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Abstract. Using analytical and numerical methods, esti-
mates are given of future predictions in astrophysics that can
be gathered from a sequence of observed events, for exam-
ple for γ -ray bursts. Some general probability considera-
tions are provided and then a maximum likelihood estima-
tion, together with an approximation for the large number
limit of possible events. Illustrations are given of the numer-
ical maximum likelihood estimation programs in the situa-
tions of both a large number and a finite number of events.
The effects of data uncertainty are also considered. Numer-
ical calculations and comparisons with theoretical expecta-
tions are presented too.

1 Introduction

In many fields of astrophysics one can observe a sequence
of events, each of different intensity. Perhaps such is best
exemplified by observations ofγ -ray bursts which are short
and intense pulses of softγ -rays, where short means that the
pulses can last from a fraction of a second to several hundred
seconds. All knownγ -ray bursts originate in extragalactic
regions. Possible sources are for example core-collapsing
rapidly rotating Wolf-Rayet stars or two colliding neutron
stars orbiting in a binary. Today it is known that the form
of a γ -ray burst is a narrow beam with corresponding en-
ergies around 1051 ergs (Frail et al., 2001; Panaitescu and
Kumar, 2001; Piran et al., 2001).γ -ray bursts are detected
in random directions, so they are an isotropic phenomenon.
For example sevenγ -ray bursts with photon energies that
lie in an interval of 100 MeV to 18 GeV were measured
with the high energyγ -ray detector Gamma-Ray Experiment
Telescope (EGRET) at the Compton Gamma-Ray Observa-
tory (Dingus and Catelli, 1998). For more detailed infor-
mation aboutγ -ray bursts useful references are Piran (1999,
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2000, 2004); Hurley (2002); Fishman and Meegan (1995);
van Paradijs et al. (2000). Predictions of the energetics and
the rate of such a sequence ofγ -ray bursts with different in-
tensities can be statistically discussed as shown in this paper.

One can formulate the questions of prediction in a more
general way: From the observations of M events can one
predict the most probable number, N, of all such observable
events? Can one predict the fraction of all possible observ-
able events that could lie less than (greater than) a given in-
tensity? Can one predict whether the next event to arrive will
lie above or below a given intensity? With what degree of
confidence can one make any such predictions?

The purpose of this paper is to provide a set of procedures
allowing one to address these questions under the following
conditions:

1. Each event is statistically independent (no correlation)
with any and all other events.

2. Each event arising from the remaining undiscovered
population of events is random, with the probability of
being measured proportional to a power of the arrival
flux.

The first condition forbids the arrival of events from a pe-
riodic source, either due to dynamic repetitive motion of the
source (such as a pulsar) or due to repetitive physical changes
in the source (such as expansion and contraction). The sec-
ond condition allows for the fact that arrival events may be
strong but are “beamed” so that one sits on the “edge” of
a beam and so sees a weak source. In either of these two
extreme events, observability can be compromised. The ba-
sic questions are, then, within the framework of these two
assumptions and given that one has measured M sequential
events, can one estimate the residual total number of likely
events, the power index of observability, the likely fraction
of future events that will lie less than (greater than) a specific
flux, and the probability that the next event in the sequence
will have a flux less than (greater than) a specific value?
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2 C. Röken and I. Lerche: Maximum Likelihood Estimation

2 Technical development

2.1 Probability considerations

Consider an ordered sequence of observed events, with
eventi of intensityIi , and withM events measured. Sup-
pose that a total ofN events exists. One is interested
in the probability that eventM + 1 will have an inten-
sity IM + 1 in excess of (or less than) a chosen valueIcut,
based on the information of the firstM measured ordered
events. For theN total events, let there beN1 character-
ized by the average intensityF1

(

:=
(
∑

low Ii

)

/m1
)

, where
the sum

∑

low extends over those events with intensities
less thanIcut andN2 characterized by the average intensity
F2
(

:=
(
∑M

i = 1 Ii −
∑

low Ii

)

/m2
)

, with N1 + N2 = N and
m1 + m2 = M. Note that this representation requires at least
one observed event to lie aboveIcut. The probability that the
first event lies in the class described byF1 is

p1 =
F a

1 N1

N1F
a
1 + N2F

a
2

(1)

wherea is the parameter of observability to be determined
(see later) while the probability that the first event lies in the
class described byF2 is

p2 = 1 − p1 =
F a

2 N2

N1F
a
1 + N2F

a
2

(2)

After m1 measured events in classF1 and m2 measured
events in classF2, the probability the next event is in class
j (j = 1, 2) is

pnext(j) =
F a

j

(

Nj − mj

)

F a
1 (N1 − m1) + F a

2 (N2 − m2)
(3)

Set the membership classkij = 1 if the ith event is in classj ,
andkij = 0 if theith event is not in classj , with ki1 + ki2 = 1.
Then, afterM events, orderedi = 1, ...,M, the joint proba-
bility distribution is

p (M; N1, N2; a) =

M
∏

i=1

[
∑2

j=1 kijF
a
j

(

Nj −
∑i−1

t=1 ktj

)]

[
∑2

j=1 F a
j

(

Nj −
∑i−1

t=1 ktj

)]
(4)

With F1/F2 = r andN2 = N − N1 Eq. (4) can be written:

p (M; N, N1; a) (5)

=

M
∏

i=1

[

ki1r
a
(

N1 −
∑i−1

t=1 kt1
)

+ ki2
(

N − N1 −
∑i−1

t=1 kt2
)]

[

ra
(

N1 −
∑i−1

t=1 kt1
)

+ N − N1 −
∑i−1

t=1 kt2
]

where the terms in the summations have to be omitted for
i = 1, the first event in the ordered sequence. Note that
because only two classes are available (events with inten-
sities below the cut and events with intensities above the
cut) and because a given event must lie somewhere, then
ki1 = 1− ki2. We use this fact in the next subsection. Un-
known in Eq. (5) are the total numberN of events that can oc-
cur,N1 the number of events in the class characterized byF1,

as well as the parametera. There are at least two procedures
available to provide estimates of the parametersN, N1 anda

based on theM measured events. The procedures are: Max-
imum likelihood estimation and Bayesian updating (Aldrich,
1997; Fisher, 1925; Fisher , 1934; Arps et al., 1971; Jaynes,
1978).

