
HAL Id: hal-00297524
https://hal.science/hal-00297524

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coupled carbon-water exchange of the Amazon rain
forest, I. Model description, parameterization and

sensitivity analysis
E. Simon, F. X. Meixner, L. Ganzeveld, J. Kesselmeier

To cite this version:
E. Simon, F. X. Meixner, L. Ganzeveld, J. Kesselmeier. Coupled carbon-water exchange of the Amazon
rain forest, I. Model description, parameterization and sensitivity analysis. Biogeosciences, 2005, 2
(3), pp.231-253. �hal-00297524�

https://hal.science/hal-00297524
https://hal.archives-ouvertes.fr


Biogeosciences, 2, 231–253, 2005
www.biogeosciences.net/bg/2/231/
SRef-ID: 1726-4189/bg/2005-2-231
European Geosciences Union

Biogeosciences

Coupled carbon-water exchange of the Amazon rain forest, I. Model
description, parameterization and sensitivity analysis

E. Simon1, F. X. Meixner1, L. Ganzeveld2, and J. Kesselmeier1

1Biogeochemistry Dept., Max Planck Institute for Chemistry, Mainz, Germany
2Atmospheric Chem. Dept., Max Planck Institute for Chemistry, Mainz, Germany

Received: 24 February 2005 – Published in Biogeosciences Discussions: 7 April 2005
Revised: 15 August 2005 – Accepted: 26 August 2005 – Published: 8 September 2005

Abstract. Detailed one-dimensional multilayer biosphere-
atmosphere models, also referred to as CANVEG models,
are used for more than a decade to describe coupled water-
carbon exchange between the terrestrial vegetation and the
lower atmosphere. Within the present study, a modified
CANVEG scheme is described. A generic parameterization
and characterization of biophysical properties of Amazon
rain forest canopies is inferred using available field measure-
ments of canopy structure, in-canopy profiles of horizontal
wind speed and radiation, canopy albedo, soil heat flux and
soil respiration, photosynthetic capacity and leaf nitrogen as
well as leaf level enclosure measurements made on sunlit and
shaded branches of several Amazonian tree species during
the wet and dry season. The sensitivity of calculated canopy
energy and CO2 fluxes to the uncertainty of individual pa-
rameter values is assessed. In the companion paper, the pre-
dicted seasonal exchange of energy, CO2, ozone and isoprene
is compared to observations.

A bi-modal distribution of leaf area density with a total
leaf area index of 6 is inferred from several observations
in Amazonia. Predicted light attenuation within the canopy
agrees reasonably well with observations made at different
field sites. A comparison of predicted and observed canopy
albedo shows a high model sensitivity to the leaf optical pa-
rameters for near-infrared short-wave radiation (NIR). The
predictions agree much better with observations when the
leaf reflectance and transmission coefficients for NIR are re-
duced by 25–40%. Available vertical distributions of photo-
synthetic capacity and leaf nitrogen concentration suggest a
low but significant light acclimation of the rain forest canopy
that scales nearly linearly with accumulated leaf area.

Evaluation of the biochemical leaf model, using the en-
closure measurements, showed that recommended parame-
ter values describing the photosynthetic light response, have
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to be optimized. Otherwise, predicted net assimilation is
overestimated by 30–50%. Two stomatal models have been
tested, which apply a well established semi-empirical rela-
tionship between stomatal conductance and net assimilation.
Both models differ in the way they describe the influence of
humidity on stomatal response. However, they show a very
similar performance within the range of observed environ-
mental conditions. The agreement between predicted and ob-
served stomatal conductance rates is reasonable. In general,
the leaf level data suggests seasonal physiological changes,
which can be reproduced reasonably well by assuming in-
creased stomatal conductance rates during the wet season,
and decreased assimilation rates during the dry season.

The sensitivity of the predicted canopy fluxes of energy
and CO2 to the parameterization of canopy structure, the leaf
optical parameters, and the scaling of photosynthetic param-
eters is relatively low (1–12%), with respect to parameter
uncertainty. In contrast, modifying leaf model parameters
within their uncertainty range results in much larger changes
of the predicted canopy net fluxes (5–35%).

1 Introduction

Within the last decades, our understanding of atmospheric
and biogeochemical processes has substantially improved.
Sophisticated model schemes have been developed to de-
scribe surface exchange of trace gases and their fate in
the atmosphere. For the terrestrial vegetation detailed one-
dimensional multilayer biosphere-atmosphere models, also
referred to as CANVEG models, are now available for more
than a decade (Baldocchi, 1992; Baldocchi and Meyers,
1998). As shown in Fig.1, these models have evolved
from simple big leaf and two layer models (Deardorff, 1978;
Noilhan and Planton, 1989). Although the simple models
have become very useful by including detailed descriptions
of soil moisture status (Dickinson et al., 1993), radiation

© 2005 Author(s). This work is licensed under a Creative Commons License.



232 E. Simon et al.: A coupled model of carbon-water exchange of the Amazon rain forest

Fig. 1. Calculation of the surface energy balance in three canopy parameterization schemes with increasing complexity:(a) Single-layer
scheme assumingTsoil=Ts with Qn=H + LE. (b) Two-layer scheme (soil + big leaf ) withQn=H + LE +G. (c) Multi-layer CANVEG
scheme (soil + 3 vegetation layers + 1 layer above the canopy) withQn=

∑
i Si(H) + Si(LE). Symbols represent temperature of the soil

(Tsoil), the canopy air (Ta), the foliage (Ts ), and the air above the canopy (Tref ), available net radiation (Qn), sensible (H ) and latent (LE)
heat, the soil heat flux (G), and the stomatal (gs ), leaf boundary-layer (gb), aerodynamic (ga), bulk soil surface (gsoil) and root (groot )
conductance (see alsoGarrat, 1992, note thatga, groot are not included in the list of symbols).

reflectance and photosynthesis (Sellers et al., 1992, 1996)
and dry deposition (Ganzeveld and Lelieveld, 1995), they
are mostly empirical, which means that biophysical model
parameters such as the bulk stomatal conductance have only
a weak correspondence to the real world. In contrast, the
CANVEG scheme integrates the exchange of trace gases
and energy “bottom-up” from the leaf to the canopy level
(Jarvis, 1993; Leuning et al., 1995). Therefore biophysi-
cal model parameters such as stomatal conductance corre-
spond to biophysical leaf parameters and are calculated by a
well-established mechanistic approach, which couples CO2
exchange to transpiration and the leaf energy balance (Far-
quhar et al., 1980; Caemmerer and Farquhar, 1981; Ball
et al., 1987; Leuning, 1990; Collatz et al., 1991; Lloyd, 1991;
Collatz et al., 1992; Leuning, 1995). Most of the informa-
tion required for model parameterization can be derived from
eco-physiological principles, which state that photosynthetic
capacity and maximum stomatal conductance are related to
leaf nitrogen content, which again is determined by the light
environment of the leaf and the nitrogen availability for the
whole plant (Field, 1983; Hirose et al., 1988; Wullschleger,
1993; Schulze et al., 1994; Leuning et al., 1995). Further-
more, CANVEG models apply Lagrangian dispersion theory
(Raupach, 1989) to calculate vertical scalar profiles within
the free canopy air space. In contrast to multilayer models
which apply classical K-theory, the Lagrangian approach ac-
counts also for counter-gradient transfer and non-local dis-
persion across multiple layers (Raupach, 1987; Katul and Al-
bertson, 1999; Lai et al., 2000a; Wilson et al., 2003).

Compared to a big leaf approach, the detailed description
of canopy processes in CANVEG allows diagnostic applica-
tions to study some feed-backs between biogeochemical and

atmospheric processes (e.g. CO2 fertilization) and to separate
the influence of environmental and eco-physiological factors
on trace gas exchange. Despite large data pools, being avail-
able from long-term and intensive regional studies (Grace
et al., 1995; Gash et al., 1996; Sellers et al., 1997; Seufert
et al., 1997; Halldin et al., 1999; Andreae et al., 2002; Gu and
Baldocchi, 2002; Falge et al., 2002) for model parameter-
ization, evaluation and application, only agricultural crops,
and broad-leaved and coniferous forests in temperate regions
have been investigated within a CANVEG model frame work
(seeBaldocchi and Harley, 1995; Baldocchi and Meyers,
1998; Baldocchi and Wilson, 2001; Lai et al., 2000a,b; Katul
et al., 2003; Baldocchi and Bowling, 2003).

In the present study, we applied a modified CANVEG
scheme to Amazon rain forest. Because of its large area
of about 5×106 km2 (Laurance, 2000) and its all-seasonal
high biological activity the Amazon rain forest plays an im-
portant role in the global climate system. Despite its vast
bio-diversity, the non-flooded areas are relatively homoge-
neously covered by lowland deciduous tropical rain forest
(“terra firma”). Since the region is located in the inner trop-
ics, the day length, mean temperature and daily integrated
solar radiation are relatively constant. The scheme we devel-
oped is mainly a synthesis of the original CANVEG model
(Baldocchi and Meyers, 1998), the Lagrangian dispersion ap-
proach proposed byRaupach(1989) and the leaf-to-canopy
integration scheme described byLeuning et al.(1995). As
far as we know there exist no further studies that explicitly
model the coupled exchange of CO2 and energy of Amazon
rain forest canopies including the Lagrangian approach for
turbulent exchange: There is the big leaf approach ofLloyd
et al. (1995), focusing mainly on CO2, and the multilayer
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soil-plant-atmosphere model ofWilliams et al.(1998), cou-
pling the water flow from the soil to the atmosphere with C-
Fixation by including a detailed soil module. However, both
models differ significantly from the CANVEG type since
temperature and scalar gradients inside the canopy are ne-
glected (no transport model included). Furthermore, since
those model developments many new site specific data have
been provided in the meantime by LBA1 campaigns, in our
case especially by LBA-EUSTACH2 in 1999 (Andreae et al.,
2002).

Here we present the description of the modified CANVEG
model. Using informations from LBA and Pre-LBA stud-
ies, a characterization of mean canopy structure, the distri-
bution of photosynthetic capacity and a normalized profile of
horizonal wind speed is given. The subroutines to calculate
the canopy radiation field and soil surface exchange as well
as leaf photosynthesis and stomatal conductance, consider-
ing wet and dry season conditions, are described and evalu-
ated. The parameterization of the Lagrangian dispersion sub-
model is discussed and evaluated in detail in a further study
(Simon et al., 2005a). Finally, the sensitivity of predicted net
fluxes to key parameter uncertainty is investigated. In a com-
panion paper (Simon et al., 2005b), the calculated exchange
of sensible and latent heat, CO2, isoprene, and ozone as well
as the vertical profiles of H2O, CO2 and ozone for the main
research site of LBA-EUSTACH in Rondônia are compared
to measurements made at two micrometeorological towers
during the late wet and late dry season 1999.

2 Materials and methods

2.1 Site description and field data

Most of the data sets used in the present study were ob-
tained at or around four micrometeorological towers installed
at the two main forest research sites of LBA and the Pre-
LBA study ABRACOS3. The first site is located in the fed-
eral state Rond̂onia in southwest Amazonia. It is part of
the Reserva Biológica Jaru (RBJ) and belongs to the Insti-
tuto Brasileiro do Meio Ambiente e dos Recursos Naturais
Renov́aveis (IBAMA). It was the main forest research site
of LBA-EUSTACH in 1999 (Andreae et al., 2002). There
were two parts of this campaign, EUST-I and EUST-II, coin-
ciding with the 1999 wet-to-dry (April to May) and dry-to-
wet (September to November) season transition periods. The
second site is located≈60 km NNW of Manaus in central
Amazonia. It is accessible by a small road and part of the
Reserva Bioĺogica do Cuieiras, which belongs to the Insti-
tuto Nacional de Pesquisas da Amazônia (INPA). Hereafter,

1Large-Scale Biosphere-Atmosphere Experiment in Amazonia.
2European Studies on Trace Gases and Atmospheric Chemistry

as a Contribution to LBA.
3Anglo-Brazilian Amazonian Climate Observation Study.

Table 1. Site and tower locations (seeAndreae et al., 2002).

Tower Site Location Elevation

RBJ-A1 Jaru 10◦04.92′ S 61◦55.80′ W 147 m
RBJ-B2 Jaru 10◦04.70′ S 61◦56.02′ W 145 m
C143 Cuieiras 02◦35.35′ S 60◦06.89′ W 90 m
K341 Cuieiras 02◦35.55′ S 60◦12′46 W 93 m

Height: 153 m,260 m,340 m

both sites will referred to as the Jaru and Cuieiras site, re-
spectively.

The Jaru site experiences a more marked dry season with
a mean annual rainfall of 1600 mm compared to 2100 mm at
the Cuieiras site (Gash et al., 1996). Both sites are character-
ized asterra firmawith primary tropical rain forest although
the dominating vegetation type differs to some extent (Grace
et al., 1995; Carswell et al., 2000; Kruijt et al., 2000; Simon
et al., 2005a).

Site and tower locations are listed in Table1. More de-
tailed site descriptions and a general overview on LBA-
EUSTACH is given byAndreae et al.(2002). Except the
measurements of canopy structure at C14 (which is described
below), all data records used in the present study have al-
ready been published and described in detail by the refer-
ences given in Table2. Therefore, we just shortly describe
how these data have been applied in our analysis.

