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Abstract. In Livello Bonarelli black shale deposited during
Cretaceous Oceanic Anoxic Event 2 (OAE-2, ca. 94 Ma), ni-
trogen isotopic compositions of bulk sediments are mostly
in a narrow range from –2.7 to –0.7‰. We also determined
molecular distribution and nitrogen isotopic compositions of
geoporphyrins extracted from the black shale. The nitrogen
isotopic compositions of C32 Ni deoxophylloerythroetiopor-
phyrin (DPEP) and total Ni porphyrins are –3.5 and –3.3‰,
respectively, leading us to the estimation that the mean ni-
trogen isotopic composition of photoautotrophic cells were
around +1‰ during the formation of Bonarelli black shale.
This value is suggestive of N2-fixation, a dominant pro-
cess for these photoautotrophs when assimilating nitrogen.
Furthermore, Ni-chelated C32 DPEP, derived mainly from
chlorophyll a had the highest concentration. Based on this
evidence, we conclude that diazotrophic cyanobacteria were
major primary producers during that time. Cyanobacteria
may be key photoautotrophs during the formation of black
shale type sediments intermittently observed throughout the
later half of the Earth’s history, and hence may have played
a crucial role in the evolution of geochemical cycles even in
the later half of the Earth’s history.

1 Introduction

An Oceanic Anoxic Event (OAE; Schlanger and Jenkyns,
1976; Arthur et al., 1985) can be defined as “the time en-
velope during which the global ocean conditions were pro-
pitious for the deposition of organic carbon rich sediments
(but not implying global total anoxia of deep-sea masses)”
(Arthur and Sageman, 1994). The organic carbon-rich, dark-
colored sediments accumulated during the OAEs are called
“black shales”, whose color is believed to be originated from
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organic matter or iron monosulfides. In the Cretaceous, six
OAEs have been recognized (Kuroda and Ohkouchi, 2006;
and references therein). Many studies have discussed the
causal mechanisms for the deposition of such organic-rich
sediments. They include the sluggish deepwater circulation
caused by stratified ocean (e.g., Degens and Stoffers, 1976;
Jenkyns, 1980), high biological productivity (e.g., Pedersen
and Calvert, 1990), and changes in surface water ecology
(Ohkouchi et al., 1997; Sinninghe Damsté and K̈oster, 1998;
Kuypers et al., 2004; Kuroda et al., 2005).

In this study we determined nitrogen isotopic composi-
tion of organic matter to understand nitrogen nutrition of bi-
ological communities in the surface ocean during the Cre-
taceous OAE-2, around 94 Ma. Geoporphyrins, molecular
markers for photoautotrophs, are investigated together with
the isotopic composition of bulk sediments. Geoporphyrins
are tetrapyrrole molecules with alkyl chains whose structures
are strongly suggestive of derivatives of chlorophylls, heme,
vitamin B12, cytochrome, and some others (Fig. A1; e.g.,
Treibs, 1934; Baker and Louda, 1986; Callot and Ocampo,
2000). Since production of chloropigments in natural en-
vironments were estimated to be overwhelmingly large rel-
ative to those of other compounds, the nitrogen isotopic
composition of geoporphyrins should mainly reflect those
of chloropigments (e.g., Baker and Louda, 1986; Hayes et
al., 1987; Callot and Ocampo, 2000). Stable nitrogen iso-
topic composition provides significant information for pale-
oceanographic reconstruction. It is controlled not only by
utilization efficiency of dissolve inorganic nitrogen in the eu-
photic zone, but also type of nitrogen uptake pathways. In
biological N2-fixation, an important process in this paper,
the reactant dinitrogen is catalytically converted to the end
product ammonium in the cell. This N2-fixation includes a
cleavage of very stable nitrogen-nitrogen triple bond in dini-
trogen which theoretically suggests it to have a large iso-
topic fractionation. However, isotopic fractionation factors
experimentally determined based on many laboratory culture

Published by Copernicus GmbH on behalf of the European Geosciences Union.



468 N. Ohkouchi et al.: Diazotrophic cyanobacteria during OAE-2

St
ra

tig
ra

ph
ic

 le
ve

l (
cm

)

δ   N      (per mil)15
bulk

Ohkouchi et al., Fig. 1

-40

-20

0

20

40

60

80

100

0 5 10 15 20 25 30

TOC (%)

0 0.2 0.4 0.6 0.8 1

TN (%)

-4 -3 -2 -1 0 1 2 3 4

Fig. 1. Stratigraphic variation of total nitrogen (TN) and total
organic carbon (TOC) contents, and nitrogen isotopic composition
of bulk sediments (δbulk). Shaded area indicates Livello Bonarelli
black shale horizon. An arrow indicates the stratigraphic level that
geoporphyrins were determined.

experiments and field observations of diazotrophic organ-
isms exhibited much smaller than theoretically anticipated
(α=1.000-1.002, whereα =

14k/15k=1–δ15N/1000; 14k and
15k are rate constants of14N and15N, respectively) (Hoer-
ing and Ford, 1960; Delwiche and Steyn, 1970; Wada, 1980;
Wada and Hattori, 1991). It suggests that another chemi-
cal step rather than breaking the triple bond requires more
energy or lacks backward reaction in certain steps of N2-
fixation (Wada, 1980). Although we still do not understand
the detailed mechanism(s) related to isotopic behavior dur-
ing the N2-fixation, the small isotopic fractionation factor
in overall N2-fixation process strongly contrasts with rela-
tively large isotopic fractionation factors associated with as-
similation processes of nitrate, nitrite, and ammonium (Wada
and Hattori, 1991). Dissolved dinitrogen in seawater has
quite constant isotopic composition around 0.5 in the mod-
ern ocean (e.g., Miyake and Wada, 1967), so that the cellular
nitrogen assimilated through the N2-fixation is confined to a
narrow and characteristic isotopic range from 0 to –2‰ (Mi-
nagawa and Wada, 1986).

