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Abstract. Using analytical and numerical methods, esti- 2000, 2004); Hurley (2002); Fishman and Meegan (1995);
mates are given of future predictions in astrophysics that cavan Paradijs et al. (2000). Predictions of the energetics and
be gathered from a sequence of observed events, for exanthe rate of such a sequenceyofay bursts with different in-
ple for y-ray bursts. Some general probability considera-tensities can be statistically discussed as shown in this paper.
tions are provided and then a maximum likelihood estima- One can formulate the questions of prediction in a more
tion, together with an approximation for the large number general way: From the observations of M events can one
limit of possible events. lllustrations are given of the numer- predict the most probable number, N, of all such observable
ical maximum likelihood estimation programs in the situa- events? Can one predict the fraction of all possible observ-
tions of both a large number and a finite number of eventsable events that could lie less than (greater than) a given in-
The effects of data uncertainty are also considered. Numertensity? Can one predict whether the next event to arrive will
ical calculations and comparisons with theoretical expectalie above or below a given intensity? With what degree of
tions are presented too. confidence can one make any such predictions?

The purpose of this paper is to provide a set of procedures
allowing one to address these questions under the following
conditions:

1 Introduction

1. Each event is statistically independent (no correlation)
In many fields of astrophysics one can observe a sequence With any and all other events.
of events, each of different intensity. Perhaps such is best 5
exemplified by observations ¢f-ray bursts which are short
and intense pulses of sgftrays, where short means that the
pulses can last from a fraction of a second to several hundred
seconds. All knowry-ray bursts originate in extragalactic . - ] .
regions. Possible sources are for example core-collapsing The first condition forbids the arrival of events from a pe-
rapidly rotating Wolf-Rayet stars or two colliding neutron riodic source, either due to dynamic rep_e_tltlve mo_'uon of the
stars orbiting in a binary. Today it is known that the form SOUrceé (suchas a pulsar) ordu_e torepetitive physmal changes
of a y-ray burst is a narrow beam with corresponding en-n the source (such as expansion and cqntractlon). The sec-
ergies around T ergs (Frail et al., 2001; Panaitescu and ond condition allows for the fact that arrwal events may be
Kumar, 2001; Piran et al., 2001)-ray bursts are detected Strong but are “beamed” so that one sits on the “edge” of
in random directions, so they are an isotropic phenomenon2 Péam and so sees a weak source. In either of these two
For example sevef-ray bursts with photon energies that e_xtreme e_zvents, observab|!|ty_ can be compromised. The ba-
lie in an interval of 100 MeV to 18 GeV were measured SiC questions are, then, within the framework of these two
with the high energy -ray detector Gamma-Ray Experiment assumptions and giyen that one has measured M sequ_ential
Telescope (EGRET) at the Compton Gamma-Ray Observa€Vents, can one estimate the reS|due.1I. total nqmber of I|_kely
tory (Dingus and Catelli, 1998). For more detailed infor- events, the power index of observability, the likely fraction

mation about -ray bursts useful references are Piran (1999,of future events that will lie less than (greater than) a specific
flux, and the probability that the next event in the sequence

Correspondence to: C. Roken (cr@tp4.rub.de) will have a flux less than (greater than) a specific value?

Each event arising from the remaining undiscovered
population of events is random, with the probability of

being measured proportional to a power of the arrival
flux.
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2 C. Rdken and I. Lerche: Maximum Likelihood Estimation