Canopy structure (3z, a complete list of symbols is given
at the end of Sect.4) has been measured at RBJ-A, C14,
and K34 using the optical Plant Canopy Analyzer LAI-2000
(Li-Cor, Lincoln, USA). For a comparison of different meth-
ods seeEschenbach and Kappen(1996). At the C14 tower,
two profiles of3z have been measured on 17 July 2001
under prevailing cloudy conditions. For each profile, 12
equally distributed individual measurements were performed
in a concentric circle at 4, 8, 12, 16, 20, 24, 28, 32, and
40 m height. For the further analysis using additional ob-
servations (see Table2) the mean values from both profiles
have been used. Profiles of horizontal wind speedu(z) were
measured at the RBJ-A tower at 1, 11, 20.7, 31.3, 42.2 and
51.7 m height (Rummel, 2005). Photosynthetic active radi-
ation (QPAR) is calculated as a fixed ratio of visible radi-
ation (Qv, see Sect.2.3). For incoming photosynthetic ac-
tive radiation (QPAR0), this relationship is tested using di-
rect observations made at RBJ-A,B and K34. An empirical
relationship to calculate incoming long-wave radiation (Brut-
saert, 1975) is tested using measurements made at RBJ-B
(Andreae et al., 2002). The predicted canopy albedo is com-
pared to monthly mean values observed byCulf et al.(1995)
andCulf et al.(1996) at RBJ-A and a second site near Man-
aus. The radiation attenuation sub-model is evaluated using:
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Table 2. Field data used for model parameterization and sub-model evaluation (see also Table1).

Sect. Parameter Site Reference Note

3.1 3z near Manaus Roberts et al.(1993)∗,1 calibration of Eq. (31) (Table5)
near Manaus McWilliam et al. (1993)∗,2

Jaru (RBJ-A) Simon et al.(2005a)†,3

Cuieiras (C14) unpublished‡,3

Cuieiras (K34) Simon et al.(2005a)‡,3

3.2 u(z) Jaru (RBJ-A) Rummel(2005)† calibration of Eq. (33)

3.3 albedo Jaru (RBJ-A) Culf et al.(1995, 1996)∗ evaluation of recommended para-
near Manaus meters, re-calibration (Table6)

3.3 QLW0↓, Jaru (RBJA-B) Andreae et al.(2002)† evaluation of recommended
QPAR0 parameters (Eqs.34–36)
QPAR0 Jaru (RBJ-A) Rummel(2005)†

Cuieiras (K34) Araujo et al.(2002)†

3.3 QPAR(3z) Jaru (RBJ-A) McWilliam et al. (1996)∗,4 evaluation of recommended and
Jaru (RBJ-A) Rummel(2005)†,5 re-calibrated parameters (see
Cuieiras (C14) Carswell et al.(2000)4 albedo)

3.4 vcma0hc Cuieiras (C14) Carswell et al.(2000)6 calibration of Eq. (32)
Jaru (RBJ-A) Lloyd et al.(1995)∗,6

3.5 Fcsoil Jaru (RBJ-A) Gut et al.(2002a)† calibration of Eq. (30)
gsoilH calibration by G

cmp1T

3.6 An Jaru (RBJ-A) McWilliam et al. (1996)∗,6,7 evaluation of recommended para-
An, gs Jaru Kuhn et al.(2002, 2004)†,6,8 meters and re-calibration

∗ Pre-LBA studies 1991–1993;† LBA-EUSTACH, 1999;‡ LBA-Claire in July 2001;1 derived from literature data afterKlinge (1973) and
Klinge et al.(1975) for Reserve Ducke in the north of Manaus;2 derived by destructive sampling from adjacent clearings for a site 60 km
north of Manaus;3 optical method using LAI-2000 Plant Canopy Analyzer;4 regular profiles with simultaneous measurements on different
heights;5 irregular profiles with subsequent measurements on different heights;6 combined with leaf area (3z) measurements;7 porometry
measurements on leaves from five tree species in different canopy layers;8 2–3 days cuvette measurements on branches from 3 tree species.

1. Simultaneous radiation profile measurements made during
ABRACOS from August to September 1992 and from April
to June 1993 (six height levels at 35, 21.3, 15.7, 11.6, 6.1,
2.3 m). 2. Measurements made during EUST-II using a sin-
gle sensor mounted for several days alternately at 51.7, 31.3,
20.5, and 1 m height (Rummel, 2005). 3. From the study
by Carswell et al.(2000), measurements of radiation atten-
uation, photosynthetic capacity and leaf nitrogen concentra-
tion made at the C14 tower are available forz=32, 28, 24,
16, 12, 8, 4, and 0 m height levels within the canopy. To-
gether with leaf nitrogen concentrations measured at RBJ-A
(Lloyd et al., 1995) this data is also used to infer the light
acclimation (i.e. the distribution of photosynthetic capacity)
of the forest canopy. The parameterizations of soil respira-
tion and soil heat flux are inferred using continuous chamber
measurements and observed soil temperature and soil surface
temperature gradients provided byGut et al.(2002a). The
parameters for the leaf photosynthesis and stomatal mod-

els are inferred and evaluated by comparing model predic-
tions with gas exchange measurements sampled on branches
and leaves from 8 tree species growing around the tower
RBJ-A. The gas exchange data for species 1–3 is obtained
from two to three days of continuous cuvette measurements
on tree branches and described and discussed in detail by
Kuhn et al.(2002, 2004). We used hourly averages of the
raw data, which has been recorded with a time resolution of
5 min. The gas exchange data for species 4–8 were measured
with a portable leaf chamber byMcWilliam et al.(1996) and
represent mean values from three to five single leaves. All
data subsets for different species, season, and canopy posi-
tion have a minimum size of 10 observations and the total
number of data points isN=498 (183 for species 1–3).

Biogeosciences, 2, 231–253, 2005 www.biogeosciences.net/bg/2/231/
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Fig. 2. Sub-models of the modified CANVEG scheme. The two
iteration loopsI andII indicate the numerical approach to solve the
turbulent exchange and the leaf energy balance, respectively.

2.2 Model description

The multilayer model uses two main iteration loops (see
Fig. 2) to calculate the coupled exchange of CO2 and en-
ergy at the leaf level (II ) and vertical mixing at the canopy
level (I ), respectively. Spatially, the vertical canopy column
is limited by the soil surface and the mean canopy height
hc. For the application to Amazon rain forest, it is divided
into 8 subsequent canopy layers and a single surface layer
above the canopy with the upper limitzref . The scalar con-
servation equation is applied assuming horizontally homo-
geneity and steady-state environmental conditions. Vertical
transport is calculated using a Lagrangian dispersion scheme
(Raupach, 1989), described and evaluated in detail inSimon
et al.(2005a). The spatial integration scheme and the numer-
ical algorithm are described in Sect.2.2.1. The exchange of
CO2 and H2O is calculated at the leaf level by using a com-
bined stomatal-photosynthesis model for C3 plants (Leuning,
1995). A short description is given in Sect.2.2.2.

The partitioning, attenuation, and reflectance of radiation
within the canopy is very complex and the most sophisticated
modeling approaches require detailed information on canopy
architecture (leaf angle distribution, clumping factor, etc., see
Ross, 1981). Following the scheme ofLeuning et al.(1995),
we included the approach ofSplitters(1986), modified by
Goudriaan and van Laar(1994), which accounts for the ab-
sorption and reflectance of sunlit and shaded leaves in the
visible, near-infrared, long- and short-wave radiation wave-
band. The non-linear light response of photosynthesis and
isoprene emission justify the use of a two-stream radiation
model instead of a simple extinction approach. The calcula-
tions of canopy radiation are summarized in Sect.2.2.3.

Driving variables of the CANVEG model are microme-
teorological parameters observed atzref above the canopy
(including CO2 concentrationcref ) and the temperature, wa-
ter content and bulk surface conductance of the uppermost
soil layer (see Table3). For the calculation of ozone de-
position, the ozone concentration atzref is also included

Table 3. Driving variables of the canopy model (subscriptref
refers to the reference height above the canopy).

Parameter Symbol Unit

local time td , th [days,h]
air temperature Tref [K]
relative humidity RHref [%]
barometric pressure P0 [hPa]
CO2 concentration cref [µmol mol−1]
incoming global radiation gRad [W m−2]
mean horizontal wind speed uref [m s−1]
standard deviation of vertical
wind speed σwref [m s−1]
soil temperature Tsoil [K]
water filled soil pore space ηw [%]
bulk soil surface conductancegsoilH [mol m−2 s−1]

as input parameter. Since soil surface temperature is given
as a lower boundary condition, the soil surface energy bal-
ance can be calculated straightforward as described byGar-
rat (1992). Soil respiration is calculated using an empirical
relationship based on soil temperature (see Sect.2.2.4for de-
tails).

A major problem on linking biochemical leaf models to
the canopy scale is the estimation and scaling of leaf physi-
ological parameters (Jarvis, 1993). Extensive studies on ni-
trogen availability, allocation and optimization (Field, 1983;
Field and Mooney, 1986; Walters and Field, 1987; Evans,
1989) led to the development of scaling principles for leaf
physiological properties in different ecosystems and across
the vertical canopy column (Wullschleger, 1993; Schulze
et al., 1994; Leuning et al., 1995). Following these princi-
ples, mainly the photosynthetic capacity of sunlit leaves at
the canopy top (vcmax0hc) and the rate of acclimation to light
(kN ) have to be specified for a given vegetation type. A semi-
empirical relationship that couples stomatal conductance to
CO2 uptake (Ball et al., 1987) assures that maximum stom-
atal conductance scales indirectly with maximum photosyn-
thesis. Therefore the stomatal model requires only few site
specific informations.

2.2.1 Spatial integration and numerical algorithm

For an arbitrary tracer, the net flux at the canopy top (F )
is given by the sum of integrated sources and sinks of alln

layers (Si1zi) according to

F =

∑n

i
Si1zi . (1)

Each layer has a leaf area13i which is used to scale up leaf
exchange (Fleaf ) by

Si1zi = 13iFleaf (zi) . (2)

www.biogeosciences.net/bg/2/231/ Biogeosciences, 2, 231–253, 2005
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The exchange of sunlit and shaded leaves is treated sep-
arately. Therefore,3i is divided into a sunlit and shaded
part, determined by the fraction of sunlit leaves in each layer.
For each time step, the ambient air temperature and concen-
trations of H2O and CO2 in each canopy layer are initialized
with their values given above the canopy (Table3). After cal-
culating the absorbed short-wave radiation, the energy bal-
ance is solved numerically, separately for sunlit and shaded
leaves. After applying Eq. (2), Ca is changed by

1Ca(zj ) =

∑n

i
d(i, j)Si1zi , (3)

where d(i, j) represents the coefficients of the dispersion
matrix connecting the temperature and concentration change
1Ca(zj ) with Si .

The algorithm to solve the coupled equations for CO2 up-
take, energy partitioning and vertical mixing can be summa-
rized as follows:

1. Initializing the scalar concentrationsCi=Cs=Ca=
Cref .

2. Calculating the source/sink distributionsSi (iteration
II ):

(a) Solving the coupled equations for CO2 and en-
ergy exchange at the leaf level, updatingCi, Cs
(Sect.2.2.2).

(b) Scaling the leaf exchange up to the canopy layer
(Eq.2).

3. UpdatingCa by1Ca (iterationI ), given by the transfer
equation (Eq.3).

Steps 2–3 are repeated, until the mean temperature change√
1/n

∑
1T 2

a for a new iteration is less than 0.01 K.

2.2.2 Leaf surface exchange

A detailed description of the combined stomatal-
photosynthesis model is given byLeuning et al.(1995).
The numerical approach to solve the coupled equations of
leaf surface exchange is described in detail byWang and
Leuning(1998).

In general, net radiation at the leaf surface (Qn) can be
either expressed in terms of a radiation budget or a budget of
mass fluxes. The radiation budget gives

Qn = QSW ↓ −QSW ↑ +QLW ↓ −QLW ↑ (4)

where↓ and↑ indicating incoming and outgoing directions,
respectively. For steady-state conditions,Qn is converted
into latent (LE) and sensible heat (H ) and chemical energy
used for net assimilation (An), which gives the budget of
mass fluxes

Qn = λmE +H − λCAn (5)

whereλm andλC represent the molar latent heat of vapor-
ization and the chemical energy for CO2 fixation (according
to Jones, 1992, the energy storage into leaf tissue is usually
<5% on a timescale of one hour). All terms on the right hand
side of Eq. (5) can be expressed in a flux-gradient relation-
ship

E = gtw(Da + s1Ts) (6)

H = gtH c
m
p1Ts (7)

An = gtc1cs , (8)

wheregt are the total molar conductance for water vapor,
heat, and CO2, denoted by subscriptsw, H , andc, respec-
tively. (Da+s1Ts),1Ts , and1cs , are the scalar gradi-
ents of water vapor pressure, temperature (Ts−Ta), and CO2
(cs−ca) across the surface pathway from inside the leaf to
the ambient air, respectively.s andcmp are the slope relating
water vapor pressure to temperature (de/dT in units of hPa
K−1) and the molar specific heat of dry air, respectively. For
stomatal controlled transfer (CO2, H2O), gt can be decom-
posed to 1/gt=1/gs+1/gb (Ball, 1987) wheregs andgb are
the leaf stomatal and boundary-layer conductance, respec-
tively. For steady state conditions, Eqs. (5–7) can be com-
bined to the Penman-Monteith equation (Monteith, 1965) as

λmE =
Qn + cmpDagtH

1 +
γair
s

[1 + (gtH/gtw)]
, (9)

whereγair is the psychrometric constant (hPa K−1).
Stomatal conductance for CO2 (gsc) is linked toAn using

the semi-empirical relationship ofBall et al.(1987), hereafter
referred to as B87, giving

gsc = gs0 + aAAnRHs/cs, (10)

wheregs0 is the minimum stomatal conductance,RHs the
relative humidity at the leaf surface, andaA an empirical co-
efficient relatinggs toAn. The B87 model has been modified
by replacing the dependence onRHs by a function of water
pressure deficitf (D) and by including a CO2 compensation
point (0) to avoidcs→0 (Leuning, 1990; Lloyd, 1991). Note
that some authors also include empirically the role of water
availability in the root zone (Wang and Leuning, 1998; Tuzet
et al., 2003). Leuning et al.(1995) rewrote the B87 model
into

gsc = gs0 +
aAAn

(cs − 0)(1 +
Ds
Ds0
)
. (11)

by applying the Lohammer functionf (D)=1+Ds/Ds0 for
humidity response (Lohammer et al., 1980), whereDs and
Ds0 represent the water vapor pressure deficit at the leaf sur-
face and an empirical coefficient, respectively.gs for water
and other scalars can be obtained by multiplyinggsc with the
ratio of molecular diffusivities (Ball, 1987).