In this study, based on the combination of novel molecular
and isotopic information, we provide further evidence for the
importance of diazotrophic cyanobacteria in western Tethys
Sea during the Cretaceous OAE-2.

2 Sample and methods

2.1 Samples

We collected “Livello Bonarelli” black shale and adjacent
rocks from an outcrop at Gorgo Cerbara in the northern
Apennines, Italy. The Livello Bonarelli is characterized by
an alteration of millimeter- to centimeter-scale dark and light

layers (e.g., Arthur and Premoli-Silva, 1982; Jenkyns et al.,
1994; Kuroda et al., 2005) and has been considered to be one
of the major representatives of OAE-2. Detailed description
of geology of this region and the Bonarelli sediments were
provided in Arthur and Premoli Silva (1982) and Kuroda
et al. (2005), respectively. The paleo-continental config-
uration at that time was shown elsewhere (e.g., Bralower,
1988; Erbacher et al., 2005; Kuroda and Ohkouchi, 2006).
At the Gorgo Cerbara outcrop, forty-three blocks were sam-
pled from across the 104-cm interval of Bonarelli. In or-
der to obtain “fresh” rocks, 5–20 cm of the outcrop surface
was removed before sampling. These block samples were
sliced at 1.5 mm intervals (Kuroda et al., 20061) and some of
them were supplied for the analysis of nitrogen isotopic com-
position of bulk sediments. For geoporphyrin analyses, we
chose GCB-17 sample, which was collected at 51 cm above
the base of Bonarelli (Fig. 1).

2.2 Extraction, separation, and analyses of geoporphyrins

Detailed procedures and instrument conditions for chloropig-
ment analyses will be described separately (Kashiyama et
al., 2006). The pulverized sediments (58.3 g) were Soxhlet-
extracted with MeOH/dichloromethane (3:7, v/v) for three
days. The total extract was separated by silica gel column
chromatography to 8 sub-fractions. Fractions containing
geoporphyrins were easily identified by color bands. Third
fraction (N-2b) was eluted withn-hexane/dichloromethane
(50:50, v/v) to collect a reddish orange-colored band origi-
nated from Ni porphyrins. Fifth fraction (N-2d) was eluted
with n-hexane/dichloromethane (30:70, v/v) to collect a
pink-colored band originated from VO porphyrins. Frac-
tions containing geoporphyrins were injected to reversed-
phase high-performance liquid chromatography (HPLC).
The reversed-phase HPLC analyses were performed using
three ZORBAX SB-C18 columns (4.6×250 mm; 5µm silica
particle size) connected in series. The solvent gradient was
programmed as acetonitrile/H2O/pyridine (89.8:10:0.2, v/v)
(solvent A) and acetonitrile/pyridine (99.8:0.2, v/v) (solvent
B) gradient [(time min, %B): (0, 70) (90, 70) (150, 100) (200,
100)]. Solvent flow rate was 1.0 mL min−1.

Temporal identifications of the compounds were achieved
based on retention time, UV-Vis spectra, and mass spectra.
The mass spectra were collected fromm/z 400–1200 with
atmospheric pressure chemical ionization (APCI) mass spec-
trometry operated in a positive-ion mode (Nakajima et al.,
2003). By using a fraction collector, we isolated compounds
with great care to collect entire peak to avoid isotopic frac-
tionation (Ohkouchi et al., 2005; Kashiyama et al., 2006).

1Kuroda, J., Ogawa, N. O., Tanimizu, M., et al., Contempo-
raneous massive subaerial volcanism and Late Cretaceous oceanic
anoxic event 2, Earth Planet. Sci. Lett., submitted, 2006.
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2.3 Isotope analyses

A purified porphyrin and N-2b fraction were transferred to
precleaned tin capsules with dichloromethane. The solvent
was dried under a N2 stream and the capsules were carefully
folded with forceps. The isotopic composition of sedimen-
tary bulk nitrogen and geoporphyrins were determined by an
on-line system of ThermoFinnigan Delta plus XP isotope-
ratio mass spectrometry coupled to a flash EA1112 automatic
elemental analyzer through a Conflo III interface (Ohkouchi
et al., 2005). The nitrogen isotopic composition is expressed
as conventionalδ-notation relative to atmospheric N2. Based
on the repeated measurements of our laboratory standards
(proline and tyrocine) and a porphyrin standard (octaethyl-
porphyrin, Aldrich), analytical error (1σ) was estimated to
be within 0.2‰.

3 Results and discussion

3.1 Nitrogen isotopic composition of bulk sediments in
Cretaceous black shales

Figure 2 illustrates nitrogen isotopic composition of bulk
sediments (δbulk) from Bonarelli black shales and limestone
just beneath the shale (Kuroda, 2005). In the black shale,
except for one sample, theδbulk values range from –0.7 to
–2.7‰ (average = –1.9, n = 23), whereas those of lime-
stone sequence from –1.3 to +2.6‰ (average = +0.9, n =
22). This result basically supports our previous observation
that theδbulk of Bonarelli black shales is confined to a nar-
row range from –2 to 0‰ (Ohkouchi et al., 1997). They did
not find any correlation between total nitrogen and potassium
contents as a relative measure of clay minerals in the black
shale, and concluded that the nitrogen in the black shale
mostly exist as organic nitrogen rather than ammonium nitro-
gen which is potentially adsorbed on the surface or interlayer
of clay minerals (M̈uller, 1977). Coupling with abundant
geohopanoids, derivatives of components of cellular mem-
brane of prokaryotes, in these samples, they concluded the
diazotrophic cyanobacteria could have been major primary
producers during the OAE2.

