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Abstract. The seasonal variation of mono-and sesquiterpene
emission rates of Scots pine was measured from April to Oc-
tober in 2004. The emission rates were measured daily in
the afternoons with the exception of weekends. Emissions
were measured from two branches; one of them was debud-
ded in May (branch A), while the other was allowed to grow
new needles (branch B). The monoterpene emission pattern
remained almost constant throughout the measurement pe-
riod, 13-carene being the dominant monoterpene (50–70%
of the VOC emission). The standard monoterpene emission
potential (30◦C) was highest during early summer in June
(the average of the two branches 1.35µg g−1 h−1) and low-
est during early autumn in September (the average of the
two branches 0.20µg g−1 h−1). The monoterpene emission
potential of branch A remained low also during October,
whereas the emission potential of branch B was very high in
October. The sesquiterpenes were mainly emitted during mid
summer, the dominant sesquiterpene beingβ-caryophyllene.
Branch A had a higher sesquiterpene emission potential than
branch B and the emission maximum occurred concomitant
with the high concentration of airborne pathogen spores sug-
gesting a potential defensive role of the sesquiterpene emis-
sions. The sesquiterpene emissions were well correlated
with linalool and 1,8-cineol emissions, but not with monoter-
penes. Sesquiterpene and 1,8-cineol emissions were equally
well described by the temperature dependent and the tem-
perature and light dependent algorithms. This is due to the
saturation of the light algorithm as the measurements were
always conducted during high light conditions.

Correspondence to:H. Hakola
(hannele.hakola@fmi.fi)

1 Introduction

During the past decade the characteristics of the biogenic
VOC emissions from European ecosystems have been inten-
sively studied, both in the boreal forests and in the South
European regions. So far the studies have mainly concen-
trated on the short-term emissions of monoterpenes (Jan-
son 1993; Janson et al., 2001; Rinne et al., 1999, 2000;
Komenda and Koppmann, 2002) and isoprene (Hakola et
al., 1998), even though the VOC emissions have large sea-
sonal variations. Downy birch has been shown to emit large
amounts of linalool and sesquiterpenes early in the growing
season, while their later emissions consist mainly of sabinene
and ocimene (Hakola et al., 2001). Norway spruce emits
monoterpenes in May, whereas their emission mainly con-
sists of isoprene in June and sesquiterpenes in July (Hakola
et al., 2003). Due to their high reactivity the sesquiter-
penes have drawn a lot of attention lately. Their atmospheric
lifetimes are only a few minutes and therefore they cannot
be measured from the ambient air samples (Hakola et al.,
2000, 2003), yet they have a high potential to form sec-
ondary organic aerosol (Hoffmann et al., 1997; Jaoui et al.,
2003). Bonn and Moortgat (2003) suggest that sesquiterpene
ozonolysis could be responsible for the atmospheric new par-
ticle formation observed frequently in several rural locations
(Mäkel̈a et al., 1997; Kulmala et al., 2004). Sesquiterpenes
may also affect tropospheric ozone concentrations – they
may participate in ozone formation when enough nitrogen
oxides are present and in a very clean environment some of
the ozone deposition may be attributed to sesquiterpene re-
actions (Kurpius and Goldstein, 2003). The oxidation pro-
cesses of these very reactive compounds can also produce
hydroxyl radicals (Holzinger et al., 2004).

The present study is focused on the seasonal development
of the VOC emission rates of Scots pine. The temperature
and light dependence of the VOC emissions of Scots pine
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has been studied by Tarvainen et al. (2005) during the grow-
ing seasons of 2002 and 2003. However the data set in the
study was concentrated on spring and it was found that es-
pecially for sesquiterpenes more measurements were needed
during high summer to assess the seasonality. The knowl-
edge on seasonal variation of biogenic VOC emissions is
needed for several purposes, e.g. for the evaluation of the
effect of biogenic VOCs on the ozone concentrations in the
boreal forested areas and the estimation of the contribution
of sesquiterpenes to the ozone deposition as well as the new
particle formation and growth processes in clean areas.