In this paper we consider first the maximum likelihood es-
timation in general and then discuss the situation when the
number of observed events to date,M, is taken to be small
compared to the number,N , of available events.

2.2 Maximum Likelihood Estimation

The joint probability distribution given by Eq. (5) comes as
close as it can to matching the observed sequence of events
when Eq. (5) takes on its maximum value with respect to
the parametersN, N1 anda. It is convenient to change the
variableN1 to N sin2 θ whenN2 = N cos2 θ and to then use
N , cosθ ( = µ) anda as basic variables. The joint probability
distribution has extremum values when
∂p

∂N
= 0;

∂p

∂µ
= 0;

∂p

∂a
= 0. (6)

Note, however, that an extremum can be a maximum, mini-
mum or point of inflection. Also note that the absence of an
extremum does not imply the absence of a maximum. For
instancep = µ2 (0≤ µ ≤ 1) has no extremum in 0≤ µ ≤ 1,
nevertheless it has a maximum atµ = 1. Further, the param-
etersN, µ2 anda at an extremum can end up in physically
unacceptable domains (e.g.N < 0, µ2 < 0, µ2 > 1, a < 0,

etc.) in which case the extremum, even if a maximum, is
not physically appropriate. We return to this point a little
later.

From∂p/∂N = 0 one obtains the constraint

M
∑

i=1

ki1r
a + µ2 (ki2 − ki1r

a)

[N [ki1ra + µ2 (ki2 − ki1ra)] − αi]

=

M
∑

i=1

ra + µ2 (1 − ra)

[N [ra + µ2 (1 − ra)] − βi]
(7)

where

αi = ki1r
a

i−1
∑

t=1

kt1 + ki2

i−1
∑

t=1

kt2 (8)

and

βi = ra
i−1
∑

t=1

kt1 +

i−1
∑

t=1

kt2 (9)

with α1 = β1 = 0.
From∂p/∂µ = 0 one obtains the constraint

M
∑

i=1

ki2 − ki1r
a

N [ki1ra + µ2 (ki2 − ki1ra)] − αi

=
(

1 − ra
)

M
∑

i=1

(N[ra + µ2 (1 − ra
)

] − βi)
−1 (10)
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while from∂p/∂a = 0 one obtains the constraint

M
∑

i=1

ki1

N [ki1ra + µ2 (ki2 − ki1ra)] − αi

=

M
∑

i=1

(N [ra + µ2 (1 − ra
)

] − βi)
−1 (11)

unlessr = 1 in which case Eq. (11) is ignorable. Forr 6= 1 the
three constraints are not independent because one can imme-
diately derive the third constraint from any two of Eqs. (7),
(10) and (11). Thus, at best one can derive two ofN, µ anda

as functions of the third parameter. The constraint equations
do not admit of simple analytic solutions for, say,N andµ

as functions ofa for a setM of observations, except in the
somewhat simple case whenM = 2.

Because a priori estimates forN andµ are needed in the
Bayesian update procedure (see Appendix A), it is conve-
nient to develop here the estimates ofN andµ for the case
M = 2. Then

N(M = 2) = r−a[A − (1 − ra)B] (12)

µ2(M = 2) =
Bra

A − (1 − ra)B
(13)

whereA andB satisfy the pair of equations

2B(1 − 2k22)(1 − 2k11)

= −α1(1 − 2k11)

+A[(1 − 2k11)(1 − k22) − k11(1 − 2k22)] (14)

A(A − β1)(1 − k11 − k22)

= (1 − 2k22)(2A − β1[Ak11 + (1 − 2k11)B] (15)

Equations (14) and (15) provide linear algebraic equations
for determiningA andB. Two requirements on the solution
are

1. A >B(1 − ra) andA > 0;

2. A >B

in order that the estimatesN(M = 2) > 0 and
µ2(M = 2) > 0. If A >B and A > 0 thenA >B(1 − ra)

for all a ≥ 0 in r < 1. Thus one only has to search for the
solution of Eqs. (14) and (15) withA >B andA > 0. From
Eqs. (14) and (15) one has

A = β1α1(1 − 2k11)

·[2α1(1 − 2k11) + β(k11 + k22 − 1)]−1 (16)

B =
α1

1 − 2k22

[β1k11(2k22 − 1) − α1(1 − 2k11)]

[β1(k11 + k22 − 1) + 2α1(1 − 2k11]
(17)

For a given two event situation (where at least one event
must have an intensity aboveIcut), it may happen that
Eqs. (16) and (17) do not permitN(M = 2) > 0 and/or
0≤ µ2(M = 2) ≤ 1 in which case the extremum constraints

do not represent a physically allowable maximum. The
same sense of requirement of physical allowability is true
for anyN(M), µ2(M) anda(M), not just forM = 2. Thus,
the constraint Eqs. (7) and (10) (which are impossible to
solve analytically forM ≥ 5) may not provide acceptable
(N > 0, 0≤ µ2 ≤ 1, a ≥ 0) ranges for the desired parameters.

One way to avoid this extremum problem is to ignore the
extremum constraint approach and deal directly with Eq. (4)
in the form

p (M; N; µ, a)

=

M
∏

i=1

[

ki1r
a
(

N sin2 θ − γi

)

+ ki2
(

N cos2 θ − δi

)]

[

ra
(

N sin2 θ − γi

)

+ N cos2 θ − δi

] (18)

with γi =
∑i−1

t = 1 kt1 andδi =
∑i−1

t = 1 kt2.
Monte Carlo searching ina ≥ 0, N ≥ M, 0≤ µ2 ≤ 1 then

enables one to determine rapidly the parameter values yield-
ing the maximum probability. In this situation one uses the
physical acceptability requirements first so that one is guar-
anteed all values ofp will lie in 0 ≤ p ≤ 1. One catch is that
there is no guarantee that the three parametersN, µ2, a will
be unique. It can happen that multiple domains in(N, µ2, a)

space will all produce an identical maximum probability.
Thus a broad search is then required in order to identify all
such domains and determine how to proceed further to nar-
row down, or eliminate, some of the domains.