2 Technical development as well as the parameter There are at least two procedures
3 . _ available to provide estimates of the parameiéyv; anda
2.1 Probability considerations based on the/ measured events. The procedures are: Max-

imum likelihood estimation and Bayesian updating (Aldrich,

Consider an ordered sequence of observed events, Withqg7- Fisher 1925 Fisher . 1934 Arps et al., 1971; Jaynes
eventi of intensity 7;, and with M events measured. Sup- 19785. ' ’ ’ ’ ’ ' ’

pose that a total ofV events exists. One is interested
in the probability that eventM +1 will have an inten-
sity Iy7+1 in excess of (or less than) a chosen valyg,
based on the information of the firsf measured ordered
events. For theV total events, let there b&1 character-
ized by the average intensi# (:= (Y o, i)/m1), where 2.2 Maximum Likelihood Estimation
the sum)_,,, extends over those events with intensities
less than/gy: and N, characterized by the average intensity The joint probability distribution given by Eq. (5) comes as
Fo(:= (XM I — Yow li)/m2), with Ny+N,=N and  close as it can to matching the observed sequence of events
m1+mp= M. Note that this representation requires at leastwhen Eq. (5) takes on its maximum value with respect to
one observed event to lie abolg:. The probability that the the parameterd/, N; anda. It is convenient to change the
first event lies in the class described Byis variableN; to N sir? § whenN, = N cog ¢ and to then use

a N, cost (= p) anda as basic variables. The joint probability

FI'N1 R
(1) distribution has extremum values when

In this paper we consider first the maximum likelihood es-
timation in general and then discuss the situation when the
number of observed events to dalé, is taken to be small
compared to the numbex,, of available events.

P1= o —0a  nopa
N1F}' + N2 F5 a_pZO. a_pzo. a_p:0 ©)
wherea is the parameter of observability to be determined aN Tdu " da '

(see later) while the probability that the first event lies in the Note, however, that an extremum can be a maximum, mini-

class described by is mum or point of inflection. Also note that the absence of an
F§ Nz extremum does not imply the absence of a maximum. For
p2=1-p1= (2)  instancep =2 (0<p <1) has no extremum in 8 <1,

N1F¢ + NoFj . .
1 272 nevertheless it has a maximumeai= 1. Further, the param-
After m1 measured events in clagg and m> measured etersN, 42 anda at an extremum can end up in physically

events in clasg?, the probability the next event is in class unacceptable domains (e.y. <0, u2<0, u?>1, a <0,

j(i=12is etc.) in which case the extremum, even if a maximum, is
a not physically appropriate. We return to this point a little
Prext(J) = —; - (3) ater. . _
Fi' (N1 —m1) + F5 (N2 —m2) Fromdp/dN = 0 one obtains the constraint

Set the membership claks = 1 if thei’" event s in clasg, M kitr® 4+ p? (kip — kirr®)
andk;; =0if thei’" eventis notin clasg, with k,~_1 + kio=1. Zl [Nkizr® + 122 (kip — kirr®)] — ;]
Then, afterM events, ordered=1, ..., M, the joint proba- =

bility distribution is 3 f r' 4 pu? (1—r% @
2 i1 T N[ra + 2(1—ra)] — B:
M ki FE (NG = 3 k)] =1 NI e Nl
p (M; N1, N2;a) = l_[ 7 2 -1 @ where
i=1 [Zj=1 Fj (Nj - Zt:l ktj)] i1 i1
With F1/Fo=r andN>= N — Nj Eq. (4) can be written: a; = kirr® Z ki1 + ki2 Z k2 (8)
=1 t=1
p(M; N, N1 a) ®)  and
B ﬁ [kitr® (N1 — i1 ket) + kio(N — N1 — Y"1 ki2) ] i—1 i-1
o1 [N = XiTika) + N = No— YT ke pi=rt z;ktl ! Z;ktz ®
1= =

where the terms in the summations have to be omitted for ., a1 =1 =0.

i =1, the first event in the ordered sequence. Note that Fromap/3u =0 one obtains the constraint

because only two classes are available (events with inten-

sities below the cut and events with intensities above thew kip — ki1r?