2 Experimental

The VOC emission rates of Scots pine (Pinus sylvestrisL.)
were measured in southern Finland in Hyytiälä (61◦51′ N,
24◦17′ E) from April to October in 2004. The emission
rates were measured daily in the afternoons with the excep-
tion of weekends, when no measurements were conducted.
The measured tree was growing in a natural forest environ-
ment, with an average tree height of 14 m. The samples
were collected at a height of about 13 m from two fully sun-
lit branches. Two branches of the same tree were enclosed
in two Teflon enclosures in March and remained there until
October in order to prevent losses to the surfaces that can
take place due to insufficient equilibrium time (Helmig et
al., 2004). The other end of the enclosures remained open
except during measurements, to ensure sufficient ventilation
for the shoot in other times. The purge flow was maintained
only during the measurements. One of the measured shoots
(henceforth called branch A) was debudded in May before
budbreak, while the other (branch B) one was allowed to
grow new needles.

The emission rates were measured using a dynamic flow
through technique. The volume of the cylinder shape Teflon
enclosures was approximately 20 l and they were equipped
with inlet and outlet ports and a thermometer inside the en-
closure. The cover of the enclosures was made of transparent
Teflon film. The photosynthetically active photon flux den-
sity (PPFD) was measured just above the enclosure. The flow
through the enclosure was about 8 l per minute. Ozone was
removed from the inlet air using MnO2-coated copper nets
(Pollmann et al., 2005). The efficiencies of the ozone scrub-
bers were checked prior to and after the measurement cam-
paign and they removed ozone completely. The air samples
were collected onto adsorbent tubes simultaneously from
both the inlet and outlet ports. The emission rate is deter-
mined as the mass of compound per needle dry weight and
time according to

E =
(C2 − C1)F

m
. (1)

HereC2 is the concentration in the outgoing air,C1 is the
concentration in the inlet air, andF is the flow rate into the

enclosure. The dry weight of the biomass (m) was deter-
mined by drying the needles at 75◦C until consistent weight
was achieved, and the mass of the new needles was estimated
using a regression from a comparable adjacent shoot where
daily growth measurements were performed.

The samples were collected using adsorbent tubes filled
with Tenax-TA and Carbopack-B. The sampling time was
60 min and sampling flow rate about 100 ml min−1 result-
ing in approximately 3 liter sample volumes. The adsor-
bent tubes were analyzed using a thermodesorption instru-
ment (Perkin-Elmer ATD-400), connected to a gas chromato-
graph (HP 5890) with HP-1 column (60 m, i.d. 0.25 mm)
and a mass-selective detector (HP 5972). The detec-
tion limits were 32 ng m−3 for isoprene and 2-methyl-3-
buten-2-ol (MBO). For monoterpenes the detection limits
were: camphene 11 ng m−3, carene 42 ng m−3, 1,8-cineole
84 ng m−3, limonene 60 ng m−3, α-pinene 30 ng m−3, β-
pinene 36 ng m−3, sabinene 59 ng m−3, and terpinolene
29 ng m−3. The detection limit forβ-caryophyllene was
79 ng m−3.

The standardized emission potentials (at temperature
293 K and light intensity 1000µmol photons m−2 s−1) of
2-methyl-3-buten-2-ol (MBO) were calculated according to
the temperature and light dependent emission algorithm and
those of mono- and sesquiterpenes according to the tempera-
ture dependent emission algorithm presented by Guenther et
al. (1993) and Guenther (1997). The light and temperature
dependence of the emissions of some of the compounds was
further tested as described in Tarvainen et al. (2005) using
the emission algorithms presented by Guenther (1997) and
Schuh et al. (1997).

Sampling of fungal spores was undertaken with volumetric
Burkard-spore trap (Hirst, 1952) on the level of tree canopy
in Hyytiälä . The spores were counted during 1 March–14
August 2004, and identified on stratified randomised fields
with microscopic observation (M̈akinen, 1981). The daily
average counts of airborne spores belonging to orders Ured-
inales and Ustilaginales, and subdivisions Basidiomycotina
and Ascomycotina (one-, two- and more than two-celled
spore types) were used in analyses. Uredinales and Usti-
laginales are biotrophic pathogens. Marked fraction of Ba-
sidiomycotina spores dispersing in spring-time and summer
are pathogenic or saprophytic wood-rotting fungi. Group
Ascomyotina contains numerous pathogenic and endophytic
species invading living hosts (Manion, 1991).