One strategy that has proved somewhat successful in this
regard is the so called Training Procedure (Lerche, 1997).
Start withM = 2 and ensure that at least one of the first two
events has an intensity aboveIcut. Run Monte Carlo sim-
ulations inN ≥ 2, 0≤ µ2 ≤ 1, a > 0 and record the largest
value ofp(M = 2), saypmax(2), and theN, µ2 anda values
at whichpmax(2) occurs. In the event multiple domains in
(N, µ2, a) space provide the samepmax(2) record all such
domains. Now increaseM from M = 2 to M = 3 and re-
peat the Monte Carlo procedure, again identifying all do-
mains wherepmax(3) occurs. Carry through this operational
sequence at ever increasingM until all the observed events
have been used. Then investigate the stability of the domains
in (N, µ2, a) space to determine these regions that provide
a neighborhood within which (N, µ2, a) stay and those do-
mains that are highly unstable with respect to increases in
M, i.e. these domains where (N, µ2, a) for pmax(M) de-
part massively from the domains forpmax(M + 1). Then it is
highly unlikely that such unstable domains represent appro-
priate values of the triad (N, µ2, a), although they can not
be categorically ruled out. Check the value ofpmax(M) in
relation to unity. Ifpmax(M) is close to unity then the pa-
rameter triad obtained represents the statement that the max-
imum likelihood estimation is close to the observed sequence
(Cronquist, 1991).

While this basic strategy is somewhat successful in some
cases in identifying and determining the relevant parameter
domains from a given event sequence, it is less than satisfy-
ing for a variety of reasons. First the strategy requires too
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4 C. Röken and I. Lerche: Maximum Likelihood Estimation

much ad hoc user evaluation in the sense of being required to
assess stable and unstable domains asM is increased. Sec-
ond, the strategy requires a qualitative judgement on what
constitutes close to unity forpmax(M). Third, the strategy
is hardly unassailable as a procedure that will provide sys-
tematic improvements as the number of observed events is
increased. Fourth, the strategy is extremely ineffective in as-
sessing the number,N , of possible observable events when
N ≫ M as we show in the next section of the paper. A better,
and systematic, method is required for steady improvement
as one increases the number of ordered observed events from
M = 2 to the total observed,M. Precisely that concern is ad-
dressed by Bayesian updating. We discuss the Bayesian pro-
cedure in a later paper. However, the basic mathematical de-
velopment for the Bayesian procedure is given in Appendix
A. Equally, a systematic automatic procedure for assessing
the relevant ranges of parameters is given in Appendix B
(Lerche, 1997; Lumley, 1970).

Those mathematical developments are presented here both
for the sake of completeness as well as so that only numerical
procedures and their implementation and applications need
be given in the second paper of this series.

2.3 The limit of large number of possible events,N ≫ M

Expansion of Eq. (18) forN ≫ M yields, to first order in
1/N , that

p =

{

M
∏

i=1

[ki1r
a sin2 θ + ki2 cos2 θ ]

ra sin2 θ + cos2 θ

}

×

{

1 −
ra

N

M
∑

i=1

·
[γi cos2 θ (ki1r

a − ki2) + δi sin2 θ (ki2 − ki1)]
(

ki1ra sin2 θ + ki2 cos2 θ
) (

cos2 θ + ra sin2 θ
)

}

(19)

If one were to ignore the term factored by 1/N in Eq. (19)
then the probability distribution is independent ofN , indicat-
ing that one could perform a lowest order Monte Carlo search
for the values ofµ2 anda that maximize

p0 ≡

M
∏

i=1

ki1r
a sin2 θ + ki2 cos2 θ

ra sin2 θ + cos2 θ
(20)

The independence ofp0 from N is a significant improve-
ment in computer time in that only two parameters have to be
searched. The downside is that no information is made avail-
able on the value ofN except, of course, thatN ≫ M. One
strategy is to use the values ofµ2 anda, obtained by maxi-
mizing Eq. (20), as first order estimates in Eq. (19) and then
search only the local neighborhood of theseµ2 anda values.
Again, such a strategy calls for some external assessment of
local neighborhood and can also suffer from the same dis-
advantage as the more general Training Procedure, produc-
ing multiple domains wherep0 is equally maximal (Lerche,

Table 1. Input 1 (N ≫ M) showing a systematic increase in in-
tensity of sequential events and Input 2 (N ≫ M) showing a more
disordered set of sequential events.

Input 1 Input 2 µ a
10 40 0.1 0.01
20 90 0.2 0.2
30 60 0.3 0.3
40 10 0.4 0.4
50 70 0.5 0.5
60 100 0.6 1.1
70 30 0.7 1.3
80 80 0.8 1.5
90 20 0.9 2.0

100 50
Reference 39

1997; McCray, 1969; Megill, 1971; Rose, 1987). To obvi-
ate all of these difficulties and drawbacks, it is appropriate to
invoke Bayesian updating (see Appendix A).

Another result forN ≫ M, N1 ≫ m1, andN2 ≫ m2 is that
Eq. (3) reduces to

pnext(1) =
ra
(

1 − µ2
)

ra
(

1 − µ2
)

+ µ2
(21)

pnext(2) =
µ2

ra
(

1 − µ2
)

+ µ2
(22)

3 Maximum Likelihood Estimation programs

To be able to address the questions asked in the Introduction
one has to convert the mathematical formalism described in
Sect. 2 into computer programs. In this section of the paper
two programs for the maximum likelihood estimation proce-
dure are introduced and the results for two different experi-
ments (ordered sequences of observations) are discussed.

Of the two programs, one describes the situation including
all parametersN , while the second program is appropriate
for the special caseN ≫ M. Both programs are created via
Open-Office using spreadsheets to achieve high user friend-
liness.