cut) and because a given event must lie somewhere, th:; Nlki1r® + u? (kip — kizr®)] — o

ki1=1—k;». We use this fact in the next subsection. Un- = "

known in Eq. (5) are the total numb#&'rof events that can oc- _ (1 _ ra) Z(N[ra + 2 (1 _ ra)] — )"t (10)
i=1

cur, N1 the number of events in the class characterizefiyy
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C. Roken and I. Lerche: Maximum Likelihood Estimation 3

while fromdp/da = 0 one obtains the constraint do not represent a physically allowable maximum. The
w same sense of requirement of physical allowability is true
Z ki1 for any N(M), n?(M) anda(M), not just forM = 2. Thus,
— Nlkiar® + u2 (kiz — ki1r®)] — o the constraint Egs. (7) and (10) (which are impossible to
M solve analytically forM >5) may not provide acceptable
= S (NI + 42 (1 _ ra)] — gt (11) (N>0,0<pu?< 1,_a > Q) ranges for the desm_ad pa_rameters.
=1 One way to avoid this extremum problem is to ignore the
) , . extremum constraint approach and deal directly with Eq. (4)
unless- =1 inwhich case Eq. (11) is ignorable. Fog 1 the in the form

three constraints are not independent because one can imme-
diately derive the third constraint from any two of Egs. (7), P (M; N; i, a)

(10) and (11). Thus, at best one can derive twd/of. anda M [kirr® (N sinkg — ¥i) + ki2(N cof 6 — 5;)]

as functions of the third parameter. The constraint equations= 1_[ [ “(N St — ) T NcoZd — 5‘] (18)
do not admit of simple analytic solutions for, sady,and i i=1 ! Vi !

as functions ot: for a setM of observations, except in the \yiih vi= ;’—_11 k1 ands; = i_:ll kio.

somewhat simple case whéh=2.

Because a priori estimates fof and . are needed in the
Bayesian update procedure (see Appendix A), it is conve
nient to develop here the estimatespfand u for the case

Monte Carlo searchingin>0, N > M, 0< wu? <1 then
enables one to determine rapidly the parameter values yield-
ing the maximum probability. In this situation one uses the
physical acceptability requirements first so that one is guar-

M =2. Then anteed all values b will lie in 0 < p < 1. One catch is that
NM =2) = r—[A — (1—r%)B] (12) there is no guarantee that the three parame¥ers<, a will
Br@ be unique. It can happen that multiple domainghn 2, a)
WM =2) = T8 (13) space will all produce an identical maximum probability.
—@=r Thus a broad search is then required in order to identify all
whereA and B satisfy the pair of equations such domains and determine how to proceed further to nar-

row down, or eliminate, some of the domains.

2B(1 — 2k22)(1 = 2k11) One strategy that has proved somewhat successful in this

= —a1(1 — Zk11) regard is the so called Training Procedure (Lerche, 1997).
+A[(L — 2k11) (1 — ko2) — k11(1 — 2k00)]  (14) Start withM =2 and ensure that at least one of the first two
A(A = B1)(L— ki1 — k22) events has an intensity abovg: Run Monte Carlo sim-

ulations inN >2, 0<u?<1, a >0 and record the largest
value of p(M = 2), say pmax(2), and theN, 2 anda values

Equations (14) and (15) provide linear algebraic equationst Wh;Ch Pmax(2) occurs. In the event multiple domains in
for determiningA and B. Two requirements on the solution (V- 4, a) space provide the samnax(2) record all such

= (1— 2k22)(2A — B1[Ak11+ (1 — 2k11) B] (15)

are domains. Now increas#/ from M =2 to M =3 and re-
peat the Monte Carlo procedure, again identifying all do-
1. A>B(1—-r% andA > 0; mains wherepmax(3) occurs. Carry through this operational

sequence at ever increasing until all the observed events

have been used. Then investigate the stability of the domains

in order that the estimatesN(M=2)>0 and in (N, 12, a) space to determine these regions that provide

p2(M=2)>0. If A>B andA>0 thenA > B(1 — r9) a ngighborhood yvithin whichN, ;1,2 a) stay and t.hose do- '

foralla>0inr <1. Thus one only has to search for the M&iNs that are highly unstable with respect to increases in
—_— . . . 2

solution of Egs. (14) and (15) with > B andA > 0. From M, i.e. these domains whereV(u=, a) for pmax(M) de-