According to the statistics of the Finnish Meteorological
Institute, year 2004 was close to or slightly warmer than the
long term average. In the southwestern and western parts
of the country the growing season started already in April,
which is earlier than average. April was, however, also very
dry, with the precipitation amounts far below the long term
average. The beginning of May was exceptionally warm.
However, there were severe cold spells later in May and even
in June in the southern parts of the country, which slowed
down or even completely stopped the progress of the grow-
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Table 1. The monthly mean VOC emission potentials (30◦C) of two branches (A and B) of the same Scots pine tree
(ng g−1

(needledryweight) h−1). The emission potentials are standardized to 30◦C according to Guenther et al. (1993) usingβ value 0.09 K−1 for

monoterpenes and 0.19 K−1 for sesquiterpenes (see Table 2). The MBO emission was standardized using the light and temperature dependent
isoprene algorithm. (Guenther, 1997). 95% confidence intervals (in parenthesis) are calculated as 2·std(emission potential)/

√
(number of

measurements). The effect of the debudding of branch A on 13 May has been removed from the monthly mean by ignoring the measurements
for one week after debudding.

April May June July August September October

MBO A 58 (8) 67 (23) 33 (11) 28 (7) 16 (3) 21 (13) 16 (8)
MBO B 14 (16) 52 (20) 126 (39) 56 (19) 26 (5) 27 (7) 14 (15)

1,8-Cineol A 2 (4) 44 (12) 45 (18) 66 (18) 19 (7) 1 (1) 1 (2)
1,8-Cineol B 5 (5) 30 (11) 35 (14) 71 (20) 18 (4) 0 (0) 0 (0)

linalool A 4 (7) 0 (0) 0 (0) 64 (31) 2 (3) 0 (0) 0 (0)
linalool B 7 (9) 0 (0) 0 (0) 14 (10) 2 (3) 0 (0) 0 (0)

3-Carene A 314 (141) 896 (395) 905 (904) 572 (152) 306 (98) 176 (86) 188 (89)
3-Carene B 752 (289) 910 (380) 1132 (640) 863 (404) 322 (152) 196 (106) 619 (375)

other monoterpenes A 141 (54) 263 (96) 360 (236) 266 (89) 136 (42) 69 (29) 84 (77)
other monoterpenes B 369 (171) 282 (82) 295 (132) 243 (62) 142 (55) 129 (112) 404 (227)

caryophyllene A 9 (17) 3 (4) 139 (79) 385 (112) 56 (23) 9 (12) 0 (0)
caryophyllene B 5 (11) 28 (47) 33 (24) 127 (35) 28 (16) 12 (10) 38 (77)

other sesquiterpenes A 0 (0) 0 (0) 26 (40) 92 (19) 23 (11) 6 (11) 0 (0)
other sesquiterpenes B 0 (0) 5 (9) 4 (6) 32 (16) 14 (7) 7 (7) 15 (31)

ing season. The summer was exceptionally rainy, with record
high precipitation amounts in southern and central Finland in
July. May, June and July were also cloudier than the long
term average. September was again quite rainy, completing
the exceptional wetness of thermal growing season, which
then ended after the first week of October in the southern
and central parts of the country.

3 Results and discussion

3.1 Seasonal variability of the emissions

The 7-day running medians of the measured emission rates
are presented in Figs. 1a–e. Small amounts of monoter-
penes were emitted already in March (not shown in the fig-
ure) when the measurements were started. During the first
week of May the temperature was exceptionally high for the
time of the year and the maximum monoterpene emission
rate for the growing season of 2004 was observed during that
period (Fig. 1a). In general, the monoterpene emissions from
the two measured branches did not differ much, although in
April, branch B emitted almost twice as much monoterpenes
as branch A. In order to investigate the differences in the
emission behaviour of new and old needles branch A was

debudded on 13 May, while branch B was allowed to grow
the new needles. The effect of debudding is discussed in
more detail below. Monoterpene emission rates increased at
the end of June, but they decreased already in August and re-
mained low until the emission rates from branch B increased
at the end of October. Unexpectedly high emission rates from
Scots pine during autumn have been measured also earlier
(Tarvainen et al., 2005). The monoterpene emission pattern
remained almost the same throughout the growing season
(Table 1). The main compound was13-carene, composing
more than 50% of the emission during almost the whole pe-
riod. The normalized emission potentials of13-carene and
other monoterpenes from both branches were significantly
lower in the late summer and early fall (August–September)
than earlier in the summer.