3.1 The special case,N ≫ M

Starting with the description of the special case program
for N ≫ M. The mathematical basis for this algorithm is
Eq. (20). Extrema occur when its partial derivations with re-
spect toµ anda are zero as shown in Eqs. (6). In the program
these equations are used for the variation of the parameters
µ anda. The variation structure includes ten sections each
for ten measured values. These values (ordered sequence of
observations) are, in addition to the variation parametersµ

Astrophys. Space Sci. Trans., 3, 1–13, 2007 www.astrophys-space-sci-trans.net/3/1/2007/
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Table 2. This Table represents a small part of the calculation of the
right side of Eq. (18). There are two sections each with 4 columns.
In these sections one varies only one parameter (in this case the
parameterµ; the columns in a section represent differentµ val-
ues) while the other two parameters are constant (Note that one has
different constant parameters in each section). The entries in the
columns are the separate factors of Eq. (18). The last entries of the
columns are the products of these factors.

0.98 0.93 0.36 0.23
0.98 0.93 0.35 0.23
0.98 0.93 0.35 0.22
0.02 0.07 0.66 0.78

0 0.06 0.65 0.78
-0.02 0.04 0.65 0.78
-0.04 0.02 0.64 0.78
-0.06 0 0.64 0.77
-0.08 -0.02 0.63 0.77
-0.11 -0.04 0.63 0.77

p(µ, a1, N1) = Not Valid Not Valid 0.2 0.2
0.99 0.94 0.42 0.28
0.99 0.94 0.41 0.27
0.99 0.94 0.41 0.27
0.01 0.06 0.60 0.74

0 0.04 0.59 0.74
-0.02 0.03 0.59 0.73
-0.03 0.02 0.58 0.73
-0.05 0 0.58 0.73
-0.06 -0.02 0.57 0.72
-0.08 -0.03 0.57 0.72

p(µ, a2, N1) = Not Valid Not Valid 0.16 0.22

anda, part of the user input as shown in Table 1 for two in-
put sets. Both input sets are for the same measured values
but in a permutated order compared to a reference value set
to Icut= 39 (see Fig. 1). The difference that occurs when
the order of the measured values is permuted is a change in
the lowest number of observations for which the predictions
make sense for a givenIcut. For Input 1 this value isM = 5
and for Input 2 it isM = 4, because one value has always
to lie aboveIcut. An example for a variation of a parameter
is given in Table 2, showing the variation ofµ for different,
but fixed,a andN values for the 10 observed intensity val-
ues. The program determines the bestµ anda values for the
parameter interval chosen by the user (see Table 1 for the in-
tervals and Fig. 2 for the best values for both inputs). These
µ anda parameters fit best to Eqs. (6).

The problem that occurs in this approach is that the user
has to vary the parametersµ anda manually. A great deal of
time can be involved and for any of those chosen parameter
intervals only the best values in this local area are obtained,
which are not necessarily the globally best values. This defi-
ciency can be repaired by an automatic search subroutine for
calculating the best parameters, which is done in the second
paper of this sequence (the mathematical procedure is pre-
sented in Appendix B). With the obtained best values forµ

Fig. 1. Input 1(a) and Input 2(b) values in comparison with the
reference intensity.

Fig. 2. Best values ofa andµ (Input 1(a) and (c) and Input 2(b)
and (d);N ≫ M).

Fig. 3. Joint probability distributions (Input 1 (solid) and Input 2
(dot);N ≫ M) estimated for allM - see text for further description.

anda the program can determine the joint probability distri-
bution functions for the events (measured values).

These functions are shown in Fig. 3 for Input 1 (solid)
and for Input 2 (dot). A slight difference can be observed
in the tail of the functions(M ≥ 4), caused by the permuta-
tion of the order of the measured values. The probability that
the next event lies in class 1 (belowIcut) or class 2 (above

www.astrophys-space-sci-trans.net/3/1/2007/ Astrophys. Space Sci. Trans., 3, 1–13, 2007



6 C. Röken and I. Lerche: Maximum Likelihood Estimation

Fig. 4. Probability for the next event to lie in class 1 or class 2
(Input 1(a) and (b) and Input 2(c) and (d);N ≫ M). (a) and (b):
Note that the first three events have intensities< Icut, while the
fourth hasI4 > Icut. Thus probability predictions can be given only
for the fifth and higher events in the sequence. (c) and (d): Note
that for the first event of Input 2I1 > Icut, so the range of validity
for the probability for the next event to lie in class 1 or class 2 starts
with a prediction for the fourth measured value.

Fig. 5. Percent chance predicted point is in correct class (Input 1(a)
and (b) and Input 2(c) and (d);N ≫ M).

Icut), given by Eq. (3), is illustrated for both inputs in Fig. 4,
respectively. With a systematic increase in the number of
measured values the probability that the event lies in class
1 decreases while the probability that the event lies in class
2 increases (Figs. 4(a) and (b). This effect is caused by the
linear growth of the ordered intensity values in Input 1. For
Input 2 (see Figs. 4(c) and (d)) one has a more chaotic be-
havior of the data so that the decreasing/increasing effect of
data Input 1 is now absent. With this program one is also
able to calculate the probabilities that an event is either in

Table 3. Input 1 and Input 2 (N ≥ M).

Input 1 Input 2 µ a N
10 40 0.1 0.5 100
20 90 0.2 0.3 52
30 60 0.7 0.6 53
40 10 0.8 0.1 85
50 70
60 100
70 30
80 80
90 20

100 50
Reference 39

the correct or incorrect class as shown in Fig. 5 for Inputs 1
and 2, respectively. Figures 5(a) and (b) illustrate the fact
that if more measured values are incorporated into the calcu-
lations the higher is the probability to find an event to be in
the correct class, which is again caused by the linear increase
of the data values of Input 1. For data set 2 the probability
to find an event in the correct class is between 15% and 80%
(Figs. 5(c) and (d)). There is no specific pattern to be found.

