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Abstract. While we now know that N2 fixation is a signifi-
cant source of new nitrogen (N) in the marine environment,
little is known about the fate of this N (and associated C),
despite the importance of diazotrophs to global carbon and
nutrient cycles. Specifically, does N fixed during N2 fixation
fuel autotrophic or heterotrophic growth and thus facilitate
carbon (C) export from the euphotic zone, or does it con-
tribute primarily to bacterial productivity and respiration in
the euphotic zone? ForTrichodesmium, the diazotroph we
know the most about, the transfer of recently fixed N2 (and C)
appears to be primarily through dissolved pools. The release
of N varies among and within populations and as a result
of the changing physiological state of cells and populations.
The net result of trophic transfers appears to depend on the
co-occurring organisms and the complexity of the colonizing
community. In order to understand the impact of diazotro-
phy on carbon flow and export in marine systems, we need
a better understanding of the trophic flow of elements inTri-
chodesmium-dominated communities and other diazotrophic
communities under various defined physiological states. Ni-
trogen and carbon fixation rates themselves vary by orders
of magnitude within and among studies ofTrichodesmium,
highlighting the difficulty in extrapolating global rates of N2
fixation from direct measurements. Because the stoichiom-
etry of N2 and C fixation does not appear to be in balance
with that of particles, and the relationship between C and N2
fixation rates is also variable, it is equally difficult to derive
global rates of one from the other. This paper seeks to synthe-
size what is known about the fate of diazotrophic production
in the environment. A better understanding of the physiol-
ogy and physiological ecology ofTrichodesmium and other
marine diazotrophs is necessary to quantify and predict the
effects of increased or decreased diazotrophy in the context
of the carbon cycle and global change.

Correspondence to: M. R. Mulholland
(mmulholl@odu.edu)

1 Introduction

Although we now know that dinitrogen (N2) fixation is a sig-
nificant source of new nitrogen (N) fueling primary produc-
tion in the marine environment (sensu Dugdale and Goer-
ing, 1967), little is known about the fate of this production,
whether it is exported or stimulates remineralization (e.g.,
Eppley and Peterson, 1979), despite the importance of di-
azotrophs to global carbon and nutrient cycles (Karl et al.,
2002; LaRoche and Breitbarth, 2005). A variety of ma-
rine cyanobacteria and bacteria are now known to fix N2
in marine environments, however,Trichodesmium spp. re-
main the most studied and most quantitatively significant
pelagic nitrogen fixer based on available information.Tri-
chodesmium spp. occur throughout the subtropical and trop-
ical ocean where they can represent up to half of the primary
production (Carpenter et al., 2004). Based on direct rate mea-
surements,Trichodesmium accounts for a quarter to half of
geochemically derived estimates of marine N2 fixation (Ma-
haffey et al., 2005). In addition toTrichodesmium, pelagic
nitrogen fixers include other filamentous cyanobacteria, uni-
cellular cyanobacteria, bacterioplankton, and cyanobacterial
endosymbionts (Carpenter et al., 1999; Zehr et al., 2001;
Montoya et al., 2004; Carpenter and Capone, 2007).

Global estimates of N2 fixation and possible controls on
marine N2 fixation, at least byTrichodesmium, have been re-
cently summarized and reviewed (LaRoche and Breitbarth,
2005; Mahaffey et al., 2005; Carpenter and Capone, 2007)
and so will not be re-reviewed here. Growth rates of these
organisms vary by orders of magnitude as do rates of N2
and carbon fixation (see Mulholland et al., 2006) and rea-
sons for this variability are not well understood. Inputs of N
and carbon (C) via diazotrophic growth have been measured
directly or extrapolated in a variety of systems, however, the
quantification of loss terms for N and C (e.g., export) are
poorly constrained.Trichodesmium are rarely found in sedi-
ment traps and are positively buoyant (Walsby, 1992) and so
sinking appears to be a minor loss term compared with cell
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38 M. R. Mulholland: Fate of N and C from N2 fixation

lysis (Ohki, 1999; Hewson et al., 2004), extracellular release
(Capone et al., 1994; Glibert and Bronk, 1994; Mulholland et
al., 2004a), and grazing (O’Neil et al., 1996; O’Neil, 1999),
each of which are discussed below. These observations sug-
gest that material produced by diazotrophs may be primarily
recycled in the surface ocean, unless there is another, as-yet
unidentified pathway to export surface N fluxes due to dia-
zotrophy to depth. In this paper, the fate of primary produc-
tion from diazotrophy will be reviewed based on collected
observations (published and not yet published) of N2 fixa-
tion and associated carbon fixation rates, N and C release,
and trophodynamics associated with nutrient cycling.

2 N2 fixation

Pelagic N2 fixation is an important source of new N to other-
wise oligotrophic marine systems. The most widely studied
pelagic marine diazotrophs,Trichodesmium spp., play a piv-
otal role in marine elemental cycles in otherwise oligotrophic
tropical and subtropical seas (Capone et al., 1997; Karl et al.,
2002; LaRoche and Breitbarth, 2005). Globally, based on
direct measurements, oceanic N2 fixation byTrichodesmium
has been estimated to be 60 (Mahaffey et al., 2005) to 80 Tg
N year−1 (Capone and Carpenter, 1999), and represents up-
wards of 50% of the new production in some oligotrophic
tropical and subtropical oceans (Karl et al., 1997; Capone et
al., 2005; Mahaffey et al., 2005). Based on observed and
derived N2 fixation rates byTrichodesmium, N2 fixation by
these species alone is comparable in magnitude to the esti-
mated diffusive nitrate flux across the base of the euphotic
zone in tropical and subtropical systems (Karl et al., 1997;
Capone, 2001; Capone et al., 2005).