Sesquiterpenes, mainlyβ-caryophyllene (Fig. 1b) and the
oxygen containing compounds 1,8-cineole (Fig. 1c) and
linalool (Fig. 1d) were detected in the emission later in the
year than the monoterpenes. In addition toβ-caryophyllene,
two other sesquiterpenes were detected, according to NIST
mass spectra library these compounds could beα-farnesene
andα-caryophyllene, but these identifications are only ten-
tative. 1,8-cineole was identified for the first time at the
end of April and linalool was not observed until July. The
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sesquiterpene emissions were initiated at the end of June and
they ceased already in the beginning of August, although
sesquiterpenes were found in a few occasional samples also
during spring. The emissions ofβ-caryophyllene were well
correlated with those of linalool and 1,8-cineole, but not with
the monoterpene emissions. In the middle of the summer (15
June–15 August), at the time of the sesquiterpene emissions,
the correlation coefficients (r) between theβ-caryophyllene
and linalool, 1,8-cineole,α-pinene and13-carene emissions
from branch A were 0.9, 0.8, 0.3 and 0.3, respectively. The
sesquiterpenes and linalool have been found to be well corre-
lated also in the VOC emission from downy birch (Hakola et
al., 2001). The contribution ofβ-caryophyllene was signif-
icant in July, when it was the most abundant compound af-
ter 13-carene in the emission from branch A (Table 1). The
normalized emission potentials ofβ-caryophyllene and other
sesquiterpenes from both branches were significantly higher
in July than the rest of the measurement period.

MBO emissions were detected for the first time at the end
of April (Fig. 1e). Simultaneously, a small isoprene emission
was also observed. The isoprene emission rate was well cor-
related with the MBO emission rate and it is possible that this
is an artefact as MBO can be dehydrated – resulting in iso-
prene formation – in the analysis. It is possible that our MBO
results are underestimated by up to 50%. Still the MBO
emissions were quite low, although MBO has been found to
be one of the major VOC compounds in pine forests in the
United States (Goldan et al., 1993; Harley et al., 1998).

3.2 Sesquiterpene emissions and pathogen spores

Martin et al. (2003) have shown that methyl jasmonate causes
a 5-fold increase in the total terpenoid emission of Norway
spruce, with an emission pattern shift towards oxygenated
monoterpenes (linalool) and sesquiterpenes (e.g. (E)-β-
farnesene). Methyl jasmonate is known to induce the pro-
duction of defense-related compounds and resistance against
several herbivores, and has also been used to induce defen-
sive responses without causing physical damage to the plant.
Since daily measurements of pathogen spores from ambi-
ent air in Hyytïalä were available, we plotted them together
with the sum of the emission rates of the stress-induced com-
pounds (linalool, 1,8-cineole and sesquiterpenes) (Fig. 2).
The sesquiterpene emissions were first detected at about the
same time as spores with potential pathogens were mea-
sured for the first time. Also the maximum emissions of
sesquiterpenes, linalool and 1,8-cineole occur concomitant
with the maximum of the pathogen spores (Fig. 2). This
finding would support the theory that the sesquiterpenes and
oxygenated monoterpenes are released by the plant for de-
fensive purposes (Wei, 2003). Factor analysis conducted
with the data also showed at least two groups of compounds
with emissions behaving in distinctive manner. The first
group comprised ofα-pinene, sabinene,β-pinene,13-carene
and limonene, and the second one of 1,8-cineole, linalool,

caryophyllene andα-farnesene. The pathogen spores had
their highest factor loading on the same factor with the latter
group.

There are also other stress factors that could initiate
sesquiterpene emissions, ozone for example, and one could
speculate if the sesquiterpene emissions are affected when re-
moving ozone from the air entering the enclosure. Removal
of ozone is a standard procedure, however, to avoid chemical
reactions between ozone and emitted compounds, and thus
our results are comparable with others that have been gained
using shoot enclosures in field conditions.