3.2 The general case,N ≥ M

In the program for the general case finite values of the param-
eterN are used, so Eq. (18) is the mathematical basis for the
numerical variation calculations of the parametersN, µ and
a. The analytical procedure utilized in this program differs
from the one used in the special case program given above.
Instead of finding the maxima of Eq. (18) by calculating its
partial derivations one finds these by direct variation of the
parameters so thatp is as close to unity as possible for the
prescribed values of the three input parameters. The three
input boxes for the parametersµ, a andN are much smaller
than for the special case program (see Table 3). The reason
for this limitation of the input values is the rapid increase of
the size of the program caused by every new parameter. Be-
causeN ≥ M there are restrictions for the minimum value of
N for the calculations to make sense. Those do not occur in
the special caseN ≫ M.

Here, the ordered sequences of observations (Inputs 1
and 2) and the reference intensityIcut are the same as in the
special case program. The general case program calculates
the bestµ, a andN values for a given set of data in a lo-
cal parameter interval chosen by the user (see Fig. 6 for the
best parameters of each of the two data sets). Theseµ, a and
N values provide the highest value ofp (see Eq. (18)). The
joint probability distributions (see Eq. (4)) for these best val-
ues are shown in Fig. 7 for the data sets 1 (solid) and 2 (dot),
respectively. The two joint probability distribution functions
differ again only slightly in their tails. The probability that
the next event lies in class 1 (belowIcut) or class 2 (above
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Fig. 6. Best values ofa, µ and N (Input 1(a) and Input 2(b);
N ≥ M).

Fig. 7. Joint probability distribution (Input 1 (solid) and Input 2
(dot);N ≥ M) estimated for allM - see text for further description.

Icut) is illustrated in Figs. 8(a) and (b) and Figs. 8(c) and (d)
for the data sets 1 and 2, respectively. The behavior is nearly
the same as in the special case program (see Fig. 4) with the
difference that the increase of the probability in Figs. 8(a)
and (b) is not as extreme as in Figs. 4(a) and (b). The prob-
ability that the events are in the correct or incorrect class is
presented in Figs. 8(e) and (f) for Input 1 and Figs. 8(g) and
(h) for Input 2. With a growing number of measured values
the increase of the probability that the next data point is in the
correct class is compared to the results from the special case
program less powerful. In Fig. 8(g), no particular pattern can
be found.

Fig. 8. Probability for the next event to lie in class 1 or class 2
(Input 1(a) and (b) and Input 2(c) and (d);N ≥ M). (a) and (b):
Note that the first three events have intensities< Icut, while the
fourth hasI4 > Icut. Thus probability predictions can be given only
for the fifth and higher events in the sequence. (c) and (d) Note that
for the first event of Input 2I1 > Icut, so the range of validity for the
probability for the next event to lie in class 1 or class 2 starts with
a prediction for the fourth measured value. In (e) - (h) the percent
chance that the predicted point is in the correct class is presented
(Input 1(e) and (f) and Input 2(g) and (h);N ≥ M).

As an aside, one has to be aware of numerical restric-
tions. On the one hand the number of the sequence of mea-
sured events is limited to a small number (hereM = 10), be-
cause it is regulated by the size of the database as well as
the CPU. On the other hand one has to pay attention that
the conditionsN

(

1 − µ2
)

≥ γi , Nµ2 ≥ δi and µbest. 6= 0,
µbest. 6= 1 are maintained. The central problem of the special
case program is the ambiguity of the conditions∂p/∂N = 0,
∂p/∂µ = 0 and∂p/∂a = 0. One obtains not only the desired
maxima, but also all general extremum values. It can not
easily be determined if one has found a minimum, a point of
inflection or a (right) maximum. The mathematical method
used for the general program is less problematic, but a more
extensive program has to be built. As mentioned before, the
programs search for the best parameters in a local interval de-
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Table 4. Summary of the Monte Carlo simulation variables used together with ranges and statistical characteristics.

Name Maximum Minimum Mean Variance Std. Dev. Dev./Mean in %
pnext,1.10 0.97 −0.41 0.36 0.05 0.23 64.62
pnext,1.4 76.87 −338.29 0.68 139.62 11.82 1747.18
pnext,1.5 36.23 −0.29 0.88 2.55 1.60 181.13
pnext,1.6 3.27 −25.11 0.63 0.73 0.85 136.09
pnext,1.7 0.97 −0.42 0.54 0.05 0.22 40.09
pnext,1.8 0.97 −0.41 0.48 0.05 0.22 46.90
pnext,1.9 0.98 −0.41 0.41 0.05 0.23 55.74
pnext,2.10 1.41 0.03 0.64 0.05 0.23 36.30
pnext,2.4 339.29 −75.87 0.32 139.62 11.82 3650.09
pnext,2.5 1.29 −35.23 0.12 2.55 1.60 1343.42
pnext,2.6 26.11 −2.27 0.37 0.73 0.85 228.61
pnext,2.7 1.42 0.03 0.46 0.05 0.22 47.54
pnext,2.8 1.41 0.03 0.52 0.05 0.22 43.04
pnext,2.9 1.41 0.02 0.59 0.05 0.23 39.11
a1 0.20 0.01 0.10 0.00 0.06 53.32
a2 0.30 0.01 0.15 0.01 0.08 54.53
a3 0.40 0.10 0.25 0.01 0.09 34.45
a4 0.90 0.01 0.45 0.07 0.26 57.52
a5 0.99 0.20 0.59 0.05 0.22 38.35
a6 1.50 0.20 0.85 0.14 0.37 44.08
a7 3.00 0.90 1.93 0.36 0.60 31.28
a8 19.99 0.01 10.39 33.41 5.78 55.64
a9 99.98 10.16 55.01 666.86 25.82 46.94
M1 19.98 0.03 9.78 33.94 5.83 59.56
M10 149.73 60.01 104.80 662.74 25.74 24.57
M2 39.99 5.11 22.92 103.68 10.18 44.43
M3 35.00 15.02 25.00 33.25 5.77 23.06
M4 59.97 20.03 39.45 129.94 11.40 28.90
M5 74.99 30.07 52.68 174.80 13.22 25.10
M6 89.83 20.16 55.24 386.84 19.67 35.60
M7 79.98 65.01 72.65 18.84 4.34 5.97
M8 109.76 33.12 71.62 482.05 21.96 30.65
M9 122.94 67.26 95.13 250.01 15.81 16.62
µ1 0.15 0.01 0.08 0.00 0.04 51.35
µ2 0.29 0.11 0.20 0.00 0.05 26.03
µ3 0.40 0.15 0.28 0.01 0.07 26.28
µ4 0.55 0.22 0.38 0.01 0.09 24.61
µ5 0.70 0.20 0.45 0.02 0.15 32.33
µ6 0.99 0.33 0.66 0.04 0.19 28.95
µ7 0.90 0.50 0.70 0.01 0.12 16.95
µ8 1.20 0.40 0.79 0.05 0.23 28.58
µ9 1.10 0.77 0.94 0.01 0.10 10.23