The biochemical leaf model of leaf photosynthesis for C3
plants was originally developed byFarquhar et al.(1980) and
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Caemmerer and Farquhar(1981). We implemented the com-
bined approach ofLeuning et al.(1995), who identify three
different processes constrainingAn: (1) the biochemical de-
mand for CO2 inside the chloroplast, (2) the supply of CO2
by diffusion through the stomata and the leaf boundary layer
(ci=ca+An/gt , Eq. 8) and (3) the stomatal response toAn
(Eq.11) which constrains again the demand function. A gen-
eral description for the demand of CO2 is given by

An = min{Av, AJ } − Rd (12)

whereAv is the gross rate of photosynthesis limited by the
biochemical fixation of CO2 andAJ the rate of photosynthe-
sis limited by the regeneration of CO2 acceptors. In the case
of C3 plants,Av is limited by the CO2 dependent activity
of Ribulose bisphosphate carboxylase-oxygenase (Rubisco)
vcmax , which depends on CO2 and oxygen concentration (oi)
inside the leaf and the Michaelis coefficients for carboxyla-
tion (Kc) and oxygenation (Ko) according to

Av = vcmax
ci − 0∗

ci +Kc(1 + oi/Ko)
. (13)

For C4 plants, a similar approach has been developed by
Collatz et al.(1992). AJ is limited by the regeneration of
Ribulose bisphosphate (RuP2), which depends on the light
driven rate of electron transport across the chloroplast mem-
brane (J ). The actual rateJ is the smaller root of a hyper-
bolic function, determined by the maximum rate for electron
transport (Jmax), leaf absorbed radiation (Qabs), light use ef-
ficiency (α) and a parameter determining the shape of the
transition of the rectangular light response curve from linear
increase to saturation (θ ):

θJ 2
− (αQabs + Jmax)J + αQabsJmax = 0 . (14)

All parameter values required to solve the coupled leaf
model are listed in Table4. Leaf respiration(Rd ) and the
maximum rate of electron transport (Jmax) at a reference
leaf temperatureTs0 are calculated as a fixed proportion of
vcmax0. Temperature kinetics ofRd , Kc andKo are calcu-
lated according toHarley et al.(1992) and Leuning et al.
(1995), requiring appropriate values for activation (Ha) and
deactivation (Hd ) and, forvcmax andJmax also for entropy
(Sv, Sj ). The coefficientsγ0−2, listed in Table4, are required
to calculate the temperature dependence of the CO2 compen-
sation point in the absence of day respiration.

According toMonteith(1973), the conductance at the leaf
boundary-layer (gb) can be decomposed into a forced (gbu)
and free convective (gbf ) part

gb = gbu + gbf . (15)

The single-sided forced and free convective leaf boundary
layer conductance for heat (gbuH andgbHf , respectively) are
given by

gbHu = 0.003
√
u/wl (16)

gbHf = 0.5DHGr
1/4/wl (17)

Table 4. Photosynthesis and stomatal conductance model parame-
ters. Marked values are taken from†Ball et al. (1987), ‡Farquhar
et al.(1980), ∗Leuning et al.(1995) and†Harley et al.(1992). Val-
ues in brackets represent parameter modifications, suggested by leaf
level gas exchange measurements (Sect. 3.6). The reference leaf
temperatureTs0 is set to 298.15 K for tropical plants (Lloyd et al.,
1995). vcmax0hc and the light acclimation parameterkN are derived
from observations (in Sect. 3.4).

Parameter Value (optimized) Unit

aA 10† [-]
gs0 0.01† [mol m−2 s−1]
Ds0 15∗ [hPa]
vcmax0hc 50 [µmol m−2 s−1]
kN 0.2 [-]
Ts0 298.15 [K]
Jmax0 2.1vcmax0

∗ [µmol m−2 s−1]
Rd0 0.01vcmax0

∗ [µmol m−2 s−1]
oi 210‡ [mmol mol−1]

α 0.2∗ (0.15) [mol e mol−1 quanta]
θ 0.9∗ [-]
Kc0 302∗ [µmol−1]
Ko0 256∗ [mmol−1]
HKc 59.4† [kJ mol−1]
HKo 36† [kJ mol−1]
HRd 53† [kJ mol−1]
HvV 116.3† [kJ mol−1]
HdV 202.9† [kJ mol−1]
HvJ 79.5† (108) [kJ mol−1]
HdJ 201† [kJ mol−1]
Sv 0.65† [kJ mol−1]
Sj 0.65† (0.66) [kJ mol−1]
γ0 34.6∗ [µmol mol−1]
γ1 0.0451∗ [-]
γ2 0.000347∗ [-]

where u, wl , DH andGr are the mean horizontal wind
speed, mean leaf width, the molecular diffusivity for heat
and the Grashof number, respectively.Gr is calculated from
1Ts according toGr=1.6×108

|1Ts |w
3
l . wl is estimated as

0.15 m from a large collection of leaves from Amazonian tree
species (Ribeiro et al., 1999).

2.2.3 Radiation

Absorbed radiation of shaded leaves (QSH ) is defined by the
sum of diffusive and scattered beam radiation. The absorbed
radiation of sunlit leaves (QSL) includes additionally a direct
beam component leading to

QSH (3z) = Qd(3z)+Qsb(3z) (18)

QSL(3z) = Qb(3z)+QSH (3z) , (19)
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where3z is the cumulative leaf area abovez. Diffusive,
scattered, and direct beam components denoted by subscripts
d, sb andb, respectively, are calculated according to

Qd(3z) = Qd0kd(1 − ρcd)exp(−kd3z) (20)

Qsb(3z) = Qb0kb(1 − ρcb) exp(−kb3z)−Qb(3z) (21)

Qb(3z) = Qb0k
B
b (1 − σl) exp(−kBb 3z) , (22)

whereσl, ρc, andk are the scattering (reflection plus trans-
mission), canopy reflection, and extinction coefficients, re-
spectively .kB is the extinction coefficient for black leaves
(with no reflection or transmission). The scattered direct
beam radiation is obtained by subtractingQb from the total
absorbed beam radiation (direct + scattered). The fraction of
sunlit leaves (fSL) is calculated asfSL(3z)= exp(−kb3z)

The net long-wave radiation of a body is generally given
by

QLW = QLW ↓ −QLW ↑= εaσBT
4
a − εsσBT

4
s , (23)

whereεs, εa andTs, Ta represent the emissivity and temper-
ature of the body and ambient air and↓ and↑ denote the
incoming and outgoing parts ofQLW , respectively. σB is
the Stefan-Boltzmann constant.εs has different values for
soil and leaf surfaces given asεl=0.96 andεsoil=0.94, re-
spectively, (Wang and Leuning, 1998). Incoming long-wave
radiation (QLW↓) is calculated analogously to diffusive radi-
ation according to

QLW↓(3z) = εa0σBT
4
ref k

B
d exp(−kBd 3z) . (24)

The outgoing long wave radiation given as
QLW↑(3z)=εsσBTs(3z)

4 can not be solved directly,
since Ts is part of the leaf energy balance. Instead, the
isothermal outgoing long wave radiation (Q∗

LW↑
), equivalent

to the long wave radiation that would be lost, if the surface
were at ambient temperature (Jones, 1992) is calculated
by replacingTref and εa0 in Eq. (24) with Ta(3z) and εs ,
respectively. The isothermal net radiation (Qn∗) is then
given by

Q∗
n = QSW↓ −QSW↑ +QLW↓ −Q∗

LW↑
. (25)

Combining Eqs. (25) and (4) leads to

Q∗
n = Qn + σBεs

(
T 4
s − T 4

a

)
. (26)

SubstitutingTs=Ta+1Ts and expanding Eq. (26) cancels
T 4
a out. Second or higher power terms including1Ts can be

neglected since1Ts�Ta which leaves

Qn ' Q∗
n − σBε34T 3

a1Ts (27)

wheregrad=εσB4T 3
a /c

m
p is defined as the radiative conduc-

tance.

2.2.4 Parameterization of soil surface exchange

Soil evaporation is calculated by solving the Penman-
Monteith equation for a bulk soil surface layer from−0.05
to 1 m height. The solution, described in more detail inGar-
rat (1992), requires the soil relative humidity (RHsoil) and
the bulk soil surface conductance (gsoil) as input parameters.
RHsoil is related to the soil matrix potential (ψsoil) according
to

RHsoil = exp

(
−gψsoil

RTsoil

)
, (28)

whereasg andR are the gravity and the universal gas con-
stant, respectively.ψsoil is calculated from the volumetric
soil water content (ηw) according to

ψsoil = ψ∗

soil

(
ηw/η

∗
w

)−aψ (29)

with η∗
w, ψ∗

soil , andaψ being the total soil pore space,ψsoil
at saturation, and an empirical coefficient, respectively. For
a sandy loam, which is the dominant soil type at the Jaru
site,Garrat(1992) proposes a maximum matrix potential of
ψ∗

soil=−0.218, a coefficient value ofaψ=4.9, and a maxi-
mum water filled pore space ofη∗

w≈0.5 which is in agree-
ment with the value given byGut et al.(2002b) for the Jaru
site.

For soil respiration (Fcsoil), the simple Arrhenius curve

Fcsoil = Fcsoil0 exp[Hasoil/RTsoil0 (1 − Tsoil0/Tsoil)] (30)

is applied, whereFcsoil0 is the soil respiration at a reference
temperatureTsoil0 andHasoil the activation energy (Tuzet
et al., 2003).

2.3 Model parameterization

The characterization of canopy structure represents a model
key parameter. Firstly, the source/sink strength is a linear
function of the leaf area of each canopy layer (Eq.2). Sec-
ondly, it determines light extinction within the canopy and,
indirectly, the scaling of leaf biochemistry (see above). Com-
monly, canopy structure is defined in terms of accumulated
leaf area3z. Denoting the mean canopy height ashc gives
3hc=0 and30= total LAI (leaf area index in units of m2

leaf m−2 ground). In the present study, a bi-modal vertical
leaf area distribution with a lower and upper canopy max-
imum is assumed. This characterization is implemented as
the weighted sum of two beta functions given as

3z = 30

∑
i=B,T

Ix(z,i)(ai1, ai2)wi , (31)

whereIx(z,i) is the beta distribution function, which has lim-
iting valuesI0=0 andI1=1 (Press, 1997). x(z) represents
the linearly transformed heightx=1−z/zi∗ with the upper
boundaryz∗i (e.g.z∗2=hc for the distribution from the ground
to the canopy top). Each mode function has two shape pa-
rametersai1 andai2 and is weighted by the fractions of each
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Fig. 3. Site specific profile parameterizations (examples).(a) The leaf area density profile (d3(z)/dz), implemented as the sum of two beta
distributions (solid line) with an upper (dashed line) and lower (open squares) canopy maximum (LAI=1, lower maximum weightw1=0.75.
(b) Corresponding light acclimation of leaf biochemistry using different values of extinction (kN ). (c) Logarithmic (above canopy, solid
line), exponential (belowhc, dashed line) and combined (closed circles) scaling of horizontal wind speed (u1(z)). hc, z0 anddh are the
canopy height, roughness length and zero length displacement height, respectively. Atz0 + dh, the logarithmic profiles crosses zero.

distribution on total LAI (wi). An example for Eq. (31) is
given in Fig.3a. Further ecological applications of the useful
beta function are given in (Meyers and Paw U, 1986; Mc-
Naughton, 1994; Simon et al., 2005a).

In the next step,3z is used for a vertical scaling of leaf
physiological parameters. According to the light acclima-
tion hypothesis, photosynthetic capacity of single leaves, ex-
pressed as the maximum rate of carboxylation at a reference
temperature (vcmax0), is co-distributed optimally with leaf ni-
trogen concentration (cN ), following the mean light gradients
inside the canopy to maximize carbon gain (Field, 1983; Hi-
rose et al., 1988; Leuning, 1995; Hirose and Bazzaz, 1998;
Niinemets et al., 1999). Up to now, only a few observations
of the degree of light acclimation in natural canopies exist
(e.g. in Meir et al., 2002). Assuming a linear relationship
betweenvcmax0 andcN , Leuning et al.(1995) proposed

vcmax0(3z) = vcmax0hc exp(−kN3z) , (32)

wherekN is an extinction coefficient specifying the degree of
acclimation andvcmax0hc the value ofvcmax0 at the canopy
top. For illustration, Eq. (32) is applied using different val-
ues forkN for a given canopy structure (Fig.3b). A high
value ofkN is associated with a strong decrease ofvcmax0.
Based on nitrogen availability,vcmax0hc can be inferred from
ecological principles: for tropical rain forest a low nitro-
gen availability, and consequently a relatively small value
of vcmax0hc≈50 µmol m−2 s−1 can be assumed (Schulze
et al., 1994). The remaining parameters of the leaf models
are set to the values listed in Table4. In Sect.3.4, the value
of vcmax0hc=50µmol m−2 s−1 is tested andkN is inferred.