2. A>B

Egs. (14) and (15) one has part massively from the domains fpmpax(M +1). Thenitis
highly unlikely that such unstable domains represent appro-
A = B1al(1 — 2k11) priate values of the triadN(, 42, ), although they can not

[201(1 — 2k11) + B(k11 + koo — 1)1 (16) be cgtegorica_lly ruled out. Qheck the valgem;ﬁax(M) in
relation to unity. If pmax(M) is close to unity then the pa-

a1 [Brk11(2kop — 1) — a1 (1 — 2k11)] ramete_r tr[ad obtailjed rgprgsents the statement that the max-
=1- DDy [Brkas + koa — 1) + 200 (L — ke @a7) imum likelihood estimation is close to the observed sequence
(Cronquist, 1991).

For a given two event situation (where at least one event While this basic strategy is somewhat successful in some
must have an intensity abovk), it may happen that cases in identifying and determining the relevant parameter
Egs. (16) and (17) do not permi¥(M =2) >0 and/or  domains from a given event sequence, it is less than satisfy-
0<u?(M =2) <1 in which case the extremum constraints ing for a variety of reasons. First the strategy requires too

www.astrophys-space-sci-trans.net/3/1/2007/ Astrophys. Space Sci. Trans., 3, 1-13, 2007



4 C. Rdken and I. Lerche: Maximum Likelihood Estimation

much ad hoc user evaluation in thg sen_se.of being required t¢ o 1. Input 1 (v >> M) showing a systematic increase in in-
assess stable and uns;able doma_'was .Increased. S€C-  tensity of sequential events and Input’2 ¥ M) showing a more
ond, the strategy requires a qualitative judgement on whagjisordered set of sequential events.

constitutes close to unity fopmax(M). Third, the strategy

is hardly unassailable as a procedure that will provide sys- Inputl | Input2 | pu a
tematic improvements as the number of observed events is 10 40| 0.1 | 0.01
increased. Fourth, the strategy is extremely ineffective in as- 20 90| 02| 0.2
sessing the numbel, of possible observable events when 30 60 03| 03
N > M as we show in the next section of the paper. A better, 40 101 041 04
and systematic, method is required for steady improvement 50 701051 05
as one increases the number of ordered observed events from 38 128 83 i;
M =2 to the total observed{. Precisely that concern is ad- 80 80 0:8 1:5
dressed by Bayesian updating. We discuss the Bayesian pro- 20 20| 09| 20
cedure in a later paper. However, the basic mathematical de- 100 50

velopment for the Bayesian procedure is given in Appendix Reference 39

A. Equally, a systematic automatic procedure for assessing
the relevant ranges of parameters is given in Appendix B
(Lerche, 1997; Lumley, 1970).

Those mathematical developments are presented here botfpg7; McCray, 1969; Megill, 1971; Rose, 1987). To obvi-
for the sake of completeness as well as so that only numericadte all of these difficulties and drawbacks, it is appropriate to
procedures and their implementation and applications neeghvoke Bayesian updating (see Appendix A).
be given in the second paper of this series. Another result foiV > M, N1 > m1, andN2 >> m; is that

Eq. (3) reduces to
2.3 The limit of large number of possible evem&;> M a3

a(q— 2
Expansion of Eq. (18) foiV >> M yields, to first order in ppeyt(1) = % (21)
1/N, that rt (1—p?) +p
2
- _ w
b lA—/I[ [k;1r® Sl-n29 + kiz cog 6] Prext(2) = m (22)
i1 rasinfe +co2e
ra M
1=+ > 3 Maximum Likelihood Estimation programs
i=1