fined by the user and not by an automatic mode of operation.
So one can not be certain in gaining the most appropriate
parameter values.

4 Discussion and Conclusion

This paper has developed an analytical description and nu-
merical methods for future predictions of events in astro-
physics that can be garnered from a sequence of observed
events. To determine the possible future behavior of occur-
ring events one first investigates general probability consid-

erations using a maximum likelihood estimation. The results
received from the maximum likelihood estimation are further
discussed for the approximation of the large number limit
of possible events. The mathematical formalisms had to be
transformed into computer codes, one, for a finite number
system and one for a large number approximation as a spe-
cial case of a finite number system.

The procedures developed so far make the intrinsic as-
sumption that each intensity in the measured sequence of
intensities is known with precision. In fact, any individ-
ual measured intensity has a degree of uncertainty, which
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C. Röken and I. Lerche: Maximum Likelihood Estimation 9

Table 5. Probability statistics for inputpnext,2.8 showing the
chances of findingpnext,2.8 in given ranges as well as the cumu-
lative probability of obtaining a value forpnext,2.8 less than a spec-
ified worth.

Variables Correlation Coef.
µ7 0.0112
M1 −0.0144
µ6 0.0153
µ3 −0.0181
a4 0.0187
M9 −0.0193
a6 0.0205
µ5 −0.0214
a5 0.0232
µ1 0.0254
a8 0.0261
a1 −0.0262
a2 −0.0269
µ9 0.0285
M3 0.0304
a9 0.0325
µ2 −0.0534
µ4 −0.0538
M10 0.0543
a3 0.0610
M2 0.0642
M7 0.0657
a7 −0.0682
pnext,1.4 −0.0953
pnext,2.4 0.0953
pnext,1.5 −0.1144
pnext,2.5 0.1144
M8 0.1223
pnext,1.6 −0.1278
pnext,2.6 0.1278
M5 0.1646
M6 0.2064
M4 0.2129
µ8 0.2489
pnext,1.10 −0.7059
pnext,2.10 0.7059
pnext,2.7 0.7648
pnext,1.7 −0.7648
pnext,2.9 0.8125
pnext,1.9 −0.8125
pnext,1.8 −1.0000

is why results are usually quoted to 1σ (occasionally 2σ ).
The cut intensity level,Icut, is, of course, precisely known
because one can choose the value. If a particular member
of the measured sequence has a mean intensityIi such that
| Ii − Icut | ≤ 1σ then, with confidence, one can ascribe that
member to either the class less than or greater than the cut.
However, when the uncertainty onIi is sufficiently large that
| Ii − Icut | ≥ 1σ one does not know into which category the
member is to be assigned. Accordingly, depending on the

Fig. 9. Sensitivity of the outputpnext,2.8 in a Tornado Graph with
the abscissa being the correlation coefficient range(−1, 1). The
largest values have the most influence on the sensitivity ofpnext,2.8
and are taken from Table 5.

value chosen forIcut, there will be corresponding uncertain-
ties in the parametersN, µ anda and also an uncertainty on
assessing whether the(M + 1)st intensity is predictable as
being in the lower or upper classes. Fortunately, these prob-
lems can be addressed readily using Monte Carlo procedures
as follows. Given that one knows the uncertainty distribution
around the mean on each of the measured values then one
chooses the same distribution for a suite of Monte Carlo runs
from which one can compute the likely membership classes,
the average values and uncertainties forN, µ and fora given
sequence of measurements, and the uncertainty on the prob-
ability that the next value will lie above or below theIcut
value. A numerical illustration of this Monte Carlo proce-
dure is now given using data set 1.

That simulation was performed with 1000 Monte Carlo
iterations for the input set (“Value”,µ, a) and the output
set (pnext,1, pnext,2). Note that the output set starts with the
fourth value ofpnext,1 andpnext,2 because the first three val-
ues are less thanIcut. A continuously uniform distribution
was used for the parameterµ anda and a discrete uniform
distribution for the parameter “Value”.

Table 4 provides a summary of the Monte Carlo simula-
tion. The most important quantity is the mean value, be-
cause it represents the ”best” value for the Monte Carlo out-
put. The maximum and minimum values mark the edges of
the simulation interval while the other quantities are stan-
dard statistical descriptors. Table 5 and Fig. 9 show, as an
example, the sensitivity to the data (correlation coefficients)
of the outputpnext,2.8 and the corresponding visualization in
a Tornado Graph. Herepnext,2.8 is the probability that the
next event lies in class 2 using eight measured values. It is
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10 C. Röken and I. Lerche: Maximum Likelihood Estimation

Fig. 10. Graph of the distribution forpnext,2.8 due to uncertainties
in parameters and input data.

most sensitive to changes in inputµ8 (best value ofµ using
eight measured values). The statistical data and the distribu-
tion plot for pnext,2.8 are illustrated in Table 6 and Fig. 10.
The most probable value forpnext,2.8 is 0.52, but the range to
half the peak value indicatespnext,2.8 = 0.52

(

+ 0.18
−0.12

)

, thereby
providing some measure of the influence of uncertain data
values and uncertain parameters on the predictability of the
next event.