The calculation of the leaf boundary-layer resistance (see
Sect.2.2.2) requires a parameterization of the profile of hor-

izontal wind speedu(z). We use a slightly modified version
of the combined approach ofKaimal and Finnigan(1994),
applying a logarithmic decrease above and an exponential
decrease below the canopy height (hc) according to

u(z)=

{
uref au ln

(
z−dh
z0

)
; z ≥ hc

u0+u(hc) exp[−ku30(1 − z/hc)] ; else
, (33)

whereau andku are two empirical coefficients, andz0, and
dh the roughness length and the displacement height below
hc, respectively (see Fig.3c for an example).u0(z) repre-
sents a minimum value ofu(z) that does not scale withuref .
z0 anddh are set to 1.3 m and 29 m, respectively (see also
Rummel, 2005). The remaining parameter values are derived
by fitting Eq. (33) to profile measurements made above (au)
and within the canopy (ku).

Atmospheric emissivity (εa0) is required to calculate the
incoming long-wave radiation and derived using the empiri-
cal relationship ofBrutsaert(1975) giving

εa0 = 1.24

(
eref

Tref

)1/7

, (34)

whereeref andTref are the water vapor pressure (hPa) and
temperature (K) above the canopy.

According toJones(1992), the incoming visible radiation
(QV 0) can be calculated from the incoming global radiation
(gRad) as

QV 0 = 0.45gRad (35)

(note thatQV 0 andgRad are in units of W m−2). At the leaf
level, the absorbed visible radiation (QV ) is used to calculate
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Table 5. Derived parameter values for Eq. (31) (LAI 30 = 6,
symbolswi , ai1, ai2, z

∗
i

represent dimensionless weights, the two
parameters of the incomplete beta function and the scaling heights
in units of meters above ground, respectively). Numbers in brackets
represent values estimated for dense (30 = 6.5 denoted as+) and
open palm rich (30 = 5.5 denoted as−) forest types.

i canopy layer wi (+,−) z∗
i

(+,−) ai1 ai2

T top 0.75 (0.85,0.65) 40 (42,34) 4.2 4.6
B bottom 0.25 (0.15,0.35) 13 (8,13) 2.3 1.1

the photosynthetic active radiation (QPAR in units ofµmol
m−2 s−1) according to

QPAR = 4.5µmol J−1QV . (36)

The soil heat flux is calculated by solving the Penman-
Monteith equation for the pathway from the soil surface to
the ambient air layer above. The bulk soil surface conduc-
tance for heat (gsoilH ) is derived by linear fitting of the flux-
gradient-relationshipG=gsoilH c

m
p1T , whereG, cmp , and

1T (z1, z2) represent the soil heat flux (observed), the spe-
cific heat capacity of air (constant) and the temperature gra-
dient betweenz1=−0.05 m andz2=1 m (observed), respec-
tively. Soil evaporation and respiration are calculated as de-
scribed in Sect.2.2.4. The Arrhenius curve to predict soil
respiration is derived from observations from soil chamber
measurements. The parameterization of soil evaporation (see
Sect.2.2.4) is not evaluated independently here, since ap-
propriate data sets are missing.Jones(1992) estimates that
Esoil is usually less than 5% of the total evapotranspiration
for canopies with a total LAI of 4 and more, even when the
soil surface is wet.

3 Results and discussion

In the following sections, the data sets listed in Table2 are
used to characterize the rain forest canopy (canopy structure,
extinction profile of horizontal wind speed, canopy albedo,
canopy biochemistry) and to derive or evaluate important
model parameter values (number of model layers, bulk soil
surface conductance). The leaf models for photosynthesis
and stomatal conductance are evaluated with scale appropri-
ate data (leaf chamber and cuvette measurements) and the
sensitivity of predicted canopy net fluxes of CO2 and energy
is assessed with respect to the uncertainties of key parameters
derived before.

3.1 Characterization of canopy structure

All available measurements of canopy structure listed in Ta-
ble 2 are fitted to Eq. (31). For this, all observations listed

Fig. 4. Parameterization of canopy structure and accumulated leaf
area3z. (a) Model comparison with field data ofRoberts et al.
(1993) (open squares) andMcWilliam et al. (1993) (open circles),
and measurements made at the towers K34 (open triangles), C14
(stars) RBJ-A (closed squares) and RBJ-B (closed circles, see Ta-
ble 2). (b) Observed accumulated leaf area (3z) for averaged 3 m
height intervals (open circles with standard deviations) and pre-
dicted for a mean (solid line), dense (open stars) and open (closed
stars) forest type.(c) Mean observed and(d) predicted differential
leaf area for 3 m height intervals.

in Table2 are averaged for 3 m height intervals, represent-
ing the mean of observations. The upper canopy height
is estimated ashc=40 m (Klinge et al., 1975; McWilliam
et al., 1993; Roberts et al., 1993; Kruijt et al., 2000; Andreae
et al., 2002; Rummel et al., 2002; Simon et al., 2005a). To-
tal LAI is calculated as30=6, representing the mean value
of all measurements. The remaining parameters of Eq. (31)
have to be found by non-linear optimization: Considering
literature data and ecological principles, we assume a lower
and upper leaf area density maximum at 0–5 and 15–30 m
height, reflecting the ground vegetation and small trees in the
lower canopy and tall trees, lianes, and epiphyta in the up-
per canopy, respectively. A priori, we estimated the weights
and upper bounds of the two superimposing distributions as
wB=0.25, wT=0.75 andz∗B=13 m,z∗T=hc (40 m). Applica-
tion of a least-squares method leads to locally optimized pa-
rameter values ofai1 andai2. All parameter values are listed
in Table5, including also estimates for a “dense forest type”
with higher leaf area densities in the upper canopy (LAI=6.5)
and for an “open forest type” with higher densities near the
ground (LAI=5.5). The scatter plot (Fig.4a) and the mean
vertical profiles (Fig.4b) show a good agreement between
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Fig. 5. Observed and predicted Atmospheric emissivity (εa0) and
incoming long-wave radiation (QLW↓) at the tower RBJ-B for a
one week period.(a) Measured (open squares) and predicted time
series (solid line) forQLW↓. (b) εa0(Tref , eref ) plotted against
εa0(QLW0) (parameterized versus observed atmospheric emissiv-
ity, respectively).

measurements and predictions (r2
=0.95). The modifications

for dense and open forest types are derived from the stan-
dard deviations of mean values. The mean differential pro-
file (d3z for 3 m height intervals, see Fig.4c) is scattered but
shows clearly two different modes.

The characterization described above may be helpful for
future modeling studies where a definition of canopy struc-
ture is required. Variations of the vegetation type may be
considered by modifying the parameters values listed in Ta-
ble5.

3.2 Horizontal wind speed

The parameters of the function describing the profile of
horizontal wind speed (u(z)) have been derived using ob-
servations at the Jaru site (Table2). The measurements
suggest a significant positive interceptu0, which decreases
with height according tou0(z)=0.1 m s−1, z≤dh and
u0(z)=0.1[1−(z−dh)/(zref−dh)], z>dh. The logarithmic
part of Eq. (33) is derived by a non-linear fit, resulting in
z0=1.3 m, dh=29 m andau1=1/3. Linear-fitting of the ex-
ponential part of Eq. (33) predicts an extinction coefficient
ku=0.8. The linear correlation between all measurements
and the parameterization isr2

=0.94 (y=0.00+1.02x) show-
ing no systematic deviations.

3.3 Radiation

The empirical relationship between atmospheric emissivity
(εa0) and water vapor pressure and temperature (Tref , Eq.34)
is evaluated by a comparison of simulated and observedεa0
and incoming long-wave radiation (QLW↓) measured at the
RBJ-B tower (Fig.5). For high emissivity values (εa0>0.9),

Fig. 6. Absorbed radiation (Qabs ) and albedo in relation to the
number of canopy layers, leaf area index, and leaf optical param-
eters for a canopy with black leaves (no reflectance and transmit-
tance) at midday and clear sky conditions with a diffusive fraction
fd0=0.2. (a) Relative error of predicted absorbed radiation in re-
lation to the number (n) and thickness (1z/hc) of canopy layers
(total leaf area index30=6). (b) Predicted total (dotted line), soil
(line with filled squares), and vegetation (line with open circles)
fractions of absorbed radiation plotted against LAI (n=8,1z=4
m=0.125z/hc).

the parameterization shows a systematic error of 1-10%, re-
sulting in an underestimation of 10–20 W m−2 for QLW↓ at
noon time. However, this is less than 5% on relative terms
sinceQLW↓ is mainly determined byTref .

The number (n) and thickness (1z) of canopy layers are
parameters that determine model accuracy and numerical sta-
bility. To infer the sensitivity of predicted absorbed radia-
tion in relation to the number of model layers, we assumed a
canopy with black leaves (no albedo !). As shown in Fig.6a,
the relative error of predicted absorbed radiation (Qabs) in-
creases linearly from 1% forn=13 (1z=3 m) to 9% forn=3
(1z=13.3 m). Note that since all incoming radiation of a
canopy with black leaves is absorbed, the relative error is de-
fined as (Qmodel

abs −Q0)/Q0. As a good compromise between
prediction error and computational costs, a number ofn=8
canopy layers is derived. In fact this meets the accuracy cri-
teria ofNorman and Welles(1983) closely, recommending a
maximum leaf area of 0.5 for a given model layer. For an
open canopy, predicted absorbed radiation is also dependent
on LAI (Fig. 6b). However, for LAI≥4, the soil absorbs only
little energy while more than 90% of incoming short-wave
radiation is absorbed by leaves. This implies a low sensitivity
of predicted canopy net fluxes in relation to the uncertainty
of LAI. This point is discussed in more detail in Sect.3.7.

Green leaves partially reflect and transmit the incident ra-
diation, which is considered by two model parameters, the
leaf scattering (σl) and the canopy reflection (ρc) coefficients,
respectively. In Fig.7, the predicted canopy albedo for clear
sky conditions at midday is compared to longterm obser-
vations made byCulf et al. (1995) and Culf et al. (1996)
at the Jaru site and at a second site near Manaus. Using
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Fig. 7. (a) Observed (hatched box) and predicted canopy albedo
at noon time for clear sky conditions (fd0=0.2) as a function of
relative canopy reflectance and transmittance (1.0 = recommended
parameter values, 0.0 = black leaves) for visible (line with open cir-
cles), near-infrared (solid line) and total short-wave radiation (dot-
ted line).(b) Annual cycle of canopy albedo as observed at the Jaru
site and a second site near Manaus (Reserva Duke) in 1991–1993
(Culf et al., 1995, 1996). Mean and standard deviations of monthly
values for both sites are shown (r2

=0.87).

Table 6. Leaf optical parameters as recommended byLeuning et al.
(1995) and derived by fitting predicted canopy albedo to observa-
tions (see Fig.7).

Parameter recommended mean wet season dry season
scaling 1.00 0.66 0.60 0.75

σlV 0.2 0.132 0.120 0.150
σlN 0.8 0.528 0.480 0.600
ρcdV 0.057 0.038 0.034 0.043
ρcdN 0.389 0.257 0.233 0.293

albedo 0.232 0.130 0.1180 0.151

the recommended values forσl and ρc (see Table6), the
predicted albedo of 23.2% is nearly double as high as the
observed values of 12–14%. Since radiation absorption is
maximal in the visible range, the predicted albedo is much
more sensitive to the selection ofσlN andρcN , the scatter-
ing and reflection coefficients for near-infrared radiation, re-
spectively (Fig.7a). Reducing the scattering and reflection
of visible radiation from 100 to 0% (from 0.2 and 0.057 to 0
for σlV andρcdV , respectively) results in a small reduction of
canopy albedo (≈2.1%) whereas the same scaling for near-
infrared radiation (from 0.8 and 0.389 to 0 forσlN andρcdN ,
respectively) reduces the albedo essentially from 23.2% to
4.3%.

To minimize the large disagreement between observed
and predicted canopy albedo, we have scaled leaf optical
properties as listed in Table6, although this scaling can-

Fig. 8. (a) Incoming PAR (QPAR0) derived from Eqs. (35)–
(36) and observed at towers RBJ-A (closed squares), RBJ-B
(closed circles), and K34 (open squares).(b) Profiles of mean ra-
tios QPAR(3z)/QPAR0. Observed values at towers C14 (open
squares), RBJ-A in ’92/’93 (closed squares) and RBJ-A in 1999
(closed circles, only positive error bars) and predictions of the
two-leaf radiation absorption model constrained with observed
meteorology at RBJ-A in October 1999 (solid line with stan-
dard deviations). The dotted line represents the exponential fit
y= exp−ax , a=0.82 (r2

= 0.86).

not be validated due to lack of measurements. However,
these findings are in agreement with the results ofWang
(2003), who showed that the radiation model ofGoudriaan
and van Laar(1994) generally underestimates the amount
of absorbed radiation. One further explanation for the poor
agreement, which is obtained with non-optimized parame-
ter values, could be the model assumption of a spherical leaf
angle distribution, which is probably not fulfilled in forest
ecosystems (Ross, 1981). Furthermore, in natural ecosys-
tems, the orientation of leaves may change during the day
(Jones, 1992) and optimize the ratio of absorbed to reflected
canopy radiation. We assessed the significance of the param-
eter modifications for the CANVEG scheme in Sect.3.7.