[y; 026 (kirr® — kiz) + 8; SINP 6 (kiz — ki1)] To be able to address the questiops asked i|_1 the Intrqductipn
ora S0 - koo o2 0) (CoR0 + ra SR (19) one has to convert the mathematical formalism described in
( i1 sl T+ ki2 ) ( +resl ) Sect. 2 into computer programs. In this section of the paper
If one were to ignore the term factored byAL in Eq. (19)  two programs for the maximum likelihood estimation proce-
then the probability distribution is independentfindicat- dure are introduced and the results for two different experi-
ing that one could perform a lowest order Monte Carlo searcHMents (ordered sequences of observations) are discussed.

for the values of«? anda that maximize Of the two programs, one describes the situation including
all parametersV, while the second program is appropriate
M ki1r@ Sin? 6 + k2 0L 6 for the special cas®& > M. Both programs are created via
po= H 4 sir? 6 + co2 0 (20) Open-Office using spreadsheets to achieve high user friend-
N liness.

The independence gfy from N is a significant improve-
ment in computer time in that only two parameters have to be3.1 The special casd] > M
searched. The downside is that no information is made avail-
able on the value oV except, of course, thaf > M. One  Starting with the description of the special case program
strategy is to use the values pf anda, obtained by maxi- for N > M. The mathematical basis for this algorithm is
mizing Eq. (20), as first order estimates in Eq. (19) and thenEq. (20). Extrema occur when its partial derivations with re-
search only the local neighborhood of thegeanda values.  spect tou anda are zero as shown in Egs. (6). In the program
Again, such a strategy calls for some external assessment dfiese equations are used for the variation of the parameters
local neighborhood and can also suffer from the same disu anda. The variation structure includes ten sections each
advantage as the more general Training Procedure, produder ten measured values. These values (ordered sequence of
ing multiple domains whergg is equally maximal (Lerche, observations) are, in addition to the variation parameters

Astrophys. Space Sci. Trans., 3, 1-13, 2007 www.astrophys-space-sci-trans.net/3/1/2007/



C. Roken and I. Lerche: Maximum Likelihood Estimation 5

100

Table 2. This Table represents a small part of the calculation of the

right side of Eq. (18). There are two sections each with 4 columns. 3 ]
In these sections one varies only one parameter (in this case th = « |
parameternu; the columns in a section represent differenval- o ]
ues) while the other two parameters are constant (Note that one he
different constant parameters in each section). The entries in thi ¢

100
%0
80
70
= 60
50

Intensi
Intensi

0 < Reference
30
0

10

12 03 4 5 & 7 8 0 W

columns are the separate factors of Eq. (18). The last entries of th Nurmber of cata points used Nurnber of datapoins used

(b)

columns are the products of these factors.

Fig. 1. Input 1(a) and Input 2(b) values in comparison with the

0.98 0.93 | 0.36 | 0.23 . .
0.98 0.93 | 0.35 | 0.23 reference intensity.
0.98 0.93 | 0.35| 0.22 :
0.02 0.07 | 0.66 | 0.78 Lbnl
0 0.06 | 0.65| 0.78 7

-0.02 0.04 | 0.65 | 0.78 #2
-0.04 0.02 | 0.64 | 0.78 o2 |
-0.06 0 0.64 0.77 b Nimh;rnlgdzra.spnlm:sus:d te b Nsumha.rnfsdam.;mm-suszd st
-0.08 -0.02 | 0.63 | 0.77 )
-0.11 -0.04 | 0.63 | 0.77

p(n,al, N1)= | NotValid | NotValid | 0.2 | 0.2 2 N
0.99 0.94 | 0.42| 0.28 2 2
0.99 0.94 | 041 0.27 R i
0.99 0.94 | 0.41 | 0.27 b =
0.01 0.06 | 0.60 | 0.74