However,Trichodesmium still represent only 40 to 59%
of the geochemically inferred N2 fixation for the North At-
lantic and Pacific (Mahaffey et al., 2005). The recent discov-
eries of diazotrophic unicellular cyanobacteria and bacterio-
plankton in marine systems (e.g., Zehr et al., 2001; Falcón
et al., 2004; Montoya et al., 2004) suggest that there are ad-
ditional sources of N2 fixation that may yet reconcile mea-
surements with geochemically predicted rates of N2 fixation
in the ocean. Although, the full range of diazotrophic ma-
rine organisms is as yet, unknown, it is thought that unicel-
lular diazotrophs may contribute up to 10% of global new
production (Montoya et al., 2004).Richelia intracellularis,
an endosymbiotic cyanobacterium that can inhabit a diverse
group of diatoms, fixes significant amounts of nitrogen where
diatom/Richelia associations occur (Carpenter et al., 1999).
Based on the available rate measurements and regional and
global abundance estimates in the euphotic zone, endosym-
biotic and free-living unicellular cyanobacteria and bacteria
are now believed to fix at least as much nitrogen asTri-
chodesmium in the ocean (Table 1; Carpenter et al., 1999;
Zehr et al., 2001; Montoya et al., 2004). As a result, recent
estimates for total pelagic marine N2 fixation are now be-

tween 100 and 200 Tg N year−1 (Karl et al., 2002; Galloway
et al., 2004).

Extrapolation of N2 fixation rates made in laboratory or
field populations ofTrichodesmium to the world’s ocean can
yield a wide range of global marine N2 fixation rates. For ex-
ample, rates of N2 fixation byTrichodesmium from field pop-
ulations vary by six orders of magnitude (LaRoche and Bre-
itbarth, 2005; Mulholland et al., 2006). Laboratory estimates
vary only by about 4 orders of magnitude, but still, which
rates do we choose for our global estimate? Based on labora-
tory studies, rates of N2 fixation vary with environmental fac-
tors and according to physiological state (e.g., Mulholland et
al. 1999, 2001; Mulholland and Capone, 2001; Mulholland
and Bernhardt, 2005; Breitbarth et al., 2006; Hutchins et al.,
2007) and yet the physiological state of natural populations is
impossible to assess at the time of sampling. It is thought that
rates of N2 fixation and growth byTrichodesmium are limited
by phosphorus (P), iron (Fe), or light (Sañudo-Wilhelmy et
al., 2001; Mills et al., 2004; Fu et al., 2005; Mulholland and
Bernhardt, 2005). However, the range of responses to these
variables and their interactions is unknown (Mulholland and
Bernhardt, 2005).

Besides real physiological variability, rates vary depend-
ing on the method used to estimate N2 fixation. The two
most commonly used methods are the acetylene reduction
method and15N2 uptake; the former measures gross N2 fixa-
tion and the latter measures net N2 uptake into biomass (Gal-
lon et al., 2002; Mulholland et al., 2004, 2006). The acety-
lene reduction method relies on a conversion factor to convert
moles of acetylene to moles N2 reduced and the value of this
conversion factor has been a matter of debate (see Capone,
1993; Mulholland et al., 2004, 2006; LaRoche and Breit-
barth, 2005). Paired comparisons between the two meth-
ods used to calibrate one against the other demonstrate that
the ratio between acetylene reduction and N2 uptake varies
widely both within and among systems and studies (Table 2).
Consequently, we are left with an unsatisfying set of data
with which to make direct estimates of global N2 fixation.

In addition to extrapolations from direct measurements of
N2 fixation rates, global estimates of marine N2 fixation have
been inferred based on geochemical arguments that rely on
elemental stoichiometry of particles and dissolved nutrients
in the ocean (see Mahaffey et al., 2005, for a more com-
plete discussion). There are limitations to both of these ap-
proaches, however, because of methodological constraints
and the physiological peculiarities of the dominant marine
N2 fixer, Trichodesmium, discussed below. The physiology
of more recently identified N2 fixers is still being elucidated
and so it is premature to speculate on how these groups may
influence estimates of global new production and carbon ex-
port.
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M. R. Mulholland: Fate of N and C from N2 fixation 39

Table 1. Ranges of water column N2 fixation rates. Rates are presented as hourly rates because it is unclear whether N2 fixation by unicellular
diazotrophs exhibits diel periodicity. For comparison, rates of N2 fixation byTrichodesmium range from<0.01 to 2.14 nmol N col−1 h−1

(N2 fixation is confined to the light period) and colony abundance can range from<1 to>1000 colonies L−1 (Mulholland et al., 2006).

Date Location Depth N2 fixation Method Reference
(nmol L−1h−1)

2001–2003 Gulf of Mexico Surface 0.011–0.23 15N2 Mulholland et al. (2006)
2003 Gulf of Mexico Pigment maximum 0.044–0.063 15N2 Mulholland et al. (2006)
2002 New Caledonia Surface 0.23–0.85 15N2 Mulholland et al. (2006)
2002 N Atlantic 25 m (nighttime) ∼0.147 AR Falcon et al. (2004)
2001 N. Atlantic Upper 100 m 0.025–0.045 15N2 Falcon et al. (2004)
2002 N Pacific Upper 100 m (nighttime) ∼0.003 AR Falcon et al. (2004)
2000–2001 Station ALOHA &

Kaneohe Bay
25 m & Surface 0.01–0.15 15N2 Montoya et al. (2004)

2002 Eastern N. Pacific Mixed layer & pigment maximum 0.047–1.85 (0.72)15N2 Montoya et al. (2004)
1999 Arafura Sea Pigment maximum 20–62 15N2 Montoya et al. (2004)
2000 Station ALOHA 25 m 0.010–0.016 15N2 Zehr et al. (2001)
2002 Tropical Atlantic Upper 100 m up to 3.1 15N2 Voss et al. (2004)
2000–2001 Station ALOHA Upper 100 m 0–0.09 15N2 Dore et al. (2002)1

1Converted from daily rate assuming N2 fixation persisted for 24 h per day.

3 Carbon fixation

Global estimates of carbon fixation by marine diazotrophs
based on direct measurements have not been attempted to the
author’s knowledge. There are few published estimates of
carbon fixation (compared to N2 fixation) byTrichodesmium
and global carbon fixation by this genus is generally esti-
mated by multiplying the nitrogen fixation rate by some av-
erage C:N forTrichodesmium biomass. Modeling results as-
sume N2 fixation equals denitrification, which corresponds
to 480–960 Tg C year−1 (Mahaffey et al., 2005). Fortunately,
the C:N ratio ofTrichodesmium biomass, unlike the N:P ra-
tios, falls within a narrow range (4.7 to 7.3; LaRoche and
Breitbarth, 2005) with an average value of 6.3, very near the
Redfield ratio (6.6). Unfortunately, as for N2 fixation, di-
rect rate measurements of carbon fixation and carbon specific
turnover times byTrichodesmium vary by orders of magni-
tude (Mulholland et al., 2006). Further, there is no consis-
tent stoichiometric relationship between the ratio of C to N2
fixation (Table 3). Available paired estimates of N2 and C
fixation suggest that in general, C:N fixation ratios far ex-
ceed the C:N ratio of cells (see also Mulholland et al., 2006).
Consequently, geochemical estimates that rely on elemental
stoichiometry to extrapolate N2 fixation from observations
of carbon drawdown or the carbon cycle in general may be
grossly in error (Mahaffey et al., 2005). For example, at
the Bermuda Atlantic Time-Series Study (BATS) site, the
observed rates of C drawdown were much higher than that
which can be accounted for based on the observed rates of
N2 fixation and Redfield stoichiometry. However, when the
average observed ratio of carbon to N2 fixation rates mea-