The δbulk values in the Cretaceous black shales were also
reported by Rau et al. (1987). They determined theδbulk of
the black shales (they referred them “laminated black marl-
stone” and “black clay stone”) from DSDP sites 367, 530,
and 603 in Atlantic Ocean and found that theδbulk values
are in a range from –2.7 to +0.6‰, whereas those of ad-
jacent organic-poor rock samples were substantially higher
than those (–0.7 to +5.7‰). Based on the isotopic evidence,
they concluded that the diazotrophic cyanobacteria could be
major primary producers at those times. Recently, Kuypers
et al. (2004) reported theδbulk values of sediments both from
OAE-1a from central Italy and OAE-2 from DSDP site in
the North Atlantic. In these black shales, they also found
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Fig. 2. Total ion chromatogram for Ni porphyrin fraction (fraction
N-2b) in sample GCB-17.

2-methylhopanoids, derivatives of 2-methylhopanepolyols
specifically produced as a component of membrane rein-
forces by some (not all) cyanobacteria and prochlorophytes
(Bisseret et al., 1985; Simonin et al., 1996; Summons et al.,
1999), leading them to the conclusion that the diazotrophic
cyanobacteria were important primary producers during the
Cretaceous Oceanic Anoxic Events.

However, we should note two pitfalls when interpreting
the δbulk records. First, as mentioned above, ammonium
and organic compounds adsorbed on or fixed in interlayers
of clay minerals could partly contribute to the bulk nitrogen
in the sediments (e.g., M̈uller, 1977). Therefore, it poten-
tially alters the primary isotopic signature significantly, even
though it may account for a small fraction. Second and more
importantly, the decomposition of organic matter in the wa-
ter column and sediments is a quite complex process medi-
ated by a variety of aerobic and anaerobic microbes involving
deamination that potentially alter the nitrogen isotopic signa-
ture of original organic matter (Macko and Estep, 1984). In
fact, many studies have observed that the degradation of or-
ganic matter leads to alteration of original nitrogen isotopic
signature in both aerobic and anaerobic environments at least
in very early stage of diagenesis (Wada, 1980; Altabet and
Francois, 1994; Nakatsuka et al., 1997; Freudenthal et al.,
2001; Lehmann et al., 2002). Such changes in isotopic sig-
nature during the early diagenesis apparently contrast with
the view that the sedimentary nitrogen isotopic signature is
more or less faithfully record the isotopic composition of or-
ganic matter produced in the surface ocean (e.g., Calvert et
al., 1992; Altabet and Francois, 1994; Nakatsuka et al., 1995;
Farrell et al., 1995). It is mainly based on the field obser-
vations that theδbulk values from surface sediments are in
good agreement with those of particulate organic matter in
overlying surface water and sinking particles (Altabet and
François, 1994; Farrell et al., 1995). Further studies are def-
initely required for rigorously evaluating the fidelity ofδbulk
values as a recorder of organic matter formed in the euphotic
zone. One of the best ways to circumvent the situation is to

www.biogeosciences.net/3/467/2006/ Biogeosciences, 3, 467–478, 2006
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Fig. 3. Absorption spectra and APCI mass spectra for peak 1 (a andb) and 2 (c andd) of chromatogram shown in Fig. 2.

determine the nitrogen isotopic compositions of molecular
markers derived from marine photoautotrophs. For this pur-
pose, geoporphyrins, derivatives of chlorophylls, green pho-
tosynthetic pigments produced by algae, cyanobacteria, and
higher plants, are one of the best candidates, because they
contain four nitrogen atoms in a single molecule.

3.2 Geoporphyrins in Bonarelli black shale

Figure 2 illustrates a total ion chromatogram of reversed-
phase HPLC for the “Ni porphyrin fraction” (fraction N-2b)
of an extract from the Bonarelli black shale sample. The Ni-
chelated porphyrins are the most abundant porphyrin homo-
logue in this sample, whereas VO porphyrins (fraction N-2d)
are secondly abundant. In the chromatogram of N-2b frac-
tion, the largest peak (Peak 1 in Fig. 2) was assigned as C32
Ni deoxophylloerythroetioporphyrin (DPEP, Fig. A1; Baker
et al., 1968) based on the interpretation of mass spectrum
and comparison of absorption spectrum with previous results
(Baker and Louda, 1986; Figs. 3a and 3b). The tetrapyrrole
structure of C32 DPEP with an exocyclic ring in the south-
ern part of the molecule is closely related to that of chloro-
phylls, and it has generally been accepted that the C32 DPEP
must derive primarily from them (Baker and Louda, 1986;
Callot and Ocampo, 2000). Since carbon number of the por-
phyrins in our sample ranged mostly from 29 to 33 (Fig. 2),
they would be originated mainly from chlorophylls. There

are four major types of chlorophylls, namely chlorophyllsa,
b, c, andd (Fig. A1). Theoretically, all these chlorophylls are
potential precursors of the sedimentary C32 Ni DPEP. How-
ever, we think that the chlorophylla is the dominant precur-
sor. In natural environment, the chlorophylla is far more
abundant and widespread relative to other chlorophylls. In
the ocean, the chlorophyllc is a secondly important chloro-
phyll, which is produced by various groups of algae includ-
ing diatoms and dinoflagellates. It is synthesized as a mi-
nor form of chlorophyll with abundant chlorophylla. Distri-
butions of the chlorophyllsb andd are more limited in the
oceanic photoautotrophs; the former is produced by green
algae (Blankenship, 2004), whereas the latter by red algae
and cyanobacteria (Larkum and Kühl, 2005). The consider-
ation that the C32 DPEP was originated from chlorophylla,
is consistent with the fact that it is the most abundant por-
phyrin species in many geological samples (e.g., Baker and
Louda, 1986; Boreham et al., 1990; Keely et al., 1990; Sun-
dararaman and Boreham, 1991; Keely et al., 1994). In our
Bonarelli black shales, terrestrial contribution was estimated
to be minor based on organic geochemical evidence includ-
ing relative abundance ofn-alkanes from higher plant wax
(Van Grass et al., 1983; Farrimond et al., 1990; Ohkouchi
et al., 1997; Kuroda, 2004). Therefore, we conclude them
derived mostly from chlorophylla produced by aquatic pho-
toautotrophs.