0 0.04| 059 | 0.74 " Number of data points used " Number of data points used

-0.02 0.03 | 0.59 | 0.73 @
-0.03 0.02 | 0.58 | 0.73
-0.05 0| 058 0.73 Fig. 2. Best values ofi and . (Input 1(a) and (c) and Input 2(b)
-0.06 -0.02 | 0.57 | 0.72 and (d);N > M).
-0.08 -0.03 | 0.57 | 0.72

p(,a2, N1) = | NotValid | NotValid | 0.16 | 0.22 oo \l

g0
80 \
anda, part of the user input as shown in Table 1 for two in- 0 \
put sets. Both input sets are for the same measured value ¢ - \

but in a permutated order compared to a reference value st = \
to Iut=39 (see Fig. 1). The difference that occurs when = %0 g\
the order of the measured values is permuted is a change i 40

the lowest number of observations for which the predictions — 5 \
make sense for a giveRy. For Input 1 this value i34 =5 - \
and for Input 2 it isM =4, because one value has always \[
to lie abovelcy. An example for a variation of a parameter 1
is given in Table 2, showing the variation affor different, 0
but fixed,a and N values for the 10 observed intensity val-

ues. The program determines the hestnda values for the Number of data points used

parameter interval chosen by the user (see Table 1 for the in-

tervals and Fig. 2 for the best values for both inputs). Theserig. 3. Joint probability distributions (Input 1 (solid) and Input 2
w anda parameters fit best to Egs. (6). (dot); N > M) estimated for allif - see text for further description.

The problem that occurs in this approach is that the user
has to vary the parametersanda manually. A great deal of
time can be involved and for any of those chosen parametefnda the program can determine the joint probability distri-
intervals only the best values in this local area are obtainedbution functions for the events (measured values).
which are not necessarily the globally best values. This defi- These functions are shown in Fig. 3 for Input 1 (solid)
ciency can be repaired by an automatic search subroutine faaind for Input 2 (dot). A slight difference can be observed
calculating the best parameters, which is done in the seconih the tail of the functiongM > 4), caused by the permuta-
paper of this sequence (the mathematical procedure is prdion of the order of the measured values. The probability that
sented in Appendix B). With the obtained best valuesifor the next event lies in class 1 (belay) or class 2 (above

Distr (p

7 g

a4
[dn]
I
o
om
o
—
o

1
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6 C. Rdken and I. Lerche: Maximum Likelihood Estimation

' Table 3. Input 1 and Input 2§ > M).

g g2 input1] nput2 | | a| N
£ £ 10 40 | 0.1 ] 05 100
& o 3 20 90| 02| 03| 52
Eo £ 30 60| 0.7 | 06| 53
T it T T bt 40| 10/ 08|01| 85
o 50 70
60 100
aa.; gg_; 70 30
S £l 80 80
E os 2 s ] 90 20
& o] g os 100 50
i Z% [ | Reference 39

2 ¢ 5 8 1
Predicted point Pradicted point

(e (d)

Fi . . the correct or incorrect class as shown in Fig. 5 for Inputs 1
ig. 4. Probability for the next event to lie in class 1 or class 2 . . .

(Input 1(a) and (b) and Input 2(c) and (dy:>> M). (a) and (b): and .2, respectively. Figures 5(a)_ and (b) |IIus.trate the fact
Note that the first three events have intensitiegcur, while the  thatif more measured values are incorporated into the calcu-
fourth hasly > Ieut. Thus probability predictions can be given only 1ations the higher is the probability to find an event to be in
for the fifth and higher events in the sequence. (c) and (d): Notethe correct class, which is again caused by the linear increase
that for the first event of Input 2; > Icyt, SO the range of validity — of the data values of Input 1. For data set 2 the probability
for the probability for the next event to lie in class 1 or class 2 startsto find an event in the correct class is between 15% and 80%
with a prediction for the fourth measured value. (Figs. 5(c) and (d)). There is no specific pattern to be found.

3.2 The general cas&y,> M

288§

In the program for the general case finite values of the param-
eterN are used, so Eqg. (18) is the mathematical basis for the
numerical variation calculations of the paramet®¥rs: and

AL P Gcetpon a. The analytical procedure utilized in this program differs

ib) from the one used in the special case program given above.

