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Abstract. A recent paper by Knorr et al. (2005a) suggested
that the decomposition of resistant soil organic matter is more
temperature sensitive than labile organic matter. In Knorr et
al.’s (2005a) model, the reference decay rate was presumed
to be same for all pools of soil carbon. We refit Knorr et
al.’s (2005a) model but allow both the activation energy and
the reference decay rate to vary among soil C pools. Under
these conditions, a similar fit to measured data can be ob-
tained without invoking the assumption that the resistant C
pool is more temperature sensitive than the labile pool. Other
published evidence does not unequivocally support Knorr et
al.’s (2005a) hypothesis of increased temperature sensitivity
of resistant pools of soil carbon. Because of the lack of ex-
perimental data, Knorr et al.’s (2005a) conclusion that the
decomposition of the resistant SOM is more temperature sen-
sitive than the labile pool is premature.

1 Temperature sensitivity of resistant soil organic mat-
ter

The response of soil organic carbon (SOC) to temperature
change or global warming is important for predicting feed-
backs between SOC and climate change. Because of the dif-
ficulties and large uncertainties in estimating the tempera-
ture sensitivities of the decomposition of soil organic matter
(SOM) pools, the relationship between the temperature sen-
sitivity of decomposition and SOM pools is of paramount in-
terest (Davidson et al., 2000;Ågren, 2000; Reichstein et al.,
2005). The resistant C pool (often referred to as stable, re-
calcitrant or “old” SOM in literature) was thought to be less
sensitive to temperature change than the labile pool (Liski
et al., 1999; Giardina and Ryan, 2000), which was not sup-
ported by analysis of SOM pools and their contributions to
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the overall turnover of soil C stocks (Davidson et al., 2000),
simulation of SOM dynamics in soil warming experiments
(Kirschbaum, 2004; Eliasson et al., 2005) and soil incuba-
tion (Townsend et al., 1997). A similar temperature sensi-
tivity was applied to both labile and resistant pools in many
multi-pool SOM models (e.g. the CENTURY model, Parton
et al., 1987; the DNDC model, Li et al., 1993; the Roth-C
model, Coleman and Jenkinson, 1996). Two recent papers
highlight current debate in this field. Based on a laboratory
incubation of soil samples, Fang et al. (2005) concluded that
the decomposition of resistant SOM pool is not less sensitive
to temperature than the labile pool. Knorr et al. (2005a) used
a multi-pool model to fit data from Holland et al. (2000) and
suggested that the model can simulate the long-term temper-
ature sensitivity of SOC decomposition, and that the resistant
carbon pool is more sensitive to temperature than the labile
pool. As the future response of soil stored C to global warm-
ing is mainly dependent on the temperature sensitivity of the
resistant C pool (Fang et al., 2005), Knorr et al.’s (2005a)
finding may have important implications for future studies.
Here, we argue that a presumption of a fixed reference decay
rate for all pools used in the model of Knorr et al. (2005a)
necessarily leads to the conclusion that the resistant pool is
more temperature sensitive than the labile pool. We show
that if this assumption is incorrect, the finding that resistant
C is more sensitive to temperature is not supported.

In Knorr et al. (2005a), the decomposition of SOM was
simulated with a multiple pool model:

dCi(t)

dt
= −kiCi(t), and (1)

ki(Tk) = A exp(−Ei/RTk) (2)

whereCi(t) is theith carbon pool, decaying at a temperature-
dependent rateki over time,t . ki is simulated by the Arrhe-
nius model with the activation energyEi varying among C
pools and parameterA (the theoretical decay rate atEi=0)
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Fig. 1. Comparison between modelled and measured data among
models. Measured data are average of all samples.(a) Data from
Holland et al. (2000) cited by Knorr et al. (2005a). Soil samples
were taken from a tropical forest in Brazil, and were incubated for
24 weeks under different constant temperatures (15, 25, 35, and
45◦C). Sample size was 10–15 g.(b) Measured respiration rate
from Fang et al. (2005) for soils under a middle-aged plantation
of Sitka spruce in Scotland. Soil samples (4 samples with 4 repli-
cates, each weighed 600–800 g) were incubated for 102 days under
changing temperature (4–44◦C, with a step of 4◦C).

fixed for all pools.Tk is soil temperature in Kelvin andR is
the universal gas constant (Knorr et al., 2005a).