Biogeosciences, 3, 467–478, 2006 www.biogeosciences.net/3/467/2006/
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Although bacteriochlorophylla produced mainly by pur-
ple sulfur bacteria is also a potential precursor of C32 Ni
DPEP, we think them unlikely to be important contribu-
tors. Since they require H2S as an electron donor (Imhoff,
1995), the purple sulfur bacteria have generally been ob-
served around O2/H2S interface occurred relatively shallow
(∼10 m) portion of the water column (e.g., Overmann et al.,
1991; Van Gemerden, 1995; Nakajima et al., 2003). They
adapt to grow under strong light environment, whereas the
growth and reproduction are strongly limited under low irra-
diance (Van Gemerden, 1995). As suggested below, during
the Bonarelli formation, the O2/H2S interface should have
existed in the lower part of photic zone, where the growth of
purple sulfur bacteria must strongly be limited due to the low
irradiance.

A small peak 2 in Fig. 2 has a relatively strong absorption
maximum at 398 nm with a slight maximum at 500–570 nm
(Fig. 3c), suggesting it to be a mixture of porphyrins. The
peak has a mass spectrum characterized by several ions in-
cluding a minor ion atm/z 561 as well asm/z 524, 538,
and 540 which may be assigned to molecular/isotope ions of
Cu-chelated porphyrins (Fig. 3d). The molecular ionm/z

561 possibly corresponds to [M+H]+ of C34 Ni porphyrin.
It is a very weak ion accounting for about 20% of the total
ion current, but the retention time (ca. 30 min after the C32
Ni DPEP) of the peak in the HPLC chromatogram supports
this idea (Fig. 2). Theoretically, the C34 porphyrin should be
derived from bacteriochlorophylld or e homologues (Callot
et al., 1990; Gibbison et al., 1995), with the former having
long alkyl chains at C-8 and C-12, while the latter having
a long alkyl chain at C-8, an ethyl chain at C-12, and an
extra methyl chain at C-20 (Fig. A1). Our observation is
consistent with Pancost et al. (2004) which reported methyl
isobutyl maleimide, a degradation product of bacteriochloro-
phylls d ande, in OAE-2 sediments from central Italy and
Tunisia. Since both bacteriochlorophyllsd and e are re-
stricted to anaerobic green sulfur bacteria (e.g., Otte et al.,
1993; Glaeser et al., 2002; Nakajima et al., 2003), the pres-
ence of derivatives of these bacteriochlorophylls indicates
that at least the base of photic zone was anaerobic at these
sites during the OAE-2. This consideration supports previous
observations of Sinninghe Damsté and K̈oster (1998) who
reported derivatives of isorenieratene, a carotenoid pigment
of green sulfur bacteria in the Bonarelli black shale. Since
the estimated amounts of both C34 porphyrin and isorenier-
atene derivatives in Bonarelli are small (2 ng gCorg and 11
µg gCorg, respectively), the contribution of green sulfur bac-
teria to the primary production was substantially small and
the O2/H2S interface would have existed deeper part of the
photic zone.
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Fig. 4. A partial pathway for chlorophyll synthesis in the cell.

3.3 Nitrogen isotopic composition of geoporphyrins in the
Bonarelli black shales

Since a chromatographic peak of C32 Ni DPEP is clearly sep-
arated from other peaks with baseline resolution (Fig. 2), we
succeeded baseline-to-baseline isolation of C32 Ni DPEP by
a preparative technique which minimized the isotopic frac-
tionation associated with the isolation step (Bidigare et al.,
1990). The nitrogen isotopic composition of C32 Ni DPEP
is –3.5‰. We also determined the nitrogen isotopic compo-
sition of total Ni porphyrins (total fraction of N-2b), giving
data (–3.3‰) close to that of C32 Ni DPEP. In this sample,
non-geoporphyrin compounds could “contaminate”, which
potentially alter the isotopic signature. Nevertheless, we
think that the nitrogen contained in this fraction would be
derived mainly from geoporphyrins. In the silica gel column
chromatography, we collected only a narrow band colored
by Ni porphyrins. Furthermore, the nitrogen-containing,
solvent-extractable compounds are functionalized mainly to
amide, amine, and cyano groups. Generally, the polarities
of these molecules are substantially larger than those of Ni
porphyrins and eluted in more polar sub-fractions during
the silica gel column chromatography. To properly interpret
the nitrogen isotopic record of sedimentary porphyrins, we
have to understand the factors controlling that of chlorophyll
during the biosynthesis and potential alteration of isotopic
signature during the diagenetic transformation from chloro-
phyll to geoporphyrin(s). In Fig. 4, we illustrated a syn-
thetic pathway of chlorophylla in the cell, which is basically
the same as that of other chloropigments including bacteri-
ochlorophylls (Senge and Smith, 1995). A unique precursor
for all the biologically synthesized tetrapyrroles including
chlorophylls is 5-aminolevulinic acid (ALA, 3). Therefore,
the nitrogen atoms in chloropigments are originated exclu-
sively from those in ALA. In case of chlorophylls, the ALA is

www.biogeosciences.net/3/467/2006/ Biogeosciences, 3, 467–478, 2006
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Fig. 5. Isotopic relationship between cellular nitrogen and chloro-
phyll nitrogen (Sachs et al., 1999; Goericke and Montoya, unpub.
results).