Equations (35–36) imply the relationshipQPAR0=2.025
µmol J−1 gRad which was tested by comparing measured
and predicted values for a one month period (Jaru towers and
K34). As shown in Fig.8a, the observations show an excel-
lent fit to the relationship (r2

=1.00).

The radiation model is tested further by compar-
ing the mean observed and predicted mean ratios
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Fig. 9. (a) Relation between accumulated leaf area3z (see
Sect. 3.1) and vcmax0 (Carswell et al., 2000) observed at the
Cuieiras site. The solid and dotted lines represent exponential
(kN=0.2) and linear relationships, respectively.(b) Leaf nitro-
gen concentrationcN at different canopy positions observed at the
Cuieras site (open circles) byCarswell et al.(2000) and observed at
the Jaru site (closed squares) byLloyd et al.(1995). The determina-
tion of3z is described in Sect.3.1. The solid line represents the ex-
ponential relationshipcN=cN0 exp(−3zkN ) with cN0=230 mmol
m−2.

QPAR(3z)/QPAR0 at different canopy positions3z
(Fig. 8b). Model results are calculated using input data
from RBJ-A tower in October 1999.QPAR(3z)/QPAR0
is derived from the weighted sum of photosynthetic active
radiation absorbed by the sunlit and shaded leaf area of a
layer divided by incomingQPAR0 above the canopy. A
simple log-linear fit is also shown (r2

=0.86) In general,
all measurements show a similar light attenuation at lower
canopy positions3z>4. Compared to observations, the two-
stream radiation model predicts a lower ratio near the canopy
top and a higher ratio at3z≥4. Nevertheless, the agreement
is reasonable considering the measurement uncertainties in
3z andQPAR(z). The simple log-linear model predicts an
optimal extinction coefficient of 0.82, which is close to the
extinction coefficient for diffuse radiation and black leaves
kBd =0.8 (seeLeuning et al., 1995). Summarizing, the results
support the assumption, that the investigated sites have a
comparable canopy structure and radiation field, which can
be calculated reasonably well by the two-stream radiation
sub-model.

Fig. 10. (a–b) Predicted (open circles) and measured (solid
line in (a) soil heat flux (G) at the tower RBJ-A in 1999 us-
ing a constant bulk (0–1 m) soil surface conductance for heat
(1/gsoilH=500 s m−1). The linear fit shown in (b) predicts
y=1.02x + 0.92 (r2=0.92). (c–d) Parameterization of soil res-
piration (Fcsoil) using continuous measurements from three soil
chambers and soil temperature (Tsoil) measured at−0.05 m in 1999
(dry season data from the Jaru site, RBJ-A tower, see Table2).
(c) Mean observations and standard deviations for 0.5◦C inter-
vals (open squares) and predictions of Eq. (30) using an optimal
Q10≈1.6 (dashed line) andQ10≈2.3 (solid line) as derived byMeir
et al. (1996) for another site. (d) Frequency distribution ofFcsoil
(totalN=269).

3.4 Light acclimation of photosynthetic capacity

A linear vcmax−cN relationship, expressed on leaf area ba-
sis, and an exponential decrease with accumulated leaf area
3z is applied (Eq.32) to characterize biochemical proper-
ties of the rain forest canopy relevant for CO2 and H2O ex-
change (see Sect.2.3). In Fig. 9a, vcmax0 observed byCar-
swell et al.(2000) at C14 is plotted against3z measured at
the same tower (see Table2). The observed light acclima-
tion (kN=0.2) predicts a 70% reduction ofvcmax0 for ground
vegetation (LAI=6) and agrees with the shape of leaf nitro-
gen distribution observed byLloyd et al.(1995) at the RBJ-
B tower (Fig. 9b), averaged for 6 height classes (0–2, 9–
12, 13–15, 16–21, 22–26, and 27–30 m). The correlation
betweenvcmax0 and3z is nearly linear (r2

=0.9). Extrap-
olation of the straight fitted line to the canopy top predicts
vcmax0hc≈50µmol m−2 s−1, which is identical to the value
for tropical rain forest estimated byWullschleger(1993) and
the value for low nitrogen plants estimated byLeuning et al.
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Fig. 11.Scaling of leaf physiology for the evaluation of leaf photosynthesis and stomatal model parameters using gas exchange measurements
from 8 tree species made at the Jaru site. Canopy position (3z) and scaling of maximum carboxylation rate (vcmax0) in relation to top
canopy values. Measurements for species 1–8 have been made during the late wet (1-8a), early dry (1-8b) and late dry (1-8c) season. The
measurement protocol for species 1–3 is described byKuhn et al.(2002) andKuhn et al.(2004) whereas measurements for species 4–8 are
described byMcWilliam et al. (1996).

(1995). Although the relationship between leaf nitrogen con-
centration and maximum carboxylation rate may also be ex-
pressed on a leaf mass basis (Schulze et al., 1994; Meir et al.,
2002), especially when different ecosystems are compared,
the relationship based on leaf area seems to be more appro-
priate for leaf-to-canopy scaling (Hirose and Werger, 1987;
Leuning et al., 1995) in general and for undisturbed Amazon
rain forest in special (Reich and Walters, 1994; Lloyd et al.,
1995; Carswell et al., 2000).

3.5 Soil surface exchange

Measured soil heat flux (G) and temperature gradients be-
tween−0.05 m soil depth and 1 m height above the ground
are used to derive the bulk soil surface conductance for
heat (gsoilH , RBJ-A tower, see Table2). As shown in
Figs.10a–b, the assumption of a constant bulk conductance
1/gsoilH=500 s m−1 gives a good model fit (r2

=0.92).
Typically for dense forest canopies,G is relatively small
(<15 W m−2). Figure10a shows a comparison of measure-
ments and predictions for a limited period in the late dry sea-
son. Obviously, the parameterization can explain most of the
observed variations ofG.

The empirical relationship between soil respiration
(Fcsoil) and temperature (Eq.30) is assessed using contin-
uous measurements from 3 soil chambers made byGut et al.
(2002a) in October and November 1999 at the Jaru site. Fig-
ure 10c shows the mean values and standard deviations of
Fcsoil determined for 0.5◦C intervals. For a temperature of
25◦C, a reference respiration ofFcsoil0=3.3µmol m−2 s−1 is
derived, which is close to the mean value of 3.13±1.3µmol
m−2 s−1 (mean soil temperature is 24.5◦C). The frequency
distribution ofFcsoil has a single mode (Fig.10d). A plot
of mean values against temperature intervals for classes with
more thanN=10 observations (Fig.10c) shows a slight ex-
ponential increase within the narrow temperature range (4◦).

Log-linear fitting of Eq. (30) predicts an optimal activation
energy ofHasoil=60 kJ mol−1 (see Sect.2.2.4). This re-
sults in aQ10−value of 1.6 (Q10 describes the relative in-
crease rate of a biological process for a temperature increase
of 10◦C), which is lower as the value of 2.3 derived byMeir
et al. (1996) for another site in Amazonia. However, in the
present study, this parameter uncertainty has only little effect
on the uncertainty of calculatedFcsoil because the tempera-
ture range is narrow (Fig.10c).

Soil processes have been treated as simple as possible
within the present approach. For example, we can not ex-
clude that soil moisture affects soil respiration or stomatal
behavior. However there is no evidence for this in our data
and these processes act on time scales that are beyond the
scope of the present study. We propose to investigate feed-
backs between soil and canopy processes by coupling the
CANVEG scheme to a detailed soil model.

3.6 Leaf surface exchange

Leaf level gas exchange measurements from 8 Amazonian
tree species are used to evaluate the photosynthesis and
stomatal conductance models described in Sect.2.2 and
Sect. 2.2.2. Three seasonal periods are considered (late
wet, early dry, and late dry season). The photosynthe-
sis model is constrained using chamber measurements of
leaf temperature, incident PAR outside the leaf chamber
(QPAR), and intercellular carbon dioxide concentration, cal-
culated according toBall (1987). The absorbed PAR radi-
ation (Qabs) is calculated as a fixed fraction ofQPAR as-
sumingQabs=0.9QPAR. Vertical canopy position is esti-
mated by combining3z observed at RBJ-A (see Sect.3.1)
with observed mean ratiosQPAR(3z)/QPAR0 (species 1-3,
see Fig.8b) or, if branch height was available, directly with
z (4–8). The sub-models are calibrated with parameter val-
ues recommended byBall et al.(1987), Harley et al.(1992)
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andLeuning et al.(1995). A complete list is given in Ta-
ble 4. Maximum carboxylation rates (vcmax0) and related
parameters are scaled according to Eq. (32) using kN=0.2
(Fig. 11, see also Sect.3.4). The reference leaf temperature
for kinetic parameters is adopted from the common value of
20◦C (Harley et al., 1992; Leuning, 1995) to 25◦C for trop-
ical species (Carswell et al., 2000; Lloyd et al., 1995). Pre-
dicted optimum leaf temperature forvcmax and the maximum
rate of electron transport (Jmax) are 40.2 and 34.4◦C, respec-
tively.

A comparison of the observed and predicted photosynthe-
sis rates for late wet, early dry and late dry season condi-
tions is shown in Figs.12a–e. Using recommended param-
eter values to describe the light response and shape of the
temperature dependence for the photosynthesis model leads
to a large overestimation of observedAn. The observations
show a lower light use efficiency (α), indicated by the lower
initial slope of the light response curve. Furthermore, net as-
similation rates at saturating irradiance above 800µmol m−2

s−1 are overestimated by 30–70%. The measurements ex-
hibit even a decline ofAn at very high irradiance as observed
especially for late dry season conditions. By decreasingα

from 0.2 to 0.15 and the optimum leaf temperature forJmax
from 34.4 to 32.6◦C, the model performs much better, indi-
cated by the slope and intercept of the linear fits (Figs.12c–
e). For the dry season data sets of species 1 and 4, the in-
tercept value is≈7µmol m−2s−1 (not shown here). Obvi-
ously, photosynthesis of single species is reduced during the
dry season suggesting a seasonal change of leaf physiologi-
cal parameters.

Taking the measurement uncertainties and the large sea-
sonal and species dependent variability into consideration,
the model results agree reasonably well with the observa-
tions. However, the results demonstrate the high sensitivity
of model predictions to the choice of individual parameter
values. The optimized photosynthesis parameters are listed
in Table4.

The two stomatal models ofBall et al.(1987) andLeuning
et al. (1995), hereafter referred to as B87 and L95, respec-
tively (see Sect.2.2.2), are very similar. For comparison,
B87 and L95 are constrained using observedAn, relative hu-
midity hs (only B87) or water pressure deficitDs (only L95)
and concentration of CO2 at the leaf surfacecs , assuming
a fixed CO2 compensation point (0∗

=38.5 µmol mol−1).
The empirical parameter expressing the sensitivity of stom-
atas toDs , Ds0, is set to 15 hPa (only L95), the minimum
stomatal conductance and the empirical coefficient relating
gs to An are set togs0=0.01 mol m−2 s−1 (Leuning, 1995)
andaA=10 (Ball et al., 1987; Harley et al., 1992), respec-
tively. Since not all constraining parameters are available for
the data ofMcWilliam et al. (1996), the analysis ofgs is re-
stricted to the first three species listed in Fig.11(N=183). A
comparison of model predictions and observations is shown
in Fig. 13.

Fig. 12. (a) Comparison of observed (open diamonds) and
predicted light response for the recommended parameterization
(filled symbols) of the photosynthesis model.(b) Predicted light
response for the optimized parameterization of the photosynthe-
sis model (open circles). Compared to a), the quantum yield
parameter (α), the shape parameter that determines the transi-
tion to saturation (θ) and the optimum temperature for the max-
imum electron transport rate (Jmax ) have been reduced. The
solid lines in a,b) represent model predictions for idealized con-
ditions (vcmax0=vcmax0hc, ci=320µmol mol−1 andTs=302 K).
(c–e) Scatter plots and regression lines of predicted versus mea-
suredAn (late wet: (c); early dry: (d), late dry season:(e)) for a
recommended (solid liney, closed symbols, see a) and optimized
(dashed lineyo, open symbols, see b) model parameterization.

Both models fail to predict considerable variability ob-
served withgs . However, systematic deviations are small
taking into consideration that model parameters (gs0, aA and
Ds0) have not been optimized locally. The relatively poor
fit for both stomatal models is to some extent in agreement
with the results ofLloyd et al.(1995) who also evaluated the
more detailed but purely empirical approach ofJarvis(1976),
which requires many additional parameters that are usually
not available. In contrast, the simple B87 and L95 models
apply a simple but robust relationship betweengs andAn,
which seems to be a reasonable description of stomatal be-
havior over a wide range of environmental and ecophysio-
logical conditions.

3.7 Model sensitivity to key parameter uncertainty

Due to the large number of model parameters, it is practically
impossible to infer the whole model parameter space. How-
ever, this is not necessary, since reliable parameter ranges
have been inferred in Sects.3.1–3.6. In the following section,
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Table 7. Assessed uncertainties of model key parameters and resulting relative change (%) in sensible and latent heat flux and net ecosystem
exchange of CO2, var(H) andvar(LE) andvar(NEE), respectively. The CANVEG model has been run using two mean diel cycles
of micrometeorological input parameters for wet and dry season conditions, respectively, observed at the Jaru site in 1999 (a definition of
symbols is given at the end see Sect.4).