sured at BATS (C:N2 fixation rates of 128) were used, the
observed low rates of N2 fixation could indeed account for
the observed carbon drawdown at BATS (Orcutt et al., 2001).
Interestingly, the extrapolation of N2 fixation rates necessary
to close C budgets may be seriously biased (overestimated) if
the actual rate relationships between N2 and carbon fixation
are NOT considered. The relationship between N and P may
be even more complex.

There are a variety of reasons why there may be higher-
than-stoichiometrically-expected carbon to N2 fixation ra-
tios in nature. These include: factors resulting in underesti-
mates of N2 fixation rates and rationalizations as to whyTri-
chodesmium may have unusually high carbon fixation rates.
Regarding the former, gross N2 fixation rates can be underes-
timated in15N2 incubations if there is substantial N release
(Glibert and Bronk, 1994; Mulholland et al., 2004a, 2006;
see Sect. 4 below) or gross N utilization may be underesti-
mated if alternative N sources are taken up (Mulholland and
Capone, 1999; Mulholland et al., 1999a, b). On the other
hand, carbon fixation rates may be stoichiometrically higher
than expected, based on the elemental ratio of cells, if car-
bon is used as ballast for vertical migration (Villareal and
Carpenter, 1990; Romans et al., 1994; Gallon et al., 1996),
if substantial carbon is excreted as mucilage or extracellular
polymeric substances (Stal, 1995; Sellner, 1997), to support
the high observed respiration rates byTrichodesmium (Kana,
1993; Carpenter and Roenneberg, 1995), or if cells “over-
fix” carbon to support Mehler reactions to reduce cellular
oxygen concentrations or support the production of ATP
(Kana, 1992, 1993). Kana (1993) estimated that 48% of
gross photosynthetic electron flow went to oxygen reduction.

www.biogeosciences.net/4/37/2007/ Biogeosciences, 4, 37–51, 2007



40 M. R. Mulholland: Fate of N and C from N2 fixation

Table 2. Results from paired comparisons of C2H2:N2 measurements. Numbers are reported as molar ratios and N release is estimated as
the observed molar ratio minus the theoretical ratio (3) divided by the observed molar ratio.

Location C2H2:N2 (molar ratio) Average N release Reference
Range Average %

Trichodesmium:
Gulf of Mexico 3.3–15.8 7.3 52 Mulholland et al. (2006)
North Atlantic (latitudinal gradient) –
Aug

3.1–7.5 4.6 29 Mulholland et al. (unpublished data)

North Atlantic (latitudinal gradient) –
March

6.3–52.7 28.3 79 Mulholland et al. (unpublished data)

North Atlantic 0.9–7.3 3.6 17 Capone et al. (2005)
Sargasso Sea 6.0 50 Carpenter and McCarthy (1975)
Sargasso Sea 6.3 52 Carpenter and Price (1977)
Sargasso Sea 2.9 Scranton (1984)
Sargasso Sea
Caribbean and Sargasso Seas 4.1 27 Scranton et al. (1987)
Caribbean Sea 7.2 Carpenter and Price (1977)
Caribbean Sea 3.4 12 Glibert and Bronk (1994)
BATS (net tows) 4.9 39 Orcutt et al. (2001)
BATS (SCUBA) 1.4 Orcutt et al. (2001)
BATS 3.0 Orcutt et al. (2001)
North Pacific 1.9 Mague et al. (1977)
Bay of Bengal & South China Sea 3–10 2.9 Saino (1977)
New Caledonia lagoon – S. Pacific 4.8–19.5 21–97 Mulholland et al. (unpublished data)
Trichodesmium IMS101 (batch) 1.7–9.8 5.6 46 Mulholland et al. (2004a)
Trichodesmium IMS101
(continuous)

3.0–22.2 11.4 74 Mulholland and Bernhardt (2005)

Trichodesmium IMS101
(semi-continuous) – morning

4.9–14.9 8.9 59.7 Hutchins et al. (2007)

Trichodesmium IMS101
(semi-continuous) – afternoon

14.3–45.6 23.5 81.6 Hutchins et al. (2007)

Trichodesmium GBRTRLI101 –
afternoon

8.8–24.9 16.7 76.5 Hutchins et al. (2007)

Other marine cyanobacteria:
Rhizosolenia/Richelia association 9.3 Mague et al. (1974)
Mixed cyanobacteria –
Nodularia spumigena/Anabaena/
Aphanizomenon

3.8–20 Gallon et al. (2002)

Aphanizomenon spp. 4.7 Montoya et al. (1996)

Trichodesmium also make poly-beta-hydroxybutyric acid as
a storage product (Siddiqui et al., 1992) and this may be im-
portant in carbohydrate ballasting (Romans et al., 1994) but
would require additional cellular carbon reserves. In addition
to these physiological reasons why carbon might be “over-
fixed” relative to nitrogen, active release of carbon com-
pounds and photosynthate has been observed and will be dis-
cussed below in Sect. 5. Alternatively, N and C uptake may
not be tightly coupled in diazotrophic cyanobacteria (Gallon
et al., 2002).

An interesting genomic finding is thatTrichodesmium ery-
thraeum is unusual among cyanobacteria in that it lacks
any genes encoding known high-affinity carbon concentrat-

ing mechanisms (Badger and Price, 2003). While it is not
clear how this affects photosynthetic C acquisition byTri-
chodesmium, it suggests this species is vulnerable to C lim-
itation. Continuous carbon fixation or storage of fixed car-
bon compounds, even in excess of their growth requirements,
may protect them from carbon limitation in nature. Although
carbon limitation has not been demonstrated for these species
in nature, the interiors ofTrichodesmium colonies have been
shown to exhibit oxygen dynamics that may be important for
aerobic N2 fixation (Paerl and Bebout, 1988; Carpenter et al.,
1990; Gallon, 1992).

