic relaxation parameters or
spectral fingerprints they already can measure could become
a valuable non-invasive categorisation tool when screening
rock samples for embedded fossils.

6 Conclusions

The data presented here demonstrate that MR imaging allows
micromorphological details within intact fossils to be studied
non-invasively at resolutions down to 50 µm, i.e. compara-
ble to those of CT images and well below the 100 µm that
“would be satisfactory [. . .] for a majority of researchers and
for most applications” (Lyons et al., 2000), at least after the
Cambrian explosion. The intrinsic MR signal used to acquire
the images appears to originate from mobile yet not diffusible
water molecules, while the range of specimens suitable for
MRI has been extended beyond liquid-filled mouldic or cav-
ernous fossils (Sebes et al., 1991; Steiger, 2001; Clark et al.,
2004) and pathological belemnites (Mietchen et al., 2005),
so that it now comprises invertebrate, vertebrate and plant
specimens obtained from a variety of sites. Moreover, af-
ter MRI scanning, all other palaeontological investigations
still remain possible – which is not necessarily true in the
opposite case. It should be noted that the digital availabi-
lity of MRI data (as with CT and other modalities; cf. Zol-
likofer and Ponce de Ĺeon, 2005) renders them ideal for ap-
plications like computational morphology (Bookstein, 1996)
or rapid prototyping (Zollikofer and Ponce de Léon, 1995)
which have a high potential not only in research but also in
science education at school or in museums. Taken together,
the microscopic resolution currently achieved with MR tech-
niques, their non-invasiveness, the possibility to obtain taxo-
nomically relevant 3-D spatial as well as chemical informa-
tion, their potentially broad applicability and the multitude
of ongoing efforts to further improve them all suggest they
could open up complementary avenues for non-invasive ap-
proaches to a wide range of palaeobiological issues.
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Gothan, W.:Über die merkẅurdigen feigenartigen Kieselknöllchen
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Lagersẗatte, Palaeontol. Electron., 4, 1, http://palaeo-electronica.
org/20011/s2/issue101.htm, 2001.

Sutton, M. D., Briggs, D. E. G., Siveter, D. J., and Siveter, D. J.:
Silurian brachiopods with soft-tissue preservation, Nature, 436,
1013–1015, 2005.

Tafforeau, P., Boistel, R., Boller, E., Bravin, A., Brunet, M.,
Chaimanee, Y., Cloetens, P., Feist, M., Hoszowska, J., Jaeger,
J. J., Kay, R., Lazzari, V., Marivaux, L., Nel, A., Nemoz, C.,
Thibault, X., Vignaud, P., and Zabler, S.: Applications of X-ray
synchrotron microtomography for non-destructive 3D studies of
paleontological specimens, Appl. Phys. A, 83, 195–202, 2006.

Treibs, A.: Chlorophyll und Ḧaminderivate in bitumin̈osen
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