synthesized from L-glutamate (1) through C5 pathway (e.g.,
Beale, 1993) (Fig. 4). In the C5 pathway, the glutamate is
transformed to glutamate-1-semialdehyde (GSA, 2) through
activated form of glutamate (Glutamyl-tRNA). Then, the
amino group at position C-2 of GSA is replaced by one at
C-1, yielding ALA (Beale, 1993; Kannangara et al., 1994).
It has been proved that the ALA was formed from GSA by in-
termolecular nitrogen transfer (Mau and Wang, 1988; Mayer
et al., 1993) catalyzed by GSA aminotransferase. There-
fore, the nitrogen isotopic composition of ALA is theoret-
ically derived from ammonium which is aminated to GSA.
Subsequently, 8 molecules of ALA condensate to form uro-
porphyrinogen III (5), which is a precursor of tetrapyrrole
structure of chlorophylls. Although four ammonium were
removed in this step, the process should not produce sig-
nificant isotope fractionation because bonds to pyrrolic ni-
trogen are neither formed nor broken (Sachs et al., 1999).
Once the uroporphyrinogen III is formed, the only step re-
lated to the nitrogen atoms in the tetrapyrrole structure is
a branch between Mg-chelation (to form chlorophylls) and
Fe-chelation (to form heme) which occurs in the late stage
of chlorophyll synthesis (Walker and Willows, 1997). Al-
though it was not strictly verified, this metallation catalyzed
by Mg-chelatase may not have isotopic fractionation, since
Mg branch receives overwhelmingly large quantity of pre-
cursors (protoporphyrin) (Beale, 1993). Furthermore, recent
experiments inserting metal (chemically but not enzymati-
cally) in the tetrapyrrole structure in our laboratory exhibited
little or no isotopic fractionation (Kashiyama et al., 2006).
Overall, the nitrogen isotopic composition of chlorophylls

should theoretically be equivalent to or quite similar with that
of ALA, and hence that of ammonium aminated to GSA.

It has been known that the nitrogen isotopic composition
of chlorophylls is somewhat depleted in15N relative to the
whole cell (Chikaraishi et al., 2005). Figure 5 compiles the
nitrogen isotopic relationship between chlorophylls (chloro-
phylls a andb) and cell of aquatic photoautotrophs (Sachs
et al., 1999; Goericke and Montoya, unpub. results). It
shows that the nitrogen isotopic composition of chlorophylls
is depleted in15N by 4.8±1.4‰ (1σ , n = 20) relative to the
cell. This15N depletion suggests that nitrogen in other com-
pounds in the cell like proteins and DNA are substantially
enriched in15N relative to chlorophylls. However, at this mo-
ment, we still have little information on the nitrogen isotopic
distribution in the cell to verify this. Further investigations
are required for the refinement of the isotopic relationship
between chlorophylls and cell to more critically discuss the
nitrogen isotopic record in the chlorophylls.

Moreover, the diagenetic transformation from chloro-
phylls to porphyrins is potentially a process altering the
original isotopic record. The transformation pathways from
chlorophylls to porphyrins in the water column and sedi-
ments have long been investigated and several schemes have
been proposed (e.g., Baker and Louda, 1986; Eckardt et al.,
1991; Callot and Ocampo, 2000; Ohkouchi et al., 2005a).
They are a series of complex chemical and microbial pro-
cesses including defunctionalization, condensation, and met-
allation. However, all these processes except for demetalla-
tion (Mg loss) and metal insertion (Ni chelation) are not re-
lated to the nitrogen atoms in tetrapyrrole structure. During
the Mg-loss process, we observed no isotopic discrimination
in a modern meromictic lake (Ohkouchi et al., 2005b). In
our laboratory experiments, we have recently observed lit-
tle isotopic fractionation associated with Ni chelation in oc-
taethylporphyrin (Kashiyama et al., 2006). Therefore, we
think that the nitrogen isotopic signature of geoporphyrins
is directly inherited from chlorophylls. Applying above dis-
cussion, we reconstructed the nitrogen isotopic composition
of photoautotrophs cell of∼+1‰. When interpreting this
value, our assumption is that the nitrogen isotopic compo-
sition of newly fixed nitrogen have not changed significantly
in the remote past given the size of atmospheric N2 reser-
voir and its long turnover rate. Under this assumption, the
photoautotrophs are substantially depleted in15N relative to
those generally observed in organisms assimilating nitrate,
but close to the range of diazotrophs as described above, al-
though we should note that the value (+1‰) cannot perfectly
rule out other possibilities like reduced nitrate utilization or
15N-depleted nitrate in the surface ocean due to the modified
ocean nitrogen cycle during the OAE. Together with the con-
sideration that the chlorophylla could be a major precursor
for these geoporphyrins, we conclude that the diazotrophic
cyanobacteria were major photoautotrophs during the forma-
tion of Bonarelli black shale.
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To our knowledge, two reports have determined the
nitrogen isotopic compositions of porphyrins/chlorins in ge-
ological samples. In Triassic Serpiano oil shale, Chicarelli et
al. (1993) determined the nitrogen isotopic compositions of
7 porphyrin species and found the range ofδ15N values be-
tween –3.4 and –3.0‰. They concluded that “cyanobacterial
fixation of N2 may have been the main cause of15N deple-
tion”. If applying that the nitrogen isotopic difference be-
tween chlorophyllide portion of chlorophylls and whole cell
is about 5 (Fig. 5), the reconstructed isotopic composition
of primary producer should have been 0 to 2‰. In Mediter-
ranean sapropels, Sachs and Repeta (1999) determined the
nitrogen isotopic compositions of pyropheophorbidea iso-

lated from sapropel layers (S2, S3, and S4) from eastern
Mediterranean Sea deposited during the late Quaternary and
found them around –5‰. They concluded that the “nitro-
gen fixation supply a substantial fraction of new nitrogen”
at those periods. The conclusions of these two independent
studies support what we concluded above.