Parameter Estimate Inferred range Referencevar(H) var(LE) var(NEE)

3z mean∗ dense† open‡ Table 4 +4 –8 +1 –1 –2 +4
scaling ofρc, σl 66% 60% 75% Table 5 –3 +2 –1 +0 –1 +1
v1
cmax0hc 50 70 40 Fig. 9 –1 +3 +1 –3 –5 +6
kN 0.2 0.0 1.0 Fig. 9 –0 +18 –1 –21 –1 +34
α, θ 0.15,0.9 0.2,0.1 0.95,0.8 Fig. 12 –5 +11 +14 –22 –26 +34
aA 10 15 5 Fig. 13 –12 +25 +22 –41 –7 +22
∗LAI=6.0, †LAI=6.5, ‡ LAI=5.5, 1 in units ofµmol m−2 s−1

Fig. 13.Scatter plot of measured and predictedgsw for wet (closed
squares) and dry (open circles) season conditions for(a) the L95
model (Leuning, 1995) and(b) the B87 model (Ball, 1987). Linear
regression using all data (solid lines) results in:y = 0.77x + 0.03,
r2 = 0.51 (L95) andy = 0.82x + 0.04, r2 = 0.53 (B87); Linear
regression using only wet season data (dashed lines) results in:y =

0.80x + 0.04, r2 = 0.48 (L95) andy = 0.87x + 0.04, r2 = 0.51
(B87); Linear regression using only dry season data (dotted lines)
results in:y = 0.59x+0.05,r2 = 0.25 (L95) andy = 0.45x+0.05,
r2 = 0.16 (B87).

the sensitivity of predicted canopy net fluxes (energy and
CO2) to the remaining parameter uncertainties is assessed.
These parameters include canopy structure, the scaling of
albedo parameters (leaf transmittanceσl and reflectanceρc
for visible and near-infrared radiation, respectively), the pho-
tosynthetic capacity of canopy top leaves (vcmax0hc) and the
distributing of leaf nitrogen (light acclimation coefficient
kN ). Additionally, seasonal changes in leaf physiology are
considered by applying a model parameterization with higher
stomatal conductances for wet season conditions and lower
assimilation rates for dry season conditions: For wet season
conditions, the parameter correlating stomatal conductance
with assimilation (aA) is increased from 10 to 15 (see also
Lloyd et al., 1995). For dry season conditions, the light use
efficiency (α, the initial slope of light response), is reduced

from 0.15 to 0.1 and the shape parameter of the hyperbolic
light response function (θ ) is reduced from the recommended
value of 0.9 to 0.8. The model is constrained using mean di-
urnal cycles of meteorological variables (Table3) observed
during the late wet and late dry season at the RBJ-A tower
in Jaru in 1999. The input data is described in more detail in
the companion paper (Simon et al., 2005b).

The investigated parameter ranges and the resulting model
sensitivities are compiled in Table7. Model sensitivities are
calculated as the relative change of predicted sensible heat
(H ), latent heat (LE) and CO2 (NEE) canopy net fluxes.
Thereby, the last six columns on the right hand side in Ta-
ble7 are derived by relating the model output, obtained with
a single parameter modification (third and fourth column on
the left) while keeping all others constant, to the model out-
put obtained with the estimated parameters (Sects.3.1–3.6).

Most relationships are nearly linear within the parameter
range inferred. For canopy structure, a relatively low sen-
sitivity of model predicted net fluxes is found. The largest
variability is found for the sensible heat flux, which decreases
by 12% for the open canopy compared to the dense canopy
type. This may be partly explained by increased albedo (5%)
and net radiation (3%) For the open canopy type,NEE is
reduced by 5%, whereas it is increased by 2% for the dense
type. This is quite consistent with the derived relationship be-
tween LAI and absorbed short wave radiation (Qabs), which
predicts a saturation ofQabs at LAI≥4 (Sect.2.3).

As discussed in Sect.3.3, the recommended parameter val-
ues for leaf optical parameters predict a much higher canopy
albedo as observed. The best fit to measurements is obtained
whenσl andρc are scaled down to 60–75% of the recom-
mended values. However, the model predicted energy fluxes
are not very sensitive to the uncertainty of these parameters.
The 20% variability in canopy albedo results in less than 5%
variability in predictedH andLE. Surprisingly, the sensitiv-
ity of canopy net assimilation to the photosynthetic capacity
at the canopy top is relatively low. Increasingvcmax0hc by
40% increases the net CO2 uptake by only 5%. ForLE, these
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Fig. 14. Predicted canopy fluxes of sensible heat (H ), latent heat (LE) and CO2 (NEE) plotted against incoming global radiation using
an increased (+) or decreased (−) stomatal parameteraA (see Table7 line 7) and increased (closed up triangle) or decreased (open down
triangle) photosynthesis parametersα andθ (see line 5–6 in Table7).

differences are even smaller. Obviously, the contribution of
lower canopy layers to the total exchange ofLE andNEE is
low and increasing respiration of the whole foliage compen-
sates the effect of increasing gross assimilation. The second
important parameter related to canopy biochemistry iskN ,
representing the extinction coefficient of photosynthetic ca-
pacity (zero value means no acclimation). In Sect. 3.4, an
optimal value of 0.2 has been inferred. The flux sensitivi-
ties listed in Table7 indicate nearly optimal distribution of
leaf nitrogen sinceNEE remains constant with decreased
kN (which increasesvcmax0 in the lower canopy). In con-
trast, increasingkN leads to a significant reduction of CO2
uptake (35%).

Compared to the results described above, the predicted
fluxes are much more sensitive to the physiological parame-
ters (see Table7). Figure14shows the results in more detail.
The energy fluxes (H andLE) and bowen ratios (H/LE) are
very sensitive to the stomatal parameter (aA), whereas net as-
similation is most sensitive to the leaf photosynthesis param-
eters (α, θ ). ReducingaA from 10 to 5 results in a 41% reduc-
tion ofLE and a 25% increase ofH whereas net assimilation
is reduced by 22%. IncreasingaA from 10 to 15 results in a
22% increase ofLE and a 22% decrease ofH . Increasing the
photosynthetic parameters (α=0.2,θ=0.95) leads to a nearly
linear increase of absoluteNEE andLE (26% and 14%, re-
spectively), whereasH is decreased by 5%. In the opposite
direction, the effect of parameter modification is even larger.
Reducing the photosynthesis parameter (α=0.1, θ=0.8), re-
sults in a 34% reduction of absoluteNEE. Since CO2 is
coupled to the water exchange, the partitioning of energy is
also effected resulting in a strong decrease ofLE (22%) and
increase (11%) of sensible energy. These results stress the
necessity of careful parameter selection and sub-model eval-
uation with scale appropriate data (Sect.3.6)

4 Conclusions

An integrated CANVEG model scheme, describing the cou-
pled exchange of carbon and energy between the Amazon
rain forest and the lower atmosphere has been presented.

– The evaluation of calculations related to leaf photo-
synthesis using scale appropriate cuvette measurements
made on branches and leaves of 8 tree species at dif-
ferent canopy positions during three seasonal periods,
showed a reasonable agreement between model pre-
dictions and observations after optimization of recom-
mended parameter values for the temperature optimum
of the electron transport rate (decreased), light use effi-
ciency (decreased), and the shape parameter describing
the transition from linear to saturated light response (in-
creased).

– The branch-level measurements indicate also a seasonal
variability of leaf physiology. This is investigated in
more detail within the companion paper by applying dif-
ferent parameterization schemes, that assume increased
stomatal conductance rates for wet season conditions
(by increasing the stomatal parameteraA from 0.15 to
0.2) and decreased photosynthesis rates for dry sea-
son conditions (by decreasing the light-use-efficiencyα

from 0.15 to 0.1 and the rectangular shape parameterθ

from 0.9 to 0.8, respectively).

– The sensitivity of predicted canopy net energy and
CO2 fluxes to the selection of these parameters high-
lights the demand on ecophysiological measurements
and their use and application in detailed models of
surface-atmosphere exchange, as presented.

– In contrast to the large sensitivity to leaf scale parame-
ters (5–34%), the uncertainty of predicted canopy fluxes
resulting from the uncertainty of canopy structure, i.e.
total LAI, is low (1–12%).
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– The derived distribution function for canopy structure
agrees well with available observations. Site specific
modifications can be achieved by changing the function
scaling and shape parameters.

– An optimum number of 8 canopy layers (1z=5 m) is
derived for model application. The predicted canopy
albedo is relatively insensitive to total leaf area, but
strongly dependent on leaf optical parameters. Best
agreement with observations is obtained when recom-
mended values for reflectance and transmittance are re-
duced by 25–40%.

– Also demonstrated by comparison with observations is
the high accuracy of predicted PAR fractions of incom-
ing radiation. Due to underestimation of atmospheric
emissivity under high emissivity conditions, the sim-
ulated incoming long wave radiation is systematically
underestimated (1–5%), equivalent to a maximum of
25 W m−2 at noon time.

– Mean incident light observed at different sites show a
similar extinction in different canopy layers when atten-
uation is related to vertical canopy position. A good cor-
respondence is obtained between PAR measurements
and predicted mean PAR absorbed by sunlit and shaded
leaves using the canopy radiation model.

– Although the scaling of canopy biochemistry remains
uncertain, available field data support the light accli-
mation hypothesis for Amazon rain forest. While ir-
radiance decreases exponentially with accumulated leaf
area, photosynthetic capacity was found to decrease
nearly linearly.

List of symbols

ai1,2 coefficients in Eq. (31) with i=T ,B for top and bottom
canopy layer, respectively (–)

aA empirical parameter relating stomatal conductance to
assimilation (–)

cmp specific heat of air (J mol−1 K−1)

cx CO2 concentration with subscriptssoil, i, s, a, ref de-
noting the soil, intercellular, leaf surface, ambient air,
and reference height level,respectively (µmol mol−1)

cN leaf nitrogen concentration (mmol m−2)

dh zero length displacement height (m)

d(i, j) dispersion coefficient from layeri to layerj (s m−1)

e water vapor pressure (hPa)

fd,b diffusive (d) or direct beam (b) fraction of radiation (–)

fSL,SH sunlit (SL) or shaded (SH ) leaf fraction (–)

gb leaf boundary layer conductance with subscripts
H,w, c denoting heat, water, and CO2, andu, f de-
noting the convective and forced part ofgb, respectively
(mol m−2 s−1)

grad radiative conductance (mol m−2 s−1)

gs stomatal conductance with subscriptsw andc denoting
water and CO2 (mol m−2 s−1)

gsoilH bulk soil surface conductance for heat (mol m−2 s−1)

gt total conductance with subscriptsH,w, c denoting
heat, water, and CO2 (mol m−2 s−1)

gRad incoming global radiation with subscript 0 denoting po-
tential global radiation (W m−2)

hc mean canopy height (m)

k
(B)
d,b extinction coefficient for diffusive (d) or beam (b) radi-

ation with superscriptB denoting black leaves (–)

ku extinction coefficient foru (–)

kN extinction coefficient forcN (–)

n number of model layers (–)

oi intercellular oxygen concentration (mmol mol−1)

s slope of the curve relating saturation water vapor pres-
sure to temperature (hPa K−1)

td time of the year (d)

th local solar time (h)

u horizontal wind speed with subscriptref denoting the
reference height (m s−1)

vcmax maximum catalytic activity of Rubisco, (µmol m−2 s−1,
subscripts 0 andhc denotevmax atTs0 and at the canopy
top, respectively)

wi weight coefficients in Eq. (31) with i=T and i=B for
top and bottom canopy maximum of leaf area density
(–)

wl mean leaf width (m)

z height above ground (m)

z0 roughness length (m)

zi mean layer height (m)

z∗i upper boundary of a single leaf area distribution (m)

zref reference height abovehc (m)
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An net assimilation rate (µmol m−2 s−1)

Av gross rate of photosynthesis limited by Rubisco activity
(µmol m−2 s−1)

AJ gross rate of photosynthesis limited by RuP2 regenera-
tion (µmol m−2 s−1)

Cx scalar concentration with subscriptsi, s, a, ref denot-
ing the leaf intercellular space, leaf surface, ambient air,
and reference height level, respectively

Ds0 empirical coefficient reflecting the stomatal sensitivity
toDs (hPa)

Dx water vapor pressure deficit with subscripts
soil, i, s, a, ref denoting the soil, intercellular,
leaf surface, ambient air, and reference height level,
respectively (hPa)

E leaf transpiration (mmol m−2 s−1)

F trace gas flux expressed on ground area

Fcsoil soil respiration with subscript 0 denotingFcsoil atTsoil0
(µmol m−2 s−1)

Fleaf trace gas flux expressed on leaf area

G soil heat flux (W m−2)

Gr Grashof number (–)

H sensible heat flux (W m−2)

Hx energy with subscriptsd andv andKo,Kc,Rd, V, J ,
and soil denoting the activation and deactivation of
Kc,Ko, Rd , vcmax, Jmax , and Fcsoil , respectively (J
mol−1)

Ix the incomplete beta function

J electron transport rate (µmol m−2 s−1)

Jmax potential rate of electron transport with subscript 0 de-
notingJmax atTs0 (µmol m−2 s−1)

Kc,o Michaelis coefficient with subscriptsc ando denoting
for carboxylation and oxygenation, respectively (µmol
m−2 s−1)

Ls canopy length scale (m)

LE canopy latent heat flux (W m−2)

NEE net ecosystem exchange of CO2 (µmol m−2 s−1)

P0 air pressure at the reference height (hPa)