3.3 The effect of debudding

The increased monoterpene emissions caused by the debud-
ding of branch A are studied in Figs. 3a, b, where the nor-
malized (30◦C) emission potentials of various compounds
for both branches are shown. The increase of the emission
occurred immediately after the cutting of the terminal buds
of the branch A on 13 May and lasted for approximately a
week (Fig. 3a). The emission rates of all monoterpenes from
branch A increased after the debudding, but those of MBO,
1,8-cineole andβ-caryophyllene did not (Fig. 3b). It is well
known that in pine MBO is not stored in needles, but is re-
leased to the air immediately after it is synthezised (Harley et
al., 1998), and this might be the case for 1,8-cineol, too. Ac-
cording to Niinemets et al. (2002), the pools of oxygenated
VOCs with low Henry’s law constant, preferably partitioning
to the leaf aqueous phase, may rapidly adjust to changes in
stomatal aperture, and their storage pools therefore are rela-
tively small when the stomata are open.

Later in the growing season these two branches behaved
somewhat differently. The most important difference in
the emission rates between the branches was found in the
emissions of sesquiterpenes. The debudded branch (A) had
much higher sesquiterpene emission rates reflecting to emis-
sion potentials normalized to 30◦C, which differ significantly
from each other (Table 1). The July average emission po-
tentials (30◦) were 0.39±0.11 and 0.13±0.04µg g−1 h−1 for
branches A and B, respectively. The only visible difference
between the branches was that after debudding branch A
started to grow new buds. However, it is not likely that the
sesquiterpenes were emitted from the developing buds, since
high emissions related to bud sprouting could not be seen in
the beginning of the summer, neither in fall during the cur-
rent year’s bud development in branch B.

Contrary to sesquiterpene emissions, higher MBO emis-
sion rates were measured from branch B which was not de-
budded and had new needles. This could be due to matu-
ration of new needle tissue, as the enzyme activities for ter-
penoid biosynthesis correlate with the developmental stage
of leaf tissues (Lehning et al., 2001).

The seasonal variation of the mono- and sesquiterpene
emission potentials of the two brances is depicted in Fig. 4.
The monoterpene emission potentials between the two
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Fig. 1. 7-day running medians of the measured VOC (sum of monoterpenes, sum of sesquiterpenes, MBO, 1,8-cineol, linalool) emission
rates from Scots pine in Hyytiälä, Finland in 2004. The samples were taken at midday from two different branches (A and B) of the same
tree.

branches did not show significant differences until autumn.
In October the branch which was not debudded (B) showed
significantly higher emission potential than the debudded
branch (Fig. 4). The contribution of the new needle year
class to the whole branch monoterpene emissions can thus
be significant, especially during the winter hardening period
in late fall.

3.4 Light and temperature dependence of the emissions

As has been shown in a number of studies (e.g. Janson, 1993;
Komenda and Koppmann, 2002; Tarvainen et al., 2005) the

VOC emission rates of Scots pine are dependent on tempera-
ture and the present study again confirmed the earlier results.
As our data set included the high summer measurements
which were lacking in the work of Tarvainen et al. (2005),
we have further investigated the temperature and light de-
pendence of sesquiterpenes and 1,8-cineole during this in-
tense emission period. In addition to the algorithms com-
monly used in biogenic emission modeling (Guenther et al.,
1993; Guenther, 1997) which were also applied by Tarvainen
et al. (2005), an algorithm presented by Schuh et al. (1997)
was tested for the light dependence.
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Fig. 3. (a)The effect of the debudding of branch A on 13 May on
the monoterpene emissions. Branch B was left untouched.(b) The
effect of the debudding of branch A on the emission potential of
total monoterpenes, 1,8-cineole,β-caryophyllene and MBO.