3.4 Cyanobacteria hypothesis

The cyanobacteria are a diverse group of gram-negative
prokaryotes which are unicellular organisms lacking cellu-
lar differentiation. All cyanobacteria contain chlorophyll
a and undergo photosynthesis, generating oxygen. Many,
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though not all, cyanobacteria have an ability to fix dinitrogen
using nitrogenase, an enzyme that catalyzes the reduction of
dinitrogen to ammonium (e.g., Bergman et al., 1997). In
the modern ocean, the genusTrichodesmium(mainly Tri-
chodesmium thiebautiiandTrichodesmium erythraeum) pri-
marily inhabits surface waters of oligotrophic tropical and
subtropical regions where the seawater temperature of sur-
face mixed layer is higher than 25◦C (Carpenter, 1983;
Capone et al., 1997). This genus often forms extensive sur-
face blooms in western boundary currents like Kuroshio or
Gulf Stream where the water column is characterized by low
nutrient and vertically very stable with the mixed layer of
around 100 m (e.g., Marumo and Asaoka, 1974; Carpenter
and McCarthy, 1975; Carpenter and Romans, 1991; Capone
et al., 1997; Dupouy et al., 2000). Furthermore, some other
unicellular cyanobacteria, especially for two genera,Syne-
chococcusandProchlorococcushave also been found at 103

and 105 cells mL−1, respectively, in oligotrophic oceans
and accounts for significant fraction of primary production
in some regions of tropical-subtropical Atlantic and Pacific
(e.g., Campbell et al., 1997; Ting et al., 2002). Recent studies
have reported that the unicellular diazotrophic cyanobacte-
ria played a significant role in nitrogen cycle in oligotrophic
ocean (Zehr et al., 2001; Montoya et al., 2004). Ecology
of these planktonic cyanobacterial remains largely unknown
and factors controlling cyanobacterial blooming is still a mat-
ter of debate (e.g., Pearl, 1996; Bianchi et al., 2000). Nutrient
other than nitrogen, either phosphorus or iron is potentially
a limiting factor for the formation of cyanobacterial bloom
(Gruber and Sarmiento, 1997; Falkowski, 1997; Fuhrman
and Capone, 2001; Dyhrman et al., 2006). It has been
suggested that the growth and reproduction of diazotrophic
cyanobacteria require large amounts of iron and molybde-
num, because the nitrogenase contains 28 to 36 iron and 2
molybdenum atoms in a single enzyme to facilitate electron
transfer reactions (Hardy and Havelka, 1975; Raven, 1988).
However, recent laboratory culture studies ofTrichodesmium
suggested that the iron requirement is not as high as previ-
ously thought (Kustka et al., 2003).

Around the Cenomanian-Turonian boundary, the sea sur-
face temperature was estimated to be substantially higher
than that of the present (e.g., Wilson and Norris, 2001). Even
in the high latitudes of both Northern and Southern Hemi-
spheres, it has been estimated to be as high as 20◦C or more
(Huber, 1998; Jenkyns et al., 2004). The strong stratifica-
tion in the water column as suggested by the existence of
derivatives of bacteriochlorophylle and isorenieratene (Sin-
ninghe Damst́e and K̈oster, 1999) would have strongly pre-
vented the supply of nutrient from the deeper water to surface
water. Such warm and oligotrophic surface water in the Cre-
taceous Oceanic Event resembles the modern oligotrophic
surface water in the tropical and subtropical ocean. It could
be, therefore, suitable for the inhabitance of cyanobacteria
in the surface oxic layer of the water column at that time.
Recently, Dumitrescu and Brassell (2005) observed abun-

dant 2β-methylhopanes and 2β-methylhopanones in OAE-
1a sediments from Pacific Ocean (Shatsky Rise, ODP Leg
198) and concluded that the cyanobacteria could have largely
contributed to them.

4 Conclusions and implications

Geoporphyrin distribution and nitrogen isotopic composi-
tions of geoporphyrins from the Bonarelli black shales de-
posited at Cenomanian-Turonian boundary, Cretaceous sug-
gested that the diazotrophic cyanobacteria were dominant
source of its organic matter. This cyanobacteria hypothe-
sis appears to explain several features of the Bonarelli black
shales including high C/N ratio and sacked-shape organic
matter (Ohkouchi et al., 2003). Nevertheless, our argument
in this study strongly relies on a limited number of data and
it should be verified with more data in future.