Q10 change rate of a biological process for a temperature
increase of 10◦C (-)

Qd,b,sb diffusive (d), direct beam (b) or scattered (sb) beam ra-
diation. Subscript 0 indicates incoming radiation. (W
m−2)

Qn net radiation (W m−2)

Q∗
n isothermal net radiation assumingTs = Ta (W m−2)

QLW long wave radiation. Subscript 0 indicates incoming ra-
diation (W m−2)

QN,V visible (V ) or near-infrared (N ) radiation. Subscript 0
indicates incoming radiation (W m−2)

QPAR photosynthetic active radiation. Subscript 0 indicates
incoming radiation (µmol m−2 s−1)

QSH,SL radiation absorbed by sunlit (SL) or shaded (SH ) leaves
(W m−2)

QSW short-wave radiation. Subscript 0 indicates incoming ra-
diation (W m−2)

R universal gas constant (8.3145 J mol−1 K−1)

Rd day respiration (µmol m−2 s−1)

RHx relative humidity with subscriptssoil, i, s, a, ref de-
noting the soil, intercellular, leaf surface, ambient air,
and reference height level, respectively (–)

Si source/sink strength of layeri

Sv,d entropy for activation (v) and deactivation (d) (J mol−1)

Tx temperature with subscriptssoil, s, a, ref denoting the
soil, leaf surface, ambient air, and reference height level,
respectively (K)

Tx0 reference temperature (K)

α quantum yield of whole-chain electron transport (–)

γ0,1,2 empirical constants required to calculate0∗ (–)

γair psychometric constant (hPa K−1)

εa0,s long-wave emissivity with subscriptsa0 ands denot-
ing the atmosphere and surface (leaves and soil), respec-
tively (–)

ηw, η
∗
w water filled soil pore space, total soil pore space (–)

θ shape coefficient of the hyperbolic light response func-
tion for photosynthesis (–)

λm latent heat of vaporization for water (J mol−1)

λC chemical energy stored by CO2 fixation (Jµmol−1)

ρcx canopy reflection coefficient with subscriptsx=d, b and
N,V denoting diffusive or beam, and visible or near-
infrared radiation,respectively (–)
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ρh canopy reflection coefficient for horizontal leaves (–)

σlx scattering coefficient with subscriptsx=d, b andN,V
denoting diffusive or beam, and visible or near-infrared
radiation, respectively (–)

σB Stefan-Boltzmann constant (5.67051×10−8) (W m−2

K−4)

ψsoil soil matrix potential with superscript∗ denoting maxi-
mumψsoil (–)

0 CO2 compensation point (µmol mol−1)

0∗ CO2 compensation point in the absence of day respira-
tion (µmol mol−1)

30,z,hc accumulated leaf area with subscripts 0, z, hc denoting
total LAI, at heightz and (zero) at the canopy top (m2

m−2)

Acknowledgements.We would like to thank many people for
providing high quality field data from Amazonia, especially
U. Rummel, U. Kuhn, S. Rottenberger, C. Ammann, A. Gut,
G. Kirkman (MPIC), B. Kruijt and J. Elbers (Alterra-Institute),
J. Lloyd (University of Leeds) and representatively for the pre-LBA
studies the UK Institute of Hydrology for making the ABRACOS
data sets available. The research is supported by the Max Planck
Society and the European Union (EUSTACH-LBA; ENV4-CT97-
0566).

Edited by: A. Goldstein

References

Andreae, M. O., Artaxo, P., Brandao, C., Carswell, F. E., Cicci-
oli, P., da Costa, A. L., Culf, A. D., Esteves, J. L., Gash, J.
H. C., Grace, J., Kabat, P., Lelieveld, J., Malhi, Y., Manzi, A. O.,
Meixner, F. X., Nobre, A. D., Nobre, C., Ruivo, M., Silva-Dias,
M. A., Stefani, P., Valentini, R., von Jouanne, J., and Waterloo,
M. J.: Biogeochemical cycling of carbon, water, energy, trace
gases, and aerosols in Amazonia: The LBA-EUSTACH experi-
ments, J. Geophys. Res., 107, 33.1–33.25, 2002.

Araujo, A., Nobre, A., Kruijt, B., Elbers, J., Dallarosa, R., Ste-
fani, P., von Randow, C., Manzi, A., Culf, A., Gash, J., Valentini,
R., and Kabat, P.: Comparative measurements of carbon dioxide
fluxes from two nearby towers in a central Amazonian rainforest:
The Manaus LBA site, J. Geophys. Res., 107, 58.1–58.20, 2002.

Baldocchi, D.: A Lagrangian random-walk model for simulating
water vapour, CO2 and sensible heat flux densities and scalar
profiles over and within a soybean canopy, Bound.-Layer Mete-
orol., 61, 113–144, 1992.

Baldocchi, D. and Bowling, D. R.: Modelling the discrimination of
13CO2 above and within a temperate broad-leaved forest canopy
on hourly to seasonal timescales, Plant, Cell Env., 26, 231–244,
2003.

Baldocchi, D. and Harley, P.: Scaling carbon dioxide and wa-
ter vapour exchange from leaf to canopy in a deciduous forest:
Model testing and application, Plant, Cell Env., 18, 1157–1173,
1995.

Baldocchi, D. and Meyers, T.: On using eco-physiological, mi-
crometeorological and biogeochemical theory to evaluate carbon
dioxide, water vapor and trace gas fluxes over vegetation – a per-
spective, Agric. For. Meteorol., 90, 1–25, 1998.

Baldocchi, D. D. and Wilson, K. B.: Modeling CO2 and water va-
por exchange of a temperate broadleaved forest across hourly to
decadal time scales, Ecol. Model., 142, 155–184, review, 2001.

Ball, J.: Calculations related to gas exchange, in Stomatal Func-
tion, edited by: Zeiger, E., Farquhar, G., and Cowan, I., Stanford
University Press, Stanford, California, 445–476, 1987.

Ball, J., Woodrow, I., and Berry, J.: A model predicting stomatal
conductance and its contribution to the control of photosynthesis
under different environmental conditions, in: Progress in Pho-
tosynthesis Research, edited by: Biggins, I., Martinus Nijhoff,
Netherlands, 221–224, 1987.

Brutsaert, W.: On a derivable formula for long-wave radiation for
clear skies, Water Resources Res., 11, 742–744, 1975.

Caemmerer, S. v. and Farquhar, G. D.: Some relationships be-
tween the biochemistry of photosynthesis and the gas exchange
of leaves, Planta, 153, 376–387, 1981.

Carswell, F., Meir, P., Wandell, E., Bonates, L., Kruijt, B., Barbosa,
E., Nobre, A., Grace, J., and Jarvis, P.: Photosynthetic capacity
in a central Amazonian rain forest, Tree Physiol., 20, 179–186,
2000.

Collatz, G., Ball, J., Grivet, C., and Berrry, J.: Phyiosiological and
environmental regulation of stomatal conductance, photosynthe-
sis and transpiration: A model that includes a laminar boundary
layer, Agric. For. Meteorol., 54, 107–136, 1991.

Collatz, G., Ribbas-Carbo, M., and Berry, J.: Coupled
photosynthesis-stomatal conductance model for leaves of C4
plants, Aust. J. Plant Physiol., 54, 107–136, 1992.

Culf, A., Fisch, G., and Hodnett, M.: The albedo of Amazonian
forest ranch land, J. Climate, 8, 1543–1554, 1995.

Culf, A., Esteves, J. L., Filho, M. O., and Rocha, H. d.: Radiation,
temperature and humidity over forest and pasture in Amazonia,
in Amazonian Deforestation and Climate, edited by: Gash, J.,
Nobre, C., Roberts, J., and Victoria, R., John Wiley and Sons,
Chichester, 177–191, 1996.

Deardorff, J.: Efficient prediction of ground surface temperature
and moisture with inclusion of a layer of vegetation, J. Geophys.
Res., 83, 1889–1903, 1978.

Dickinson, R. E., Henderson-Sellers, A., and Kennedy, P. J.:
Biosphere-Atmosphere Transfer Scheme (BATS) version 1e as
coupled to the NCAR community climate model, NCAR Tech-
nical Note 387, NCAR, 1993.

Eschenbach, C. and Kappen, L.: Leaf area index determination in
an alder forest – a comparison of three methods, Journal of Ex-
perimental Botany, 47, 1457–1462, 1996.

Evans, J.: Photosynthesis and nitrogen relationships in leaves of C3
plants, Oecologia, 78, 9–19, 1989.

Falge, E., Baldocchi, D., Tenhunen, J., Aubinet, M., Bakwin, P.,
Berbigier, P., Bernhofer, C., Burba, G., Clement, R., Davis, K. J.,
Elbers, J. A., Goldstein, A. H., Grelle, A., Granier, A., Guo-
mundsson, J., Hollinger, D., Kowalski, A. S., Katul, G., Law,
B. E., Malhi, Y., Meyers, T., Monson, R. K., Munger, J. W.,
Oechel, W., Paw U, K. T., et al.: Seasonality of ecosystem respi-
ration and gross primary production as derived from FLUXNET
measurements, Agric. For. Meteorol., 113, 53–74, 2002.

Farquhar, G. D., Caemmerer, S. v., and Berry, J.: A biochemi-

Biogeosciences, 2, 231–253, 2005 www.biogeosciences.net/bg/2/231/



E. Simon et al.: A coupled model of carbon-water exchange of the Amazon rain forest 251

cal model of photosynthetic CO2 assimilation in leaves of C3-
species, Planta, 149, 78–90, 1980.

Field, C.: Allocating leaf nitrogen for the maximization of carbon
gain: leaf age as a control on the allocation program, Oecologia,
56, 341–347, 1983.

Field, C. and Mooney, H.: The photosynthesis-nitrogen relation-
ship in wild plants, in On the Economy of Plant Form and Func-
tion, edited by: Givnish, T., Cambridge University Press, 25–55,
1986.

Ganzeveld, L. and Lelieveld, J.: Dry deposition parameterization
in a chemistry general circulation model and its influence on
the distribution of reactive trace gases, J. Geophys. Res., 100,
20 999–21 012, 1995.

Garrat, J.: The Atmospheric Boundary Layer, Cambridge Atmo-
spheric and Space Science Series, Cambridge University Press,
Cambridge, 1992.

Gash, J., Nobre, C., Roberts, J., and Victoria, R.: An overview of
ABRACOS, in Amazonian Deforestation and Climate, edited by:
Gash, J., Nobre, C., Roberts, J., and Victoria, R., John Wiley and
Sons, Chichester, 1–14, 1996.

Goudriaan, J. and van Laar, H.: Modelling Crop Growth Processes,
Kluwer, Amsterdam, 1994.

Grace, J., Lloyd, J., McIntyre, J., Miranda, A., Meir, P., Miranda,
H., Moncrieff, J., Massheder, J., Wright, I., and Gash, J.: Fluxes
of carbon dioxide and water vapour over an undisturbed tropical
rain forest in south-west Amazonia, Glob. Clim. Change, 1, 1–
12, 1995.

Gu, L. H. and Baldocchi, D.: Fluxnet 2000 synthesis – foreword,
Agric. For. Meteorol., 113, 1–2, 2002.

Gut, A., Scheibe, M., Rottenberger, S., Rummel, U., Welling, M.,
Ammann, C., Kirkman, G., Kuhn, U., Meixner, F., Kesselmeier,
J., Lehmann, B., Schmidt, J., M̈uller, E., and Piedade, M.: Ex-
change of NO2 and O3 at soil and leaf surfaces in an Amazonian
rain forest, J. Geophys. Res., 107, 27.1–27.15, 2002a.

Gut, A., van Dijk, S., Scheibe, M., Rummel, U., Welling, M., Am-
mann, C., Meixner, F., Kirkman, G., Andreae, M., and Lehmann,
B.: NO emission from an Amazonian rain forest soil: Continous
measurements of NO flux and soil concentration, J. Geophys.
Res., 102, 24.1–24.10, 2002b.

Halldin, S., Bergstrom, H., Gustafsson, D., Dahlgren, L., Hjelm, P.,
Lundin, L. C., Mellander, P. E., Nord, T., Jansson, P. E., Seibert,
J., Stahli, M., Kishne, A. S., and Smedman, A. S.: Continuous
long-term measurements of soil-plant-atmosphere variables at an
agricultural site, Agric. For. Meteorol., 98-9, 75–102, 1999.

Harley, P., Thomas, R., Reynolds, J., and Strain, B.: Modelling
photosynthesis of cotton grown in elevated CO2, Plant, Cell Env.,
15, 1992.

Hirose, T. and Bazzaz, F. A.: Trade-off between light- and nitrogen-
use efficiency in canopy photosynthesis, Ann. Bot., 82, 195–202,
1998.

Hirose, T. and Werger, M.: Nitrogen use efficiency in instantaneous
and daily photosynthesis of leaves in the canopy of aSolidago
altissimastand, Physiolog. Plant., 70, 215–222, 1987.

Hirose, T., Werger, M., Pons, T., and Rheenen, J. v.: Canopy struc-
ture and leaf nitrogen distribution in a stand ofLysimachia vul-
garis L.as influenced by stand density, Oecologia, 77, 1988.

Jarvis, P.: Scaling physiological processes, in Scaling Physiological
Processes Leaf to Globe, edited by Ehleringer, J. R. and Field, C.
B., Academic Press, San Diego – London, 115–126, 1993.

Jarvis, P. G.: The interpretation of variations in leaf water potential
and stomatal conductance found in canopies in the field, Phil.
Trans. Roy. Soc. B, 273, 593–610, 1976.