The programs as built include only 10 measurement value
inputs. More data can be included in the programs but it was
felt that 10 data points more than sufficed to illustrate the
principles involved. In addition, in any future extension of
the programs one should increase the number of classes for
data points so that one can incorporate more information than
that values lie either above or belowIcut.

In order to improve on the procedure itself for assessing
the probability of predicting future events one must move
from a user-intensive, and limited, manual input of param-
eter estimates to procedures that provide systematic updat-
ing based on priors. In the next paper we discuss the
Bayesian update method and the systematic parameter deter-
mination procedure as relevant improvements of predictabil-
ity for which basic mathematical developments are given in
Appendix A and Appendix B.

The relevance of the prediction procedure for individual
sources of high energy photons is that it enables one to sort
out whether a source is truly weak or whether one is merely
observing on the edge of a focused beam for a strong source.
In addition, because the generation of pulses of high energy
photons from individual objects appears to be somewhat ran-
dom in time, the present procedure allows one to at least es-
timate from a given number of observed pulses a minimum
number one is likely to observe.

One should be careful not to apply the procedure to all
high energy photon sources simultaneously because then one
has no idea of the mixture of long-lived and short-lived ob-

Table 6. Correlation coefficients (sensitivity data) for the proba-
bility that the next event is in class 2 withM = 8, pnext,2.8, orga-
nized from lowest to highest in absolute value. The variablesµi

andai are the bestµ anda parameters fori measured valuesMi

(i = 1, ..., 10).

Class Mark Freq. Ac. Freq. Freq. in % Ac.Freq. in %
0.05 1 1 0.10 0.10
0.10 17 18 1.70 1.80
0.15 15 33 1.50 3.30
0.19 15 48 1.50 4.80
0.24 1 49 0.10 4.90
0.29 39 88 3.90 8.80
0.34 4 92 0.40 9.20
0.39 36 128 3.60 12.80
0.43 152 280 15.20 28.00
0.48 22 302 2.20 30.20
0.53 227 529 22.70 52.90
0.58 129 658 12.90 65.80
0.62 47 705 4.70 70.50
0.67 203 908 20.30 90.80
0.72 30 938 3.00 93.80
0.77 6 944 0.60 94.40
0.82 6 950 0.60 95.00
0.86 0 950 0.00 95.00
0.91 0 950 0.00 95.00
0.96 0 950 0.00 95.00
1.01 0 950 0.00 95.00
1.05 0 950 0.00 95.00
1.10 0 950 0.00 95.00
1.15 0 950 0.00 95.00
1.20 2 952 0.20 95.20
1.25 4 956 0.40 95.60
1.29 12 968 1.20 96.80
1.34 15 983 1.50 98.30
1.39 8 991 0.80 99.10
1.44 9 1000 0.90 100.00

jects for which one is attempting to apply statistics. The as-
sumptions of independence of pulses and non-recurring peri-
odic nature from an individual source are the basic linchpins
of the procedure and should not be violated. But within that
framework, one has now available a set of procedures that en-
able one to provide assessments of future chances of observ-
ing events from a source and of determining what percentage
are likely to be weak or strong intrinsically.

Appendix A Bayesian updating

Consider that one has used the firstk observed events
(M >k ≥ i ≥ 1) and constructed the probability distribution
p(k; N, µ, a) using Eq. (18) with M = k. Now construct
a Monte Carlo suite of runs onN( ≥ M), µ(0≤ µ ≤ 1) and
a(> 0), recording the resultsp(k; �α) where�α is the vec-
tor (N, µ, a) for the αth Monte Carlo run. One is free to
choose the underlying distributions for each ofN, µ and
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a from which individual values are chosen for the Monte
Carlo runs, subject only toN ≥ M, 0≤ µ ≤ 1 anda > 0. Let
the joint probability distribution for these underlying choices
be Pk(�α). Now suppose one is interested in adding the
next observed event,(k + 1). Bayes theorem (Jaynes, 1978;
Lerche, 1997; Harbaugh et al., 1977; Feller, 1968) then states
that for the given set{�α} of Monte Carlo run parameters
chosen the conditional probabilityPk + 1(�α) that one knows
event(k + 1) is provided through

Pk+1(�α) =
Pk(�α)p(k + 1; �α)

∑

α Pk(�α)p(k + 1; �α)
(A1)

Thus one has updated the probability distribution of the�α

so that one is progressively changing the probability that a
given�α triad (Nα, µα, aα) will more closely honor the ob-
served events. Note from Eq. (18), that

p(k + 1; �α) = p(k; �α)×

[kk+1,1r
a(N sin2 θ − γk+1) + kk+1,2r

a(N cos2 θ − δk+1)]

ra(N sin2 θ − γk+1) + N cos2 θ − δk+1)

≡ p(k; �α)ω(k + 1; �α) (A2)

with

γk+1 = γk + kk+1;1, δk+1 = δk + kk+1;2 (A3)

so that one merely has to calculate the Monte Carlo suite
of values for the bracketed factor in Eq. (A2) once for each
event. Bayes updating then proceeds iteratively by adding
the next event,k + 2, and so, in general, one obtains after all
M events have been added

PM(�α) =
PM−1(�α)p(M − 1; �α)

∑

α PM−1(�α)p(M − 1; �α)
(A4)

and so providing, for each triad�α chosen, the probability
PM(�α) that the set of�α comes as close as possible to hon-
oring all the observed events. What the Bayes updating does
not do is provide information on whether the set{�α} cho-
sen represents the best possible fit. The point is that a finite
suite of Monte Carlo calculations is involved. Thus one has
chosen a finite number of values for(Nα, µα, aα).