Although the ultimate biogeochemical fate of
Trichodesmium-fixed elements is not fully understood

Biogeosciences, 4, 37–51, 2007 www.biogeosciences.net/4/37/2007/
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Table 3. Paired comparisons of C and N2 fixation.

Location C:N2 fixation Reference
Range Average

Trichodesmium:
Gulf of Mexico 5.4–42.7 13.1 Mulholland et al. (2006)
New Caledonia (lagoon) – morning 3.7–51.3 Mulholland et al. (unpublished data)
North Atlantic (latitudinal gradient) –
Aug

11.0–30.6 20.1 Mulholland et al. (unpublished data)

North Atlantic (latitudinal gradient) –
March

5.2–22.4 12.8 Mulholland et al. (unpublished data)

North Pacific 1.2–2.1 Mague et al. (1977)
Sargasso Sea 16 Carpenter and Price (1977)
Sargasso Sea 1.5–87 McCarthy and Carpenter (1979)
BATS (puffs) 13–437 128 Orcutt et al. (2001)
BATS (tufts) 15–703 198 Orcutt et al. (2001)
N. Atlantic (May–June 1994) 47.1 Carpenter et al. (2004); Capone et al. (2005)
N. Atlantic (April 1996) 37.7 Carpenter et al. (2004); Capone et al. (2005)
N. Atlantic (October 1996) 24.6 Carpenter et al. (2004); Capone et al. (2005)
Indian Ocean (Tanzania) 20 Lugomela et al. (2002)1

Trichodesmium IMS101 (batch) 4.6–132.5 28 Mulholland and Capone (2001)2

Trichodesmium IMS101 (batch) 6.5–15.2 9.6 Mulholland and Capone (2001)3

Trichodesmium IMS101 (continuous) 13.4–20.0 Mulholland and Bernhardt (2005)4

Trichodesmium IMS101
(semi-continuous) – morning

3.2–10.0 5.4 Hutchins et al. (2007)

Trichodesmium IMS101
(semi-continuous) – afternoon

Hutchins et al. (2007)

Trichodesmium GBRTRLI101 2.0–12.4 6.5 Hutchins et al. (2007)

Other marine cyanobacteria:
Hemiaulus/Richelia association 12.5 Carpenter et al. (1999)5

Mixed cyanobacteria –Nodularia spumi-
gena/Anabaena/Aphanizomenon

17.6 (0–7 m)
5.1 (7–14 m)
1.5 (14–21 m)

Gallon et al. (2002)

1Using study averages and recalculating with a conversion factor of 3:1.
2Mid-day estimate during exponential growth.
3Cumulative estimate over a growth or diel cycle. Ratio increased during stationary phase growth.
4Lower at faster growth rates.
5Calculated using average N2 fixation rate of 0.2 mg N m−3 h−1 and average C fixation rate at bloom stations of 2.14 mg C m−3 h−1

(Mahaffey et al., 2005; Mulholland et al., 2006), any
fraction of new production from diazotrophy that is exported
(e.g., Eppley and Peterson, 1979) to underlying waters will
contribute to sequestering atmospheric carbon and so it is
important that we gain a better understanding of the coupled
N and C cycles for these organisms.

4 N release

Trichodesmium spp. can fix N2 at high rates, thereby intro-
ducing new nitrogen into nutrient impoverished areas of the
tropical and subtropical ocean. BecauseTrichodesmium also
release fixed N as bioavailable dissolved organic N (DON)
(Glibert and Bronk, 1994; Capone et al., 1994), and am-

monium (Mulholland and Capone, 2001; Mulholland et al.,
2004a), they may route recently fixed N through a recycling
loop. Elevated NH+4 and/or DON concentrations have been
observed in and aroundTrichodesmium blooms in the Ara-
bian Sea (Devassy et al., 1978, 1979), Pacific Ocean (Karl
et al., 1992, 1997), the Gulf of Mexico (Lenes et al., 2001),
along the coast of Australia (Glibert and O’Neil, 1999) and
in agingTrichodesmium cultures (Mulholland and Capone,
2001). However, accumulation of dissolved organic mat-
ter (C or N) is not always observed or predicted, even in
areas such as the Sargasso Sea, near the Bermuda Atlantic
Time-series Study site (BATS) (Hansell and Carlson, 2001;
Hood et al., 2001; Knapp et al., 2005), where N2 fixation
is suspected to be high based on geochemical arguments

www.biogeosciences.net/4/37/2007/ Biogeosciences, 4, 37–51, 2007



42 M. R. Mulholland: Fate of N and C from N2 fixation

(Michaels et al., 1996; Gruber and Sarmiento, 1997). Nu-
trient concentrations within and around blooms may not al-
ways be high if the released N is rapidly taken up by organ-
isms growing on and around colonies (e.g., see Sellner, 1992,
1997), or by organisms co-occurring in the water column,
as has been observed in the Gulf of Mexico (Mulholland et
al., 2004b, 2006). In the Baltic Sea, blooms of diazotrophic
cyanobacteria (Nodularia andAphanizomenon) were shown
to contribute N to picoplankton production (Ohlendieck et
al., 2000).

In addition to direct release of labile N, viral cell lysis
(Ohki, 1999; Hewson et al., 2004), grazing (O’Neil et al.,
1996), and cell death (Berman-Frank et al., 2004) may con-
tribute dissolved or particulate N to the available N pool.
Ohlendieck et al. (2000) demonstrated that direct release
of N was important during the early stages of cyanobac-
terial blooms while release due to lysing and decay was
more important during later blooms stages.Trichodesmium
biomass may be degraded via bacterial activity and extracel-
lular enzymes thereby rendering large organic compounds
into smaller utilizable compounds (Sieburth and Conover,
1965; Paerl et al., 1989; Nausch, 1996).

N release fromTrichodesmium was first suggested by
Devassy et al. (1978) who observed substantial enrichment of
phosphate, nitrate and ammonium within, during, and after
Trichodesmium blooms and relative to non-bloom sites or at
times prior to blooms. Based on changes in nutrient concen-
trations within incubations, Devassy et al. (1978) estimated
1.5µmol N (as inorganic N) and 6.8µmol inorganic P were
released per g ofTrichodesmium. These authors also sug-
gested that these release rates would have been much higher
if DOP, urea and amino acids had been measured.