Knorr et al.’s (2005a) model is similar to many widely used
multi-pool models (e.g. K̈atterer et al., 1998), but has a new
assumption of a fixed “A”. With the assumption of a sin-
gle A for all pools, it is implicitly assumed that the slower
decomposition in the resistant pools is due only to a higher
activation energy,Ei , and cannot be due to differences in
stereochemistry of the decomposing substrates/sites. This as-
sumption conflicts with current knowledge about SOM qual-
ity and decomposition. In SOM decomposition, the activa-
tion energy is the temperature dependence of soil microbial
activity under given conditions of site and substrate. Even if
we assume that microbial activity does not change with tem-

perature (when assumingEi=0), the stereochemical structure
of SOM pools will lead to different decay rates. Differences
in stereochemistry would result in a change in the value of
A. The conclusion that the quality difference of SOC pools
is due only to the different response of carbon pools to tem-
perature immediately follows from the assumption of fixed
A. We argue that the reference decay rate of decomposition,
A, could be different for each pool. In addition to any dif-
ferences in activation energy among pools, stereochemical
differences between the compounds characterising the resis-
tant pool, and those characterising the labile pool, are likely
to influence decomposition. Using Knorr et al.’s (2005a) as-
sumption, the resistant carbon pool necessarily has a larger
activation energy than the labile pool because of the smaller
apparent decomposition rate constant of the resistant pool,
and any other possibility is excluded. Since there is no inde-
pendent evidence supporting a fixed value ofA for all pools,
a more appropriate assumption when fitting the model is that
bothE andA may vary among C pools. The complexity of
the model is not increased by allowing both parameters to
vary: model complexity is defined by the number of assump-
tions as well as the number of degrees of freedom, and the
assumption of fixedA is merely replaced by an extra degree
of freedom in model fitting.

By fitting Knorr et al.’s (2005a) model to the data
(from Holland et al., 2000) used in Knorr et al. (2005a),
but allowing bothA and E to vary among C pools, we
show that the fit (R2=0.973) is as good as in Knorr
et al. (2005a) (R2=0.971, Fig. 1a). Fitted parameters
(c0=0.071012, c1=1.05556, c2=28.2735 g C per kg soil,
E0=54556, E1=52475, E2=30623 Jmol−1, A0=6.1×108,
A1=9736817,A2=8.09169) do not suggest that the resistant
pool is more sensitive than the labile pool. As noted by Knorr
et al. (2005a), parameters for the third pool are not relevant
as this pool is effectively constant over biological timescales.
If only allowing A to change, the goodness-of-fit (R2=0.972,
fitted E=50564 Jmol−1 for all pools) is still similar to that
reported in Knorr et al. (2005a).

Knorr et al. (2005b) suspect that allowing bothA andE to
vary among C pools may results in the model becoming self-
contradictory due to an initially more labile pool becoming
a more stable pool at some cross-over temperature, i.e. the
decomposition rate of the labile pool (with a higherA and
maybe a smallerEi) becomes smaller than that of the re-
sistant pool (with a smallerA and maybe a higherEi) at a
high temperature. Theoretically, such a cross-over is not self-
contradictory as the change of relative decomposition rates
of the pools with temperature depends on the relative con-
tribution of activation energy and stereochemistry in mediat-
ing decomposition and the temperature optima of microbial
groups with preferential substrates/pools. Even with a large
activation energy for the resistant pool as assumed in Knorr
et al. (2005a), changing temperature from−10 to 50◦C will
cause a change in the turnover rate of the most resistant pool
at a rate about 15 times faster than that of the labile pool
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(E−related difference). This difference is smaller than the
difference in the value of the reference turnover rate,A, ob-
served for resistant and labile pools in experiments (Kätterer
et al., 1998), and simulated in present models (Coleman and
Jenkinson, 1996; Parton et al., 1987). In a two-pool model,
A is commonly 100 times larger in the labile pool than in the
resistant pool (K̈atterer et al., 1998). Allowing bothA and
E to vary is unlikely to cause a cross over in decomposition
rates of labile and resistant C pools with changing tempera-
ture. At present, there is no published study (with variableA

and fixed/variableE for all pools) suggesting such a cross-
over.

We have also fitted the model with the data from our in-
cubation experiment (Fang et al., 2005) by varyingE only,
varying bothA and E, and varyingA only. The fit is al-
most the same for the three different scenarios (Fig. 1b), and
does not show that the decomposition of resistant C pool is
more sensitive than the labile pool under combinations of
fixed/variableE andA. We contend that fitting the model
to available data alone is not a sensitive way to determine
whether soil C pools respond differently to temperature vari-
ation. A good fit between measured and modelled data does
not necessarily imply that all model assumptions are correct.
We feel that it is more appropriate in a model such as that
used in Knorr et al., not to restrictA and E to remaining
constant, but to allow them to vary among SOM pools. When
this is done, fitting the model to either the original data as in
Knorr et al. (2005a), or that of Fang et al. (2005), does not
suggest that resistant C is more sensitive to temperature than
labile C.