Nonlinear regression was used to fit the observed emis-
sions to the temperature dependent emission algorithm,
Eq. (5) of Guenther et al. (1993), henceforth called the TEMP
algorithm. In addition to the simple exponential TEMP algo-
rithm, we tested the light and temperature dependent emis-
sion algorithm, Eq. (1) of Guenther et al. (1993), with cor-

Table 2. The results of the nonlinear regression analysis of theβ-
caryophyllene and 1,8-cineole emission rates of branches A and B
in July 2004 using three emission algorithms; the temperature de-
pendent TEMP algorithm (Guenther et al., 1993) and two temper-
ature and light dependent algorithms G97 (Guenther et al., 1993,
Guenther, 1997) and SCHUH (Schuh et al., 1997). E0 is the emis-
sion potential (at 30◦C and 1000µmol photons m−2 s−1), β is the
coefficient describing the strength of the temperature dependence in
the TEMP algorithm and R2 is the regression statistic.

Branch A Branch B
E0 β R2 E0 β R2

β-caryophyllene
TEMP 407±47 0.175 0.63 150±19 0.201 0.76
G97 373±41 – 0.61 122±12 – 0.70
SCHUH 391±42 – 0.62 133±13 – 0.70

1,8-cineole
TEMP 90.1±6.4 0.180 0.82 113±11 0.180 0.82
G97 82.3±5.9 – 0.79 97.9±7.0 – 0.80
SCHUH 86.4±5.8 – 0.81 107±8 – 0.80

rected formulation from Eq. (2) of Guenther (1997), and the
slightly different formulation of the light dependence pre-
sented by Schuh et al. (1997), henceforth called the G97 and
SCHUH algorithms, respectively. The latter two algorithms
have identical formulation, except that Schuh et al. (1997)
suggest a slightly more moderate light dependence, with the
light dependent environmental correction factor used in the
G97 algorithm raised to the power of two in the SCHUH
parameterization. The results of the regression analysis for
both studied compounds and all three tested algorithms are
presented in Table 2 which gives the standard emission po-
tential E0 (at 30◦C and 1000µmol photons m−2 s−1), theβ

coefficient indicating the strength of the temperature depen-
dence when applicable, and the regression statistic R2.

The nonlinear regression fit of the July sesquiterpene
data to the TEMP algorithm resulted in a reasonably good
agreement, with an R2 of 0.63 and 0.76 for branches A
and B, respectively. The modelledβ-caryophyllene emis-
sion rates obtained from this fit are presented in Fig. 5 to-
gether with the observations. The observed higher emis-
sions of the debudded branch A are reflected in the standard-
ized emission potentials, which were 407±47 ng g−1 h−1 and
150±19 ng g−1 h−1 for branches A and B, respectively (Ta-
ble 2). These values are close to the ones given in Table 1
for the β-caryophyllene emission potentials of branches A
and B in July obtained as averages from the measurements.
Tarvainen et al. (2005) were not able to present late sum-
mer emission potentials forβ-caryophyllene, but their val-
ues for early summer and autumn, 160±160 ng g−1 h−1 and
158±295 ng g−1 h−1, respectively, are very close to the val-
ues obtained in this study for the undisturbed branch B. The
β coefficient values obtained in our study were of 0.18 for
branch A and 0.20 for branch B, which is also in agreement
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Fig. 4. Monthly mean mono- and sesquiterpene emission potentials (30◦C) of the two branches with the estimated 95% confidence intervals.
The main monoterpene,13-carene is plotted separately from the rest of the monoterpenes and the main sesquiterpene,β-caryophyllene,
separately from the rest of the sesquiterpenes.

with the results of Tarvainen et al. (2005) who found values
0.18 and 0.16 for early summer and autumn, respectively.

Regression fits of the Julyβ-caryophyllene data to the G97
and SCHUH algorithms also resulted in a reasonably good
agreement, with only slightly lower standard emission po-
tentials for both branches (Table 2).