In general, N release has been difficult to estimate using
isotopic tracer or other methods for a number of reasons:
1) release products may be diverse and so it is often diffi-
cult to isolate and measure all relevant dissolved pools, 2)
release products are rapidly taken up by organisms in olig-
otrophic environments, and 3) intracellular pools of inter-
mediate metabolites can accumulate before their release for
variable amounts of time thus making it impossible to mea-
sure isotopically-labeled products in short incubations. To
get around these problems, it has been suggested that the
difference between net and gross N2 fixation measured us-
ing 15N2 uptake and acetylene reduction techniques, respec-
tively, might be a good metric of N release (Gallon et al.,
2002; Mulholland et al., 2004a, 2006).

High N release rates would seem to argue for high cellu-
lar N turnover, however, if N is released prior to its assimi-
lation into biomass, this would contribute to gross N2 fixa-
tion (e.g., reduction of N2 to NH+

4 ) but not net uptake into
biomass. In numerous paired comparisons between acety-
lene reduction and15N2 uptake, ratios of acetylene (C2H2)

reduced to N2 taken up have varied by at least an order of
magnitude (Table 2). Because C2H2 reduction measures just
the reduction step, it is a measure of gross N2 fixation while

movement of15N2 from the dissolved to the particulate pool
measures net N assimilation (see Gallon et al., 2002; Mulhol-
land et al., 2004a, 2006; Mulholland and Bernhardt, 2005).
Release of recently fixed N2 and the difficulty in chemically
recovering all possible dissolved pools into which products
of N2 fixation might be released, may make intercalibration
between the two methods impossible. However, the differ-
ence between N2 reduction (gross N2 fixation) and net N2
assimilation may prove to be an excellent index of the re-
lease of recently fixed N2 (Gallon et al., 2002; Mulholland et
al., 2004a, 2006; Mulholland and Bernhardt, 2005). If this
is the case, and the theoretical ratio, three, is assumed to be
correct (although this itself is a subject of debate; see Mul-
holland et al., 2006, for a discussion of this assumption) in
estimating N2 fixation from C2H2 reduction, paired compar-
isons in which C2H2:N2 reduction ratios of approximately
3:1 are observed, would indicate no N release while C2H2:N2
reduction ratios of six would translate into a release rate of
about 50%, and so on. Examining paired comparisons of
C2H2 reduction and15N2 uptake from recent studies and the
literature (Table 1), rates of release of recently fixed N can
be compared across systems and with respect to temperature.
Results demonstrate that release rates are highly variable on
a variety of temporal and spatial scales. Release rates ap-
peared to be high in populations collected from a South Pa-
cific lagoon, varied seasonally in the North Atlantic along a
latitudinal gradient, and on a daily and interannual basis in
the Gulf of Mexico (Table 2). In cultures, release rates var-
ied with the growth rate (Mulholland and Bernhardt, 2005)
and with the time of day (Table 2). Based on various studies
where15N2 and acetylene reduction were compared directly,
it appears that N release fromTrichodesmium is common
but varies with physiological state (Mulholland et al., 2004a;
Mulholland and Bernhardt, 2005) and among environments
(Table 2 and references therein). One paired comparison is
available for a diatom/Richelia association (Table 2; Carpen-
ter et al., 1999) and suggests that there was N release from
N2 fixation for this association as well. No published paired
comparisons of C2H2:N2reduction for unicells are available
and so release by these organisms cannot be assessed at this
time.

While there have been observations thatTrichodesmium
release recently fixed N2 as DON in natural populations
(Capone et al., 1994; Glibert and Bronk, 1994) and as NH+

4
in cultures ofTrichodesmium IMS101 (Mulholland et al.,
2004a; Mulholland and Bernhardt, 2005) it is unclear why
cells do this or whether they do so all the time. Previous spec-
ulation suggested that this is a mechanism for the extracellu-
lar transfer of fixed N between cells that fix N2 and those that
do not have that capability (Mulholland and Capone, 1999,
2000). Another possible fate for released N is co-occurring
organisms (O’Neil et al., 1996; Mulholland et al., 2004b,
2006). Release rates averaged about 52% of the recently
fixed N2 or 0.29 nmol col−1 h−1 in a recent study in the Gulf
of Mexico (Mulholland et al., 2006), and much of this may
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have fueled production of co-occurring phytoplankton (Mul-
holland et al., 2004b). In diatoms, it has been suggested that
nitrate uptake in excess of their nutritional requirements may
act as a sink for electrons when there are transient imbalances
between light energy harvesting and photosynthetic carbon
assimilation (Lomas and Glibert, 1999; Lomas et al., 2000).
These authors speculate that imbalances between these pro-
cesses, and associated release of dissolved N, occur when
cells shift from high to low temperature or low to high irradi-
ance.Trichodesmium tend to occur in tropical and subtrop-
ical oligotrophic gyres where the water column and surface
water temperatures are relatively stable. However, they are
also known to form surface accumulations or “slicks” dur-
ing which exposure irradiances are quite high and release of
dissolved substances also high (e.g., Sieburth and Conover,
1965).

N release from cellular material can also be mediated
through cell lysis. Viruses and a lytic cycle have been ob-
served in natural populations and cultures ofTrichodesmium
(Ohki, 1999). Hewson et al. (2004) estimated lysis rates of
0.3 to 6.5% trichomes d−1, representing a release of 3 to 65%
of the production forTrichodesmium growing at 0.1 d−1.
While these authors report this as 3 to 65% of recently fixed
N d−1, this also applies to C (see below). At an average
rate of 43 pmol N fixed trichome−1 d−1, this represents a re-
lease rate of 1.3 to 28 pmol trichome−1 d−1 or (using an av-
erage colony size of 100 trichomes col−1) 13 to 280 pmol
col−1 d−1. These estimates agree well with the mortality
rates calculated forTrichodesmium at BATS and in the equa-
torial Atlantic (2.1 to 2.5% d−1; Hood et al., 2001, 2004).