The black shales and “black shale like sediments” includ-
ing sapropels have been observed not only in Cretaceous,
but also in Quaternary (e.g., Arthur and Sageman, 1994;
Mediterranean, Cita et al., 1977; Black Sea, Ross et al., 1970;
Japan Sea, Oba et al., 1991; Tada and Irino, 1999), Jurassic
(e.g., Stein et al., 1986; Jenkyns, 1988; Harries and Little,
2000), and Paleozoic (e.g., Cluff, 1980). Furthermore, in
the early Proterozoic, up to 30% (generally 10%) of total
shale can be classified as organic-rich black shale (Condie
et al., 2000). It appears that organic-rich, black-colored sedi-
ments are intermittently observed at least later half of Earth’s
history. Although at this moment we do not know that the
causal mechanisms for these black shales are identical be-
tween them, some of these events have been estimated to be
cyanobacterial origin (Sachs and Repeta, 1999; Dumitrescu
and Brassell, 2005). If the cyanobacteria hypothesis can be
extended to all other black shale type sediments, they have
played a crucial role in the evolution of biogeochemical cy-
cles even the later half of the Earth’s history.

Microscopic observations of Archean sedimentary rock
(∼3.5 billion years) have indicated that the cyanobacteria
were the first photosynthesizing organism in Earth’s history
(e.g., Schopf, 1994). They are believed to be a major pri-
mary producer around 1 billion years after their appearance
(Rothschild and Mancinelli, 1990). The oceanic environ-
ments during the Cretaceous OAEs may have been similar
with those of Archean when atmospheric O2 level was sub-
stantially lower than today. Intermittent oxygen deficiency in
oceanic environment may have given rise to reincarnation of
surface water ecology.

Based on the compilation of Bois et al. (1982), the Cre-
taceous strata would have been source rocks for ca. 30% of
the world oil reservoirs. It has been proposed that much of
the Cretaceous petroleum had its origin in organic matter de-
posited during OAEs (Arthur and Schlanger, 1979). It leads
us to a consideration that the major source organisms for oil
could have been cyanobacteria. This consideration is con-
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sistent with what was found by Ourrison et al. (1984) that
hopanoids, membrane components of prokaryotes, are ubiq-
uitous and abundant in crude oil. Although hopanoids are
widely produced by eubacteria and Ourrison et al. (1984)
concluded that the eubacteria rather than cyanobacteria could
be a major origin of petroleum based on the evidence, it does
not necessarily rule out the possibility of cyanobacterial ori-
gin since they also produce hopanoids as membrane rein-
forces (Rohmer et al., 1984; Bisseret et al., 1985; Summons
et al., 1999).
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Sinninghe Damsté, J. S.: N2-fixing cyanobacteria supplied nutri-
ent N for Cretaceous oceanic anoxic events, Geology, 32, 853–
856, 2004.

Larkum, A. W. D. and K̈uhl, M.: Chlorophyll d: the puzzle re-
solved, Trends Plant Sci., 10, 355–357, 2005.

Lehmann, R. F., Bernasconi, S. M., Barbieri, A., and McKenzie,
J. A.: Preservation of organic matter and alteration of its carbon
and nitrogen isotope composition during simulated and in situ
early sedimentary diagenesis, Geochim. Cosmochim. Acta, 66,
3573–3584, 2002.

Macko, S. A.: Stable nitrogen isotope ratios as tracers of organic
geochemical processes, Ph.D. dissertation, The University of
Texas at Austin, 1981.

Macko, S. A. and Estep, M. L. F.: Microbial alteration of stable ni-
trogen and carbon isotopic compositions of organic matter, Org.
Geochem., 6, 787–790, 1984.

Marumo, R. and Asaoka, O.: Distribution of pelagic blue-green al-
gae in the North Pacific Ocean, J. Oceanogr. Soc. Jpn 30, 77,
1974.

Mau, Y.-HL. and Wang, W.-Y.: Biosynthesis ofδ-aminolevulinic
acid inChlamydomonas reinhardtii: study of the transamination
mechanism using specifically labeled glutamate, Plant Physiol.,
86, 793–797, 1988.

Mayer, S. M., Gawlita, E., Avissar, Y. J., Anderson, V. E., and
Beale, S. I.: Intermolecular conversion of glutamate toδ-
aminolevulinic acid by extracts ofChlorella vulgaris, Plant Phys-
iol., 101, 1029–1038, 1993.

Minagawa, M. and Wada, E.: Nitrogen isotope ratios of red tide
organisms in the East China Sea: a characterization of biological
nitrogen fixation, Mar. Chem., 19, 245–259, 1986.

Miyake, Y. and Wada, E.: The abundance ratio of15N/14N in ma-
rine environments, Rec. Oceanogr. Works Jpn., 9, 37–53, 1967.

Montoya, J., P., Holl, C. M., Zehr, J. P., Hansen, A, Villareal, T.
A., and Capone, D. G.: High rates of N2 fixation by unicellu-
lar diazotrophs in the oligotrophic Pacific Ocean, Nature, 430,
1027–1031, 2004.

Müller, P. J.: C/N ratios in Pacific deep-sea sediments: Effect of
inorganic ammonium and organic nitrogen compounds sorbed by
clays, Geochim. Cosmochim. Acta, 41, 765–776, 1977.

Nakajima, Y., Okada, H., Oguri, K., Suga, H., Kitazato, H.,
Koizumi, Y., Fukui, M., and Ohkouchi, N.: Distribution of
chloropigments in suspended particulate matter and benthic mi-
crobial mat of a meromictic lake, Lake Kaiike, Japan, Environ.
Microbiol., 5, 1103–1110, 2003.

Nakatsuka, T., Watanabe, K., Handa, N., and Matsumoto, E.:
Glacial to interglacial surface nutrient variations of Bering deep
basins recorded byδ13C andδ15N of sedimentary organic mat-
ter, Paleoceanography, 10, 1047–1061, 1995.

Nakatsuka, T., Handa, N., Harada, N., Sugimoto, T., and Imaizumi,
S.: Origin and decomposition of sinking particulate organic mat-
ter in the deep water column inferred from the vertical distri-
butions of itsδ15N, δ13C, andδ14C, Deep-Sea Res., 44, 1957–
1979, 1997.