Tarvainen et al. (2005) found that the 1,8-cineole emis-
sions measured in 2003 in Hyytiälä were equally well de-
scribed by the temperature and light dependent algorithm
G97 and by the temperature-only dependent TEMP algo-
rithm. They concluded that more measurements of the 1,8-
cineole emissions should be made, especially during the high
summer in order to resolve the light dependence of the emis-
sions. Our data set of 2004 had a better coverage of this
high emission period but it also yielded the same ambigu-
ous results. In addition to being able to describe the emis-
sions equally well, all three algorithms also yielded almost
identical standard emission potentials, with values ranging
from 82±6 ng g−1 h−1 to 90±6 ng g−1 h−1 for branch A and
from 98±7 ng g−1 h−1 to 113±11 ng g−1 h−1 for branch B
(Table 2). The standard emission potentials are again very
close to those given in Table 1 for the average emission po-
tentials of 1,8-cineole for branches A and B in July. The stan-
dard emission potential reported for 1,8-cineole by Tarvainen

et al. (2005) was 68 ng g−1 h−1 over the whole vegetation pe-
riod which is slightly lower than the values obtained in this
study for the intense emission period in July. According to
our results theβ coefficient for 1,8-cineole was 0.18 for both
branches, while Tarvainen et al. (2005) again found a slightly
lower value of 0.14.

The remarkable similarity of the emission potentials of es-
pecially 1,8-cineole and the high R2 values obtained by the
nonlinear regression analysis using the different algorithms
is due to the saturation of the light algorithm as the mea-
surements were always conducted during high light condi-
tions. Diurnal measurements would be needed for the valida-
tion or development of emission algorithms. In the data set
collected during these experiments in Hyytiälä, the depen-
dence of the temperature (T) of the photosynthetically active
photon flux density (PPFD) was logarithmic with the form
T=11.885·ln(PPFD)−59.614 (R2=0.72). In July 2004 the
dependence was even stronger: T=7.8851·ln(PPFD)−28.085
(R2=0.83). The maximum temperatures in July were approx-
imately 30◦C, i.e. well below the turning point of the expo-
nential growth of the temperature dependent correction factor
of the G97 and SCHUH algorithms. Furthermore, the PPFD
values in the July data ranged approximately between 500
and 1500µmol m−2 s−1 leading to saturation of the light al-
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Fig. 5. Measured and modelledβ-caryophyllene emission rates in
Hyytiälä in July 2004. The modeled emissions were obtained by a
nonlinear regression fit of the temperature dependent emission al-
gorithm of Guenther et al. (1993) to the measured data.

gorithm in most cases. This explains why the results using
the G97 and SCHUH algorithms were almost identical as in
this region the light dependent environmental correction fac-
tor is quite close to unity and the effect of the power of two
remains small.

4 Conclusions

The seasonal variation of monoterpene emission rates of
Scots pine confirmed the earlier results; a high emission po-
tential during early summer, declining emission potentials
later in summer and early autumn and higher again later
in autumn (Komenda and Koppmann, 2002; Tarvainen et
al., 2005). However, this study showed that the increase
of the emission potential during autumn is due to the new
needles, as the emission potential of the debudded branch
did not increase. The monoterpene emission pattern re-
mained almost constant throughout the measurement period,
13-carene being the dominant monoterpene (50–70% of the
VOC emission). The standard monoterpene emission po-
tential (30◦C) was highest in June (the average of the two
branches 1.35µg g−1 h−1) and lowest in September (the av-
erage of the two branches 0.20µg g−1 h−1).

The new needles also had a much higher MBO emission
potential than the needles from the previous years. The stan-
dardized MBO emission potential was more than ten times
higher in the branch with new needles in June and continued
to be a little higher also later in the growing season.

The sesquiterpenes were mainly emitted in the mid-
dle of the summer, the dominant sesquiterpene beingβ-
caryophyllene. The sesquiterpene emissions were well corre-
lated with the linalool and 1,8-cineole emissions, but not with
the monoterpenes. The emission maximum occurred con-
comitant with the maximum concentration of the pathogen
spores suggesting a potential defensive role of the sesquiter-
pene emissions.

It has been shown earlier that the monoterpene emissions
in Hyytiälä are usually well explained by a temperature
dependent emission algorithm (Tarvainen et al., 2005).
In the present study, the temperature dependence of the
sesquiterpene and 1,8-cineole emissions was further studied
and they were found to be equally well described by the
temperature dependent and the temperature and light de-
pendent algorithms. This ambiquity of the algorithm fitting
results is due to the saturation of the light algorithm as the
measurements were always conducted during high light
conditions.

Edited by: J. Kesselmeier
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