5 C release

Dissolved organic N contains C and so it is therefore log-
ical to assume thatTrichodesmium also release substantial
amounts of photosynthetic products as dissolved organic car-
bon (DOC). In fact, Shimura at al. (1978) first quantified the
extracellular release of photosynthate in14C incubations and
calculated that about 8% of the total photosynthetic products
were released during incubation experiments (range 0–18%).
Similarly, Gallon et al. (1996) estimated that DOC excretion
by Trichodesmium in the western North Atlantic and east-
ern Caribbean Sea represented 7% of the primary produc-
tivity, and, as for N, the amount of C released changed de-
pending on light conditions and the physiological status of
cells. More recently, Renaud et al. (2005) estimated a much
lower value (1%) for DOC release byTrichodesmium. How-
ever, they suggested that tight coupling between organisms in
the Trichodesmium consortium might cause underestimates
of actual release rates. Thus, the same methodological limi-
tations that make it difficult to estimate N release from tracer
studies make it difficult to make estimates of C release; just
as15N2 uptake can underestimate gross N2 fixation, 14C (or

13C) incorporation can underestimate the gross rate of pho-
tosynthetic carbon fixation (Gallon et al., 2002).

Cyanobacteria release compounds such as glycolate (Ren-
ström-Kellner et al., 1989) and amino acids (Capone et al.,
1994). Amino acid release as glutamine and glutamate (mo-
lar C:N ratios of 5:2 and 5:1, respectively) represented only
3% of the C fixed byTrichodesmium (Capone et al., 1994).
However,Trichodesmium have a carbohydrate mucoid ma-
trix, which is colonized by other organisms (Stal, 1995; Sell-
ner, 1997; Sheridan et al., 2002) and so there is a con-
stant production of glucose- and mannose-rich mucilage that
could account for more DOC release (e.g., Sellner, 1997).
Cyanobacteria in general can exude as much as 80% of the
CO2 they fix as extracellular polymeric substances (mainly
polysaccharides) (Sellner, 1997).

Production of colored dissolved organic matter (CDOM)
by Trichodesmium has recently been observed (Steinberg et
al., 2004). Production of DOC ranged from 0.04 to 0.32µg
C col−1 h−1. Assuming an average of 11.3µg C col−1 (Mc-
Carthy and Carpenter, 1979), this represents between 0.4 and
2.8% h−1 or up to 67% d−1, although it is unclear whether
this production is confined to the dark or light periods.
The CDOM had absorption spectra similar to microsporin-
like amino acids, compounds thatTrichodesmium are know
to have and serve in photoprotection (Subramaniam et al.,
1999).

Although globally we are interested in the fate of new pro-
duction from diazotrophy as a means to export C, little has
been done to quantify or characterize DOC release and its
fate fromTrichodesmium or other marine N2 fixers. Robust
isotopic and molecular tracers of diazotroph-derived DOC
have yet to be identified. If we are to extrapolate export from
production of N2 fixers, it will be important to determine the
primary pathways of C flow through these organisms.

6 Trophic interactions

It is impossible to discuss the fate of new production by di-
azotrophs without discussing trophic interactions. Colonies
of Trichodesmium provide stable “homes” for a numerous
and diverse association of organisms (Siddiqui et al., 1992;
Sellner, 1997; O’Neil, 1999; Sheridan et al., 2002). This
creates a complex microenvironment with multifarious path-
ways for internal nutrient cycling. Sheridan et al. (2002)
estimated that 85% ofTrichodesmium colonies were inhab-
ited by other organisms. Colonizing organisms include bac-
teria, other cyanobacteria, fungi, pennate and centric di-
atoms, heterotrophic and autotrophic dinoflagellates, chrys-
ophytes, ciliates, amoebae, hydroids, different life stages
of harpacticoid copepods and juvenile decapods. Bacteria
and dinoflagellates were the most common associates (Sheri-
dan et al., 2002). Despite the fact that colonies are rich
microenvironments, there is a variety of evidence suggest-
ing thatTrichodesmium themselves go largely ungrazed (see
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Fig. 1. Pathways of trophic transfer promoting(A) sinking flux and(B) carbon flow through a microbial loop with no net carbon export.

below) and so viral cell lysis and decomposition are the likely
fates for many of these populations (nutrient accumulation),
and that the importance of higher trophic levels in processing
Trichodesmium biomass is minimal as compared to recycled
primary production and bacterial productivity.

Consistent with this idea is the observation that a vari-
ety of phytoplankton, bacteria, and higher trophic levels co-
occur or occur in the water column subsequent to blooms
of Trichodesmium spp. (Devassy, 1978, 1979; Revelante et
al., 1982; Furnas and Mitchell, 1996; Walsh and Steidinger,
2001; Mulholland et al., 2006). It is thought that these com-
munities are relieved from N limitation as a result of N re-
lease fromTrichodesmium.

Trichodesmium occur as variously sized and shaped ag-
gregates or colonies but also as free filaments or trichomes.
Large colonies may contain hundreds of trichomes. How-
ever, the average colony size and colony abundance can vary
from day to day (Devassy et al., 1978). Colonies take the
form of bundles with trichomes arranged in parallel (tufts) or
radially (puffs). Little is known about the causes of bundle
formation, but the distributions of free filaments and bundles
vary regionally and apparently with the degree of turbulence
(Bryceson and Fay, 1981; Mahaffey et al., 2005). The pur-
pose of bundle formation is also unclear, but there has been
speculation that it may be a behavioral strategy for minimiz-
ing the exposure of nitrogenase (an oxygen sensitive protein)
to oxygen (e.g., Paerl et al., 1989; Gallon, 1992). Regard-
less of the reasons colonies form, the trophodynamics ofTri-
chodesmium vary depending on morphology, the amount of
stable surface area, and interfilamental space available for
colonization.

There are few direct measurements of the trophic trans-
fer of recently fixed N or C throughTrichodesmium. Bryce-
son and Fay (1981) first demonstrated that the trophic trans-
fer of recently fixed N2 might be important in communities

dominated byTrichodesmium and they subsequently demon-
strated isotopic enrichment in non-Trichodesmium size frac-
tions after incubation ofTrichodesmium and natural marine
communities with15N2. They did not have control incu-
bations to account for N2 fixation by smaller diazotrophic
cyanobacteria and bacterioplankton but, nevertheless, they
report enrichment in the 2 to 30µm and 0.2 to 2.0µm size
fractions (Bryceson and Fay, 1981). Subsequently, the only
other direct estimates of the trophic transfer of recently fixed
N2 demonstrated that up to 11% of recently fixed N2 was
transferred to non-N2 fixing cells in whole water samples
even in short (2 h) incubations (Mulholland et al., 2004b).
This suggests thatTrichodesmium may support further pro-
ductivity in the upper water column and the growth of co-
occurring organisms, including heterotrophs, rather than a
substantial direct particle sinking flux (Fig. 1).