Knorr et al. (2005a) used data of 13 incubated samples
compiled in K̈atterer et al. (1998) as further evidence that
resistant organic matter is more temperature sensitive than
the labile pool. A significant negative correlation (R2=0.49)
between the activation energy and the initial fraction of the
labile pool was taken as evidence that the resistant pool is
more temperature sensitive than the labile pool. The 13 sam-
ples can be divided into two groups: soil or amended soil (9
samples from five experiments) and plant material (4 samples
from other two experiments). The significant correlation re-
ferred to in Knorr et al. (2005a) is due a significant difference
between the two groups (Fig. 2). There is no clear correla-
tion within each group (R2=0.06 and 0.29 for soil and plant
material, respectively). The apparent significant correlation
between activation energy and the aggregated turnover time
in Kätterer et al. (1998), as stated by Knorr et al. (2005a),
largely depends on the three samples of plant material from
a single study conducted by Waksman and Gerretsen (1931)
and appears to be an artefact of combining different groups
of data. Furthermore, the aggregated turnover time by Knorr
et al. (2005a) for the data in K̈atterer et al. (1998) from dif-
ferent sites was not solely related to the quality of organic
matter (or to the fractions of resistant and labile pools), as
other conditions, e.g. the microbial community, also changed
with sites.
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Figure 2. 
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Fig. 2. The relationship between the activation energy and the initial
fraction of the fast-turnover pool for the data referred to by Knorr et
al. (2005a). A two-pool model, similar to Eqs. (1–2), was fitted to
observed data but the activation energy was assumed to be the same
for both pools (K̈atterer et al., 1998).

2 Other evidence for higher temperature sensitivity of
resistant SOM?

Warming soils in controlled experiments is used as an ana-
logue of global warming. With a prolonged warming exper-
iment, warming effects on SOM decomposition have been
shown to decline with time (Luo et al., 2001; Rustad et al.,
2001; Str̈omgren, 2001). This decline was previously ex-
plained as the increase in the proportion of resistant pool
at later stages with the resistant pool being less sensitive
to warming (Peterjohn et al., 1994), or as an adaptation of
the microbial community to enhanced temperature (Luo et
al., 2001; Str̈omgren, 2001). Other recently published work,
however, suggests that a reduced turnover rate of SOM to in-
creased soil temperature over time is due to depletion of read-
ily decomposable substrate (Kirschbaum, 2004; Eliasson et
al., 2005). These papers suggest that the fractional change of
C pools can account for the change in respiration rate over
time, though the temperature sensitivity for decomposition
remains unchanged. The findings are consistent with data
from soil warming experiments and do not need to invoke a
different temperature sensitivity of labile and resistant SOC
to explain observed results.

It has been suggested that low quality organic mat-
ter (equivalent to more resistant SOM pools) is more
temperature sensitive, based on the assumed thermodynam-
ics of enzyme kinetics (Bosatta andÅgren, 1999). However,
this hypothesis has not been verified by experiment due to
the difficulty in partitioning SOM pools and their tempera-
ture sensitivities. Some other recent experiments also sug-
gest that the decomposition of resistant C components may
be more sensitive to temperature change (Fierer et al., 2003,
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2005). In these experiments, soil respiration rate was deter-
mined by the change in headspace CO2 concentration over
24 h. At the end of the period, the headspace CO2 concentra-
tion with the organic matter (OM) of high quality and at high
temperature (up to 2% of the air in headspace) was signifi-
cantly higher than that with low quality OM at low tempera-
ture (a few hundred parts per million). The respiration rate in
some of the samples (high quality, at high temperature) could
have been inhibited by the high headspace concentration of
CO2(Qi et al., 1994). The possibility that theQ10 value for
high quality OM (or labile pool) has been underestimated
cannot be eliminated from these experiments.

3 Conclusion

Because there are stereochemical reasons why the reference
decay rate,A, can vary between pools, and we have shown
that if A is allowed to vary, the resistant pool is not nec-
essarily more sensitive to temperature than the labile pool,
we feel that the modelling approach (presuming a singleA
for all SOM pools without independent evidence) used by
Knorr et al. (2005a) to derive their conclusion is unsafe.
The conclusion of Knorr et al. (2005a) that resistant SOC is
more sensitive to temperature than labile SOC is premature.
Whilst we do not exclude this possibility, we do not feel that
published evidence unequivocally supports this hypothesis.
Because of the lack of experimental data with which to
evaluate the question of whether the resistant SOM pool is
more temperature sensitive than the labile pool, further study
is clearly merited.

Edited by: J. Kesselmeier
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