Oba, T., Kato, M., Kitazato, H., Koizumi, I., Omura, A., Sakai,
T., and Takayama, T.: Paleoenvironmental changes in the Japan
Sea during the last 85 000 years, Paleoceanography, 6, 499–518,
1991.

Ohkouchi, N., Kawamura, K., Wada, E., and Taira, A.: High
abundances of hopanols and hopanoic acids in Cretaceous black

shales, Ancient Biomol., 1, 183–192, 1997.
Ohkouchi, N., Kuroda, J., Okada, M., and Tokuyama, H.: Why Cre-

taceous black shales have high C/N ratios? Implications from
SEM-EDX observations for Livello Bonarelli black shales at
the Cenomanian-Turonian boundary, Front. Res. Earth Evol., 1,
239–241, 2003.

Ohkouchi, N., Nakajima, Y., Okada, H., and Kitazato, H.: Copper-
chelated bacteriochlorophylle homologues in sediment from an
anoxic lake (Lake Abashiri, Japan), Org. Geochem., 36, 1576–
1580, 2005a.

Ohkouchi, N., Nakajima, Y., Okada, H., Ogawa, N. O., Suga, H.,
Oguri, K., and Kitazato, H.: Biogeochemical processes in a
meromictic lake Kaiike: Implications from carbon and nitrogen
isotopic compositions of photosynthetic pigments, Environ. Mi-
crobiol., 7, 1009–1016, 2005b.

Otte, S. C. M., van de Meent, E. J., van Veelen, P. A., Pundsnes, A.
S., and Amesz, J.: Identification of the major chlorosomal bacte-
riochlorophylls of the green sulfur bacteriaChloroboium vibrio-
formeandChlorobium phaeovibrioides; their function in lateral
energy transfer, Photosyn. Res., 35, 159–169, 1993.

Ourisson, G., Albrecht, P., and Rohmer, M.: The microbial origin
of fossil fuels, Sci. Am., 251, 44–51, 1984.

Overmann, J., Beatty, J. T., Hall, K., Pfennig, N., and Northcote, T.
G.: Characterizatoion of a dense, purple sulfur bacterial layer in
a meromictic salt lake, Limnol. Oceanogr., 36, 846–859, 1991.

Pancost, R. D., Crawford, N., Magness, S., Turner, A., Jenkyns, H.
C., and Maxwell, J. R.: Further evidence for the development of
photic-zone euxinic conditions during Mesozoic oceanic anoxic
events, J. Geol. Soc. Lond., 161, 353–364, 2004.

Pearl, H. W.: A comparison of cyanobacterial bloom dynamics in
freshwater, estuarine and marine environments, Phycologia, 35,
25-35, 1996.

Pedersen, T. F. and Calvert, S. E.: Anoxia vs. productivity: What
controls the formation of organic-rich sediments and sedimentary
rocks? Am. Assoc. Petrol. Geol. Bull., 74, 454–466, 1990.

Rau, G. H., Arthur, M. A., and Dean, W. E.:15N/14N variations in
Cretaceous Atlantic sedimentary sequences: implication for past
changes in marine nitrogen biogeochemistry, Earth Planet. Sci.
Lett., 82, 269–279, 1987.

Raven, J. A.: The iron and molybdenum use efficiencies of plant
growth with different energy, carbon, and nitrogen sources, New
Phytol., 109, 279–287, 1988.

Rohmer, M., Bouvier-Nave, P., and Ourisson, G.: Distribution of
hopanoids triterpenes in prokaryotes, J. Gen. Microbiol., 130,
1137–1150, 1984.

Ross, D. A., Degens, E T., and MacIlvaine, J.: Black Sea: Recent
sedimentary history, Science, 1970, 163–165, 1970.

Rothschild, L. J. and Mancinelli, R. L.: Model of carbon fixation in
microbial mats from 3500 Myr ago to the present, Nature, 345,
710–712, 1990.

Sachs, J. P. and Repeta, D. J.: Oligotrophy and nitrogen fixation dur-
ing eastern Mediterranean sapropel events, Science, 286, 2485–
2488, 1999.

Sachs, J. P., Repeta, D. J., and Goericke, R.: Nitrogen and car-
bon isotopic ratios of chlorophyll from marine phytoplankton,
Geochim. Cosmochim. Acta, 65, 1431–1441, 1999.

Saino, T. and Hattori, A.:15N Natural abundance in oceanic sus-
pended particulate matter, Nature, 283, 752–754, 1980.

Schopf, J. W.: The oldest known records of life: Early Archean

www.biogeosciences.net/3/467/2006/ Biogeosciences, 3, 467–478, 2006



478 N. Ohkouchi et al.: Diazotrophic cyanobacteria during OAE-2

stromatolites, microfossils, and organic matter, in: Early Life on
Earth, edited by: Bengtson, S., Columbia University Press, New
York, 193–206, 1994.

Schlanger, S. O. and Jenkyns, H. C.: Cretaceous oceanic anoxic
events - causes and consequences, Geol. Mijnbouw, 55, 179–184,
1976.

Senge, M. O. and Smith, K. M.: Biosynthesis and structure of the
bacteriochlorophylls, in: Anoxygenic Photosynthetic Bacteria,
edited by: Blankenshipm R. E., Madigan, M. T., and Bauer, C.
E., Kluwer Academic Publishers, Netherlands, 137–151, 1995.

Simonin, P., J̈urgens, U. J., and Rohmer, M.: Bacterial triterpenoids
of the hopane series from the prochlorophyteProchlorothrix hol-
landicaand their intracellular localization, Eur. J. Biochem., 241,
865–871, 1996.
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