Despite the idea that dissolved nutrients may be the pri-
mary route of trophic transfer of recently fixed N2, isotopi-
cally “light” zooplankton have been collected from the tropi-
cal Atlantic (Montoya et al., 2002) and isotopically light sed-
iment trap material was collected under a station experienc-
ing aTrichodesmium bloom in the Indian Ocean (Capone et
al., 1998). In addition, lowδ15N values have been reported
in sediment trap material at both the Atlantic and Pacific time
series sites (Karl et al., 1997, 2002; Knapp et al., 2005), in-
dicating that recently fixed N2, which has an isotopic signa-
ture similar to atmospheric N, is being transferred to higher
trophic levels and leaving the euphotic zone.

In contrast, Brandes et al. (1998) suggested that material
derived from N2 fixation could also be remineralized in the
upper water column and hypothesized that the input of iso-
topically light N from N2 fixation was responsible for a light-
ening of the isotopic nitrate signal in surface waters above
the oxygen minimum zone in the Arabian Sea. Based on
excess N2 gas concentrations, Devol (2007) and Devol et
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al. (2006) have gone on to speculate that the particle rain
from diazotrophic production fuels denitrification in the oxy-
gen minimum zone there. These observations suggest that di-
azotrophic production can be remineralized in surface waters
fueling microbial production and complicating interpretation
of geochemical tracers such as stable isotope signatures and
N*.

6.1 Bacteria

Bacterial associates withTrichodesmium colonies have been
widely observed (Paerl et al., 1989; Nausch, 1996; Sheridan
et al., 2002; Renaud et al., 2005; Mulholland et al., unpub-
lished data).Trichodesmium colonies are inhabited by both
rod-shaped and filamentous bacteria, as are many other fil-
amentous cyanobacteria (Paerl et al., 1989). Bacterial as-
sociates also included heterotrophic N2 fixers, were located
around and within aggregates where they took up carbohy-
drates and amino acids.

Varying degrees of enrichment of bacteria have been found
on and around colonies. Nausch (1996) reported that bacte-
ria were 2 to 5 times higher on colonies ofTrichodesmium
than in the surrounding water, however, during her study,
Trichodesmium were not abundant, the water column was
turbulent, and colonies were small. At BATS, Sheridan et
al. (2002) report that bacteria were enriched on average 401
and 1709 times onTrichodesmium puffs and tufts, respec-
tively. Carpenter and Price (1977) found that up to 8.3% of
Trichodesmium were populated by bacteria in the Sargasso
Sea. So, it appears that there is high variability in the degree
of bacterial colonization ofTrichodesmium aggregates.

In terms of their productivity, Nausch (1996) found
thymidine incorporation to be enhanced in association with
colonies ofTrichodesmium relative to that of the water col-
umn and comparable to the enrichment found in marine
snow. However, because colony-associated bacterial abun-
dance was so much higher, when normalized per unit bac-
teria, thymidine incorporation associated with colonies ap-
peared to be lower than that measured in the surrounding wa-
ter. In the Gulf of Mexico, leucine incorporation increased
by up to 72% in association withTrichodesmium colonies
relative to the surrounding water column (Mulholland et al.,
unpublished data). Similarly, Tseng et al. (2005) found that
bacterial productivity and abundance were higher but pro-
ductivity per unit bacterial biomass was lower, in association
with Trichodesmium populations. In addition, they found
that populations became more autotrophic during times of
the year whenTrichodesmium was abundant (lower bacte-
rial productivity: primary productivity ratio). The authors
attribute this to N release and alleviation of competition be-
tween bacteria and phytoplankton for scarce NH+

4 . However,
they also note thatTrichodesmium occurred as free filaments
in the Kuroshio and therefore lacked harpacticoid grazer pop-
ulations and associated organisms observed in other commu-
nities (Tseng et al., 2005).

High rates of amino acid oxidase activity (Mulholland
et al., 1998; Glibert and O’Neil 1999), peptide hydroly-
sis (Mulholland et al. unpublished data), and hydrolytic
enzyme activity have also been found in association with
Trichodesmium colonies, suggesting bacteria and other or-
ganisms (e.g., phytoplankton and grazers) associated with
colonies actively cycle nutrients. Rates of enzyme activ-
ity in and around colonies in these studies were higher than
those observed in the surrounding water column reflecting
either more active or more abundant microbial communities.
Nausch (1996) calculated C and N release rates between 30.5
and 1086 ng C col−1 h−1 and 4.6 to 209 ng N col−1 h−1, re-
spectively, based on hydrolytic enzyme activities associated
with Trichodesmium colonies.

6.2 Phytoplankton

In some coastal systems, blooms of dinoflagellates and di-
atoms have been observed during and subsequent toTri-
chodesmium blooms (Devassy et al., 1978; Revelante et al.,
1982; Furnas and Mitchell, 1996). For example, Devassy et
al. (1979) found that as blooms ofTrichodesmium decayed,
Chaetoceras populations increased, followed by a succes-
sion of cladocerans, dinoflagellates, green algae, copepods,
and finally, carnivores. On the West Florida shelf, dense
Karenia brevis blooms occur during and subsequent toTri-
chodesmium blooms and it has been hypothesized that they
provide a source of new N to fuel destructive red tides (Walsh
and Steidinger, 2001; Mulholland et al., 2006). Based on
direct estimates of N2 fixation, N release, and in situ wa-
ter column N uptake rates,Trichodesmium produced ample
dissolved N to fuelK. brevis growth in the Gulf of Mexico
(Mulholland et al., 2006).

Experiments suggest thatTetraselmis grew well on decay-
ing Trichodesmium (Devassy et al., 1978). Similarly,Kare-
nia brevis cultures grew well on culture medium enriched in
Trichodesmium exudates as the sole source of nitrogen (Mul-
holland et al., unpublished data). Although direct evidence
of trophic transfer fromTrichodesmium to phytoplankton in
nature is lacking, Bryceson and Fay (1981) and Mulholland
et al. (2004b), demonstrated that15N derived from15N2 ad-
ditions moved into the co-occurring plankton, which pre-
sumably included a variety of phytoplankton. Further, the
low δ15N observed in sediment trap material suggests that
at least some N derived from diazotrophy is leaving the eu-
photic zone (Karl et al., 1997, 2002; Capone et al., 1998;
Montoya et al., 2002; Knapp et al., 2005).