Jones, H.: Plants and Microclimate: A Quantitative Approach
to Plant Physiology, Cambridge University Press, Cambridge,
1992.

Kaimal, J. and Finnigan, J.: Atmospheric Boundary Layer Flows,
Oxford University Press, New York, 1994.

Katul, G., Leuning, R., and Oren, R.: Relationship between plant
hydraulic and biochemical properties derived from a steady-state
coupled water and carbon transport model, Plant Cell Env., 26,
339–350, 2003.

Katul, G. G. and Albertson, J. D.: Modeling CO2 sources, sinks,
and fluxes within a forest canopy, J. Geophys. Res., 104, 6081–
6091, 1999.

Klinge, H.: Struktur und Artenreichtum des zentralamazonischen
Regenwaldes, Amazoniana, 4, 283–292, 1973.

Klinge, H., Rodriques, W., Brunig, E., and Fittkau, E.: Biomass and
structure in a central Amazonian rain forest, in Tropical Ecolog-
ical Systems. Trends in Terrestrial and Aquatic Research, edited
by: Golley, F. and Medina, E., Springer, Berlin, 115–122, 1975.

Kruijt, B., Malhi, Y., Lloyd, J., Nobre, A., Miranda, A., Pereira, M.,
Culf, A., and Grace, J.: Turbulence statistics above and within
two Amazon rain forest canopies, Bound.-Layer Meteorol., 94,
297–331, 2000.

Kuhn, U., Rottenberger, S., Biesenthal, T., Ammann, C., Wolf, A.,
Schebeske, G., Ciccioli, P., Branaleoni, E., Frattoni, M., Tavares,
T., and Kesselmeier, J.: Isoprene and monoterpene emissions of
Amazonian tree species during the wet season: Direct and in-
direct investigations on controlling environmental functions, J.
Geophys. Res., 107, 38.1–38.13, 2002.

Kuhn, U., Rottenberger, S., Biesenthal, T., Wolf, A., Schebeske,
G., Ciccioli, P., Branaleoni, E., Frattoni, M., Tavares, T., and
Kesselmeier, J.: Seasonal differences in isoprene and light-
dependent monoterpene emission by Amazonian tree species,
Global Change Biol., 10, 663–682, 2004.

Lai, C. T., Katul, G., Ellsworth, D., and Oren, R.: Modelling
vegetation-atmosphere CO2 exchange by a coupled Eulerian-
Lagrangian approach, Bound.-Layer Meteorol., 95, 91–122,
2000a.

Lai, C. T., Katul, G., Oren, R., Ellsworth, D., and Schfer, K.: Mod-
elling CO2 and water vapor turbulent flux distributions within a
forest canopy, J. Geophys. Res., 105, 26 333–26 351, 2000b.

Laurance, W. F.: Mega-development trends in the Amazon: Impli-
cations for global change, Env. Monit. Assessment, 61, 113–122,
2000.

Leuning, R.: Modelling stomatal behaviour and photosynthesis of
Eucalyptus grandis, Aust. J. Plant Physiol., 17, 159–175, 1990.

Leuning, R.: A critical appraisal of a combined stomatal-
photosynthesis model for C3 plants, Plant, Cell Env., 18, 339–
357, 1995.

Leuning, R., Kelliher, F. M., de Pury, D. G. G., and Schulze, E. D.:
Leaf nitrogen, photosynthesis, conductance and transpiration:
scaling from leaves to canopies, Plant, Cell Env., 18, 1183–1200,
1995.

Lloyd: Modelling stomatal responses to environment inMacadamia
integrifolia, Aust. J. Plant Physiol., 18, 649–660, 1991.

Lloyd, J., Grace, J., Miranda, A. C., Meir, P., Wong, S. C., Miranda,
B. S., Wright, I. R., Gash, J. H. C., and McIntyre, J.: A simple

www.biogeosciences.net/bg/2/231/ Biogeosciences, 2, 231–253, 2005



252 E. Simon et al.: A coupled model of carbon-water exchange of the Amazon rain forest

calibrated model of amazon rainforest productivity based on leaf
biochemical properties, Plant, Cell Env., 18, 1129–1145, 1995.

Lohammer, T., Larsson, S., Linder, S., and Falk, S.: FAST – simu-
lation models of gaseous exchange in Scots Pine, Ecol. Bull., 32,
1980.

McNaughton, H.: Effective stomatal boundary-layer resistances of
heterogenous surfaces, Plant, Cell Env., 17, 1061–1068, 1994.

McWilliam, A.-L., Roberts, J., Cabral, O., Leitao, M., Costa, A. d.,
Maitelli, G., and Zamparoni, C.: Leaf area index and above-
ground biomass of terra firme rain forest and adjecent clearings
in Amazonia, Funct. Ecol., 7, 310–317, 1993.

McWilliam, A.-L., Cabral, O. M. R., Gomes, B., Esteves, J. L., and
Roberts, J.: Forest and pasture leaf-gas exchange in south-west
Amazonia, in Amazonian Deforestation and Climate, edited by
Gash, J., Nobre, C., Robers, J., and Victoria, R., John Wiley,
Chichester, 265–285, 1996.

Meir, P., Grace, J., Miranda, A., and LLoyd, J.: Soil respiration in a
rainforest in Amazonia and in cerrado in central Brazil, in Ama-
zonian Deforestation and Climate, edited by Gash, J., Nobre, C.,
Robers, J., and Victoria, R., John Wiley, Chichester, 319–329,
1996.

Meir, P., Kruijt, B., Broadmeadow, M., Barbosa, E., Kull, O., Car-
swell, F., Nobre, A., and Jarvis, P. G.: Acclimation of photosyn-
thetic capacity to irradiance in tree canopies in relation to leaf
nitrogen concentration and leaf mass per unit area, Plant, Cell
Env., 25, 343–357, 2002.

Meyers, T. and Paw U, K.: Testing of a higher-order closure model
for modeling airflow within and above plant canopies, Bound.-
Layer Meteorol., 37, 297–311, 1986.

Monteith, J.: Evaporation and environment, Sym. Soc. Exp. Biol.,
19, 206–234, 1965.

Monteith, J.: Principles of Environmental Physics, Edward Arnold,
London, 1973.

Niinemets, U., Tenhunen, J. D., Canta, N. R., Chaves, M. M.,
Faria, T., Pereira, J. S., Reynolds, J. F., 1999. Interactive effects
of nitrogen and phosphorus on the acclimation potential of fo-
liage photosynthetic properties of cork oak,Quercus suber, to
elevated atmospheric CO2 concentrations. Global Change Biol.
5 (4), 455–470, 1999.

Noilhan, J. and Planton, S.: A simple parameterization of land sur-
face processes for meteorological models, Mon. Weather Rev.,
117, 536–549, 1989.

Norman, J. and Welles, J.: Radiative transfer in an array of
canopies, Agron. J., 75, 481–488, 1983.

Press, W. H.: Numerical Recipes in C: the Art of Scientific Com-
puting., Vol. 1, University press, Cambridge, 2 edn., 1997.

Raupach, M. R.: A Lagrangian analysis of scalar transfer in vegeta-
tion canopies, Q. Roy. S. Meteor. Soc., 113, 107–120, 1987.

Raupach, M. R.: A practical Lagrangian method for relating scalar
concentrations to source distributions in vegetation canopies, Q.
J. R. Met. Soc., 115, 609–632, 1989.

Reich, P. and Walters, M.: Photosynthesis-nitrogen relations in
Amazonian tree species, Oecologia, 97, 73–81, 1994.

Ribeiro, J. d. S., Hopkins, M., Vicentini, A., Sothers, C., Costa,
M. d. S., Brito, J. d., Souza, M. d., Martins, L., Lohmann, L.,
Assuncao, P., Pereira, E. d. C., Silva, C. d., Mesquita, M., and
Procopio, L.: Flora da Reserva Ducke: Guia de identificacao das
plantas vasculares de uma floresta de terra-firme na Amazonia
Central, INPA, Manaus, 1999.

Roberts, J., Cabral Osvaldo, M. R., Fisch, G., Molion, L. C. B.,
Moore, C. J., and Shuttleworth, W. J.: Transpiration from
an Amazonian rainforest calculated from stomatal conductance
measurements, Agric. For. Meteorol., 65, 175–196, 1993.

Ross, J.: The Radiation Regime and Architecture of Plant Stands,
Dr. W. Junk, Norwell, MA, 1981.

Rummel, U.: Turbulent exchange of ozone and nitrogen oxides
from a tropical rain forest in Amazonia, Phd thesis, University
Bayreuth, Germany, 2005.

Rummel, U., Ammann, C., Gut, A., Meixner, F., and Andreae, M.:
Eddy covariance measurements of nitric oxide flux within an
Amazonian rain forest, J. Geophys. Res., 107, 17.1–17.9, 2002.

Schulze, E.-D., Kelliher, F., K̈orner, C., Lloyd, J., and Leuning, R.:
Relationship between maximum stomatal conductance, ecosys-
tem surface conductance, carbon assimilation and plant nitrogen
nutrition: A global ecology scaling exercise, Annu. Rev. Ecol.
Syst., 25, 629–660, 1994.

Sellers, P., Berry, J., Collatz, G., Field, C., and Hall, F.: Canopy re-
flectance, photosynthesis and transpiration. III: A reanalysis us-
ing improved leaf models and a new canopy integration scheme,
Remote Sens. Environ., 42, 187–216, 1992.

Sellers, P., Randall, D., Collatz, G., Berry, J., Field, C., Dazlich, D.,
Zhang, C., Collello, G., and Bounoua, L.: A revised land surface
parameterization (SIB2) for Atmospheric GCMs. Part I: Model
formulation, J. Climate, 9, 676–705, 1996.

Sellers, P. J., Hall, F. G., Kelly, R. D., Black, A., Baldocchi, D.,
Berry, J., Ryan, M., Ranson, K. J., Crill, P. M., Lettenmaier,
D. P., Margolis, H., Cihlar, J., Newcomer, J., Fitzjarrald, D.,
Jarvis, P. G., Gower, S. T., Halliwell, D., Williams, D., Good-
ison, B., Wickland, D. E., and Guertin, F. E.: Boreas in 1997 –
experiment overview, scientific results, and future directions, J.
Geophys. Res., 102, 28 731–28 769, 1997.

Seufert, G., Bartzis, J., Bomboi, T., Ciccioli, P., Cieslik, S., Dlugi,
R., Foster, P., Hewitt, C. N., Kesselmeier, J., Kotzias, D., Lenz,
R., Manes, F., Pastor, R. P., Steinbrecher, R., Torres, L., Valen-
tini, R., and Versino, B.: An overview of the Castelporziano ex-
periments, Atmos. Environ., 31, 5–17, 1997.

Simon, E., Lehmann, B., Ammann, C., Ganzeveld, L., Rummel, U.,
Nobre, A., Araujo, A., Meixner, F., Kesselmeier, J.: Lagrangian
dispersion of222Rn, H2O and CO2 within Amazon rain forest,
Agric. For. Meteorol., accepted, 2005a.

Simon, E., Meixner, F., Rummel, U., Ganzeveld, L., Ammann, C.,
Kesselmeier, J.: Coupled carbon-water exchange of the Amazon
rain forest, II. Comparison of predicted and observed seasonal
exchange of energy, CO2, isoprene and ozone at a remote site in
Rond̂onia, Biogeosciences Discuss., 2, 399–445, 2005b,
SRef-ID: 1810-6285/bgd/2005-2-399.

Splitters, C.: Separating the diffusive and direct component of
global radiation and its implications for modelling canopy pho-
tosynthesis, part II: Calculation of canopy photosynthesis, Agric.
For. Meteorol., 38, 231–242, 1986.

Tuzet, A., Perrier, A., and Leuning, R.: A coupled model of stom-
atal conductance, photosynthesis and transpiration, Plant, Cell
Env., 26, 1097–1116, 2003.

Walters, M. and Field, C.: Photosynthetic light acclimation in two
rainforest Piper species with different ecological amplitudes, Oe-
cologia, 72, 449–456, 1987.

Wang, Y.: A comparison of three different canopy radiation models
commonly used in plant modelling, Funct. Plant Biol., 30, 143–

Biogeosciences, 2, 231–253, 2005 www.biogeosciences.net/bg/2/231/

http://direct.sref.org/1810-6285/bgd/2005-2-399


E. Simon et al.: A coupled model of carbon-water exchange of the Amazon rain forest 253

152, 2003.
Wang, Y.-P. and Leuning, R.: A two-leaf model for canopy con-

ductance, photosynthesis and partitioning of available energy I:
Model description and comparison with a multi-layered model,
Agric. For. Meteorol., 91, 89–111, 1998.

Williams, M., Malhi, Y., Nobre, A. D., Rastetter, E. B., Grace, J.,
and Pereira, M. G. P.: Seasonal variation in net carbon exchange
and evapotranspiration in a Brazilian rain forest: a modelling
analysis, Plant, Cell Env., 21, 953–968, 1998.

Wilson, T. B., Norman, J. M., Bland, W. L., and Kucharik, C. J.:
Evaluation of the importance of Lagrangian canopy turbulence
formulations in a soil-plant-atmosphere model, Agric. For. Me-
teorol., 115, 51–69, 2003.

Wullschleger, S.: Biochemical limitations to carbon assimilation in
C3 plants – A retrospective analysis of theA/ci curves from 109
species, J. Exp. Bot., 44, 907–920, 1993.

www.biogeosciences.net/bg/2/231/ Biogeosciences, 2, 231–253, 2005