The Bayes updating procedure indicates which of these fi-
nite number of values has the highest relative probability of
honoring all the data but provides no information on non-
chosen values of the parameters. Thus the absolute highest
probability of honoring all the events may depend on other
values than those chosen. One could iterate many times the
whole Monte Carlo scheme, and associated Bayesian updat-
ing, with different random choices of the parameter triad
(N, µ, a) from the underlying distributions of the parame-
ters. In this way one would construct (eventually!) a dense
set of parameter values and so identify almost surely the best
parameter triad honoring most closely the observed events.
However, such a procedure is not only computer intensive but
may also be futile. The point is that in constructing the basis

probability distribution functions for the Monte Carlo suite
operations one has not only to ensure that one honors the
physical requirements onN(≥ M), µ(0≤ µ ≤ 1) anda(> 0)

but one also has to choose maximum values forN and a,
sayNmax andamax. It can happen that the values ofN and
a needed to satisfy the observed events lie greater than the
chosen valuesNmax and /oramax.

What one needs is a procedure to supplement the
Bayes updating that systematically and deterministically
will obtain the parameter triad(N, µ, a) that will allow
pM(M; N, µ, a) to honor the ordered sequence ofM ob-
served events, starting with the triad determined from the
Bayes updating procedure that has the highest relative prob-
ability, but allowing determination of parameter values not
chosen in the original Monte Carlo suite of operations.
In addition, any such systematic procedure must deter-
mine Nmax andamax so that the highest absolute probabil-
ity for p(M; N, µ, a) is contained inNmax≥ N ≥ M and
amax≥ a ≥ 0. This aspect of the problem is addressed in Ap-
pendix B.

Appendix B Systematic determination of
parameter values

Let the triad value�0 be that with highest relative probabil-
ity p(M; �0) of satisfying allM observed events obtained
from Bayesian updating. Now if the situation were to match
perfectly with the observedM events then not only would
P(M; �0) be unity but so, too, would each individual factor
probability p(k; �0) (k = 1, ...,M) (see Eq. (A2)). To the
extent that there is not perfection,p(k; �0) will differ from
unity. To determine the parameter triad that will match the
M observations most closely define

χ2(�) = M−1
M
∑

k=1

[1 − p(k; �)]2 (B1)

because, with perfection,p(k; �best) = 1. Then one wishes
to obtain a systematic procedure so thatχ2(�) is minimized,
starting with the Bayesian updated triad�0, and allowing
Nmax and amax to range outside of the values assigned in
the Bayesian update method. Such a systematic procedure
can be developed as follows. BecauseN ≥ M, it is useful to
write N = M10x wherex ≥ 0, and considerx as a basic vari-
able. Then suppose, initially, one takes each component of
the vector parameterq = (χ, µ, a) to lie in an initial chosen
rangeq

(i)
max≥ q ≥ q

(i)
min wherei = 1, 2 or 3 according as one

handles withχ, µ or a, respectively. Then set

sin2 θ (i) =
q

(i)
max − q(i)

q
(i)
max − q

(i)
min

(B2)

with the initial value sin2 θ
(i)
0 = (q

(i)
max − q

(i)
0 )/(q

(i)
max − q

(i)
min)

andq
(i)
0 determined from the Bayesian update procedure. An
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iteration scheme (Lerche, 1997) designed to ensure conver-
gence to the smallest value ofχ2 in Eq. (B1) is

θ
(i)
n+1 = θ (i)

n exp

(

−δ(i)
n

∂χ2/∂θ
(i)
n

∣

∣∂χ2/∂θ
(i)
0

∣

∣

)

(B3)

whereδ
(i)
n = 1 for n = 0 and

δ(i)
n =

∣

∣θ
(i)
n − θ

(i)
n−1

∣

∣

[

τ−1
∑τ

j = 1

∣

∣θ
(i)
n − θ

(i)
n−1

∣

∣

]

for n 6= 0 ;

and where the derivatives are given by the approximate eval-
uation

∂χ2

∂θ
(i)
n

= [χ2(θ (1)
n , ..., θ (i)

n (1 + β), ...)

−χ2(θ (1)
n , ..., θ (i)

n , ...)]/βθ (i)
n (B4)

with |β| ≪ 1. Note that the iteration scheme represented
through Eq. (B3) has the following properties:

1. It guarantees thatχ2 will be either smaller or the same
after each iteration;

2. It guarantees that all parameters will remain within the
boundsq(i)

max≥ q(i) ≥ q
(i)
min for all iterations;

3. Because of the factorδ(i)
n , the iteration scheme treats

first with those parameters that are causing the greatest
change inχ2, while minimizing the influence of other
parameters until all parameters are causing essentially
the same change inχ2;

4. If sin2 θ
(i)
n → 1 (0) then the iteration scheme is in-

forming one that either the chosen lower (upper)
value q

(i)
min(q

(i)
max) is too large (sin2 θ

(i)
n → 1) or too

small(sin2 θ
(i)
n → 0) and must be decreased (increased),

thereby providing the necessary information on which
direction to change any initial chosen parameter ranges;

5. The scale value
∣

∣∂χ2/∂θ
(i)
0

∣

∣ is best changed after a finite

number,Q, of iterations by replacingθ (i)
0 by θ

(i)
Q . Prag-

matically it is superior in terms of convergence speed to
performQ iterations twice with the update of the scale
value after the firstQ iterations rather than perform 2Q

iterations once with the original fixed scale value.

Coupled with the Bayesian update procedure, this systematic
method then guarantees one obtains the values ofN, µ and
a most consistent (smallestχ2) with the observed ordered
event sequence. Once the values forN, µ anda are so de-
termined then one can use Eq. (3) to evaluate the probability
that the next event is in classj . As the intensity level,Icut,
is progressively raised the probability that the next event will
lie aboveIcut is systematically lowered. But, at each level
of Icut, one obtains estimates of the total number,N , of pos-
sible observable events together with the power index,a, as

well asN1/(N1 + N2) ≡ µ2. The total number,N , of pos-
sible observable events, as well as the observability indexa,
should likely be independent of the chosen intensity levelIcut
if the observed number of events,M, is representative of the
total N . Numerical implementation of Appendices A and B
is considered in the second paper of this series.
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