6.3 Zooplankton and higher trophic levels

The fate of recently fixed N2 and transfer ofTrichodesmium
biomass to higher trophic levels is poorly understood. Al-
though a variety of herbivores are thought to graze on
Trichodesmium (e.g., Sellner, 1997),Trichodesmium spp. are
not grazed by many of the dominant zooplankton in marine
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systems and are toxic to many copepods (Hawser and Codd,
1992; O’Neil, 1999). Some specialized harpacticoid cope-
pods do graze on and inhabitTrichodesmium colonies but
these do not produce fecal pellets that would rapidly remove
grazed material from the euphotic zone (O’Neil and Roman,
1994; O’Neil et al., 1996).

O’Neil et al. (1996) estimated that the harpacticoid cope-
pod, Macrosetella, could consume 33–45% of total colony
N, or 100% of the new N2 fixed each day. The copepod then
excretes 48% of its body N per day, mainly as NH+

4 , thereby
recycling much of the N in the water column (O’Neil et al.,
1996). Further, Roman (1978) found thatMacrosetella could
ingest from 90 to 126% of its body carbon per day when
feeding onTrichodesmium. Based on stoichiometric argu-
ments, O’Neil (1999) calculated 30% of the recently fixed
C from Trichodesmium spp. flowed into grazers and because
Macrosetella appears to have a higher C:N ratio than theTri-
chodesmium spp. themselves, they are likely to excrete ex-
cess N. Therefore, the major flux of recently fixed N and C
through zooplankton may also be through extracellular re-
lease and dissolved nutrient pools. In addition to excretory
release, zooplankton grazers can mediate the transfer of N
through additional release from sloppy feeding (O’Neil and
Roman, 1996).

Not much is known about higher trophic levels, although
isotopic evidence suggests that there are other grazers ofTri-

chodesmium (e.g., Montoya et al., 2002). In general, it has
been observed that there is a low quality of fish associated
with blooms, althoughTrichodesmium do not appear to be
directly toxic to fish (Devassy et al., 1978). Fish and some
other higher trophic levels have been observed to graze on
Trichodesmium (see Carpenter and Capone, 2007).

7 Implications

While we appear to be making strides in our ability to derive
global estimates for marine N2 fixation, we have a long way
to go before we understand the role of diazotrophy in the
context of N and C dynamics in the ocean. Because many
direct estimates of global N2 fixation are based on highly
spatially, temporally, and physiologically limited and vari-
able data, and because many geochemical estimates rely on
stoichiometric relationships of nutrient standing stocks with-
out considering the imbalances between rate estimates of C
and N2 fixation, we should proceed cautiously when infer-
ring one from the other (see examples in Sect. 3 above).
Based on the observed C drawdown from the atmosphere,
we may be trying to find “too much” N2 fixation if we use
Redfield stoichiometry versus the observed relative rates of
C and N2 fixation. Further, because we know so little about
the physiology of marine diazotrophs, it is difficult to model
the contribution of new production from diazotrophy in the
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present, past, or future ocean where conditions vary in space
and time.

It is also difficult to determine the effect of N2 fixation on
system trophic status. In some systemsTrichodesmium ap-
pears to fuel primary productivity and make the system more
autotrophic (e.g., Tseng et al., 2005). In other systems dom-
inated byTrichodesmium, heterotrophic processes appear to
dominate (Fig. 2; also see Sect. 6.3 above). For example,
it was observed that along the Kenyan coast, primary pro-
ductivity, even duringTrichodesmium blooms, could barely
sustain the observed bacterial productivity (Kromkamp et al.,
1997).

The preponderance of filaments versus colonial morphol-
ogy can also seriously bias our understanding of tropho-
dynamics associated withTrichodesmium and the net out-
come of elemental cycling (e.g., recycling and respiratory
losses versus export). Not only does colony size affect
colony-specific estimates of N and C fixation, but the de-
gree of aggregation and size of colonies also affects the de-
gree to whichTrichodesmium is colonized by other organ-
isms and thereby recycled via bacteria, grazers, and other
enzymatically-mediated processess. Free filaments often
dominate populations in the Pacific (Saino and Hattori, 1978,
1980; Letelier and Karl, 1996; Tseng et al., 2005) and the
Atlantic, at least seasonally (Orcutt et al., 2001) although in
many systems, colonies appear to be more common (Capone
et al., 1997; Carpenter et al., 2004). Better common metrics
need to be employed to express rate measurements not only
becauseTrichodesmium morphologies vary, but also because
we now know there are a variety of non-Trichodesmium dia-
zotrophs.

Finally, different diazotrophic groups may have different
fates and we know even less about non-Trichodesmium ma-
rine N2 fixers. Diatom/Richelia assemblages may be prone
to gravitational settling while unicellular cyanobacteria may
be more readily grazed. There are a variety of conflicting re-
ports based on isotopic and geochemical tracers suggesting
that diazotrophic growth fuels export production versus rem-
ineralization. The absence of robust direct estimates of both,
hinder our ability to speculate regarding the fate of new N
from diazotrophic growth.
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Fritsche, P., Meyerḧofer, M., Nachtigall, K., Ohlendieck, U., te
Lintel Hekkert, S., Sivonen, K., Repka, S., Stal, L. J., and Staal,

M.: Maximum rates of N2 fixation and primary production are
out of phase in a developing cyanobacterial bloom in the Baltic
Sea, Limnol. Oceanogr., 47, 1514–1521, 2002.

Gallon, J. R., Jones, D. A., and Page, T. S.:Trichodesmium, the
paradoxical diazotroph, Algological Studies, 83, 215–243, 1996.

Galloway, J. R., Dentener, F. J., Capone, D. G., et al.: Nitrogen
Cycles: Past, Present and Future, Biogeochemistry, 70, 153–226,
2004.

Glibert, P. M. and Bronk, D. A.: Release of dissolved organic nitro-
gen by marine diazotrophic cyanobacteria,Trichodesmium spp.,
Appl. Environm. Microbiol., 60, 3996–4000, 1994.

Glibert P. M. and O’Neil, J. M.: Dissolved organic nitrogen release
and amino acid oxidase activity byTrichodesmium spp., Bull.
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