Instead of finding the maxima of Eq. (18) by calculating its

partial derivations one finds these by direct variation of the

parameters so that is as close to unity as possible for the
prescribed values of the three input parameters. The three
input boxes for the parameters a and N are much smaller
than for the special case program (see Table 3). The reason
A e " 2 IO TSRO I for this limitation of the input values is the rapid increase of
@ @ the size of the program caused by every new parameter. Be-
causeN > M there are restrictions for the minimum value of

Fig. 5. Percent chance predicted point is in correct class (Input 1(a)N for the calculations to make sense. Those do not occur in

and (b) and Input 2(c) and (d) > M). the special cas®y' > M.

Here, the ordered sequences of observations (Inputs 1
and 2) and the reference intensity;; are the same as in the

Icu), given by Eq. (3), is illustrated for both inputs in Fig. 4, special case program. The general case program calculates

respectively. With a systematic increase in the number ofthe bestu, a and N values for a given set of data in a lo-

measured values the probability that the event lies in clasgal parameter interval chosen by the user (see Fig. 6 for the

1 decreases while the probability that the event lies in clasdest parameters of each of the two data sets). Thesend

2 increases (Figs. 4(a) and (b). This effect is caused by theV values provide the highest value pf(see Eq. (18)). The

linear growth of the ordered intensity values in Input 1. For joint probability distributions (see Eq. (4)) for these best val-

Input 2 (see Figs. 4(c) and (d)) one has a more chaotic beues are shown in Fig. 7 for the data sets 1 (solid) and 2 (dot),

havior of the data so that the decreasing/increasing effect ofespectively. The two joint probability distribution functions

data Input 1 is now absent. With this program one is alsodiffer again only slightly in their tails. The probability that
able to calculate the probabilities that an event is either inthe next event lies in class 1 (belay) or class 2 (above

Percent chance comect Class
Percent chance incomect Class
slusBBagis

osHHEBE

a 3 &

2888

R ENR

Percent chance comect Class
ocHYEYBEBEE
Percent chance incomect Class

a
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o Fig. 8. Probability for the next event to lie in class 1 or class 2
= - (Input 1(a) and (b) and Input 2(c) and (dy;> M). (a) and (b):
Note that the first three events have intensitiedcyt, while the
a0 fourth hasly > Icyt. Thus probability predictions can be given only
10 for the fifth and higher events in the sequence. (c) and (d) Note that
0 for the first event of Input 21 > Icyt, SO the range of validity for the
T T T 1 ™ . . .
1 2 5 g 10 probability for the next event to lie in class 1 or class 2 starts with
Murber of data paints used a prediction for the fourth measured value. In (e) - (h) the percent

chance that the predicted point is in the correct class is presented

Input 1(e) and (f) and Input 2(g) and (hY; > M).
Fig. 7. Joint probability distribution (Input 1 (solid) and Input 2 (Input 1(e) ® put 2(0) ; )

(dot); N > M) estimated for alM - see text for further description.

As an aside, one has to be aware of numerical restric-

. _— , tions. On the one hand the number of the sequence of mea-
[ow is illustrated in Figs. 8(a) and (b) and Figs. 8(c) and (d) ured events is limited to a small number (hM(z;-: 10), be-

for the data sets 1 and 2, respectively. The behavior is near%
t

the same as in the special case program (see Fig. 4) with th aéjséap'b's ()rigtl;\l:ti(tjhgy :]gen dSIch]eth;ietgaggsa;t?eifi%et”hzif
iff that the i f th ility in Figs. .
difference that the increase of the probability in Figs 8(a)the conditionsN (1_ Mz) =i Nu2> 8 and sy %0,

and (b) is not as extreme as in Figs. 4(a) and (b). The prob- N .
ability that the events are in the correct or incorrect class jgltbest. #lare ma't?]ta'”e%_ Thte ce:cr;:]ral prog_lf_: m og';ce_sg ecial
presented in Figs. 8(e) and (f) for Input 1 and Figs. 8(g) angCas€ program IS the ambiguity of the condi lapgoN =0,

(h) for Input 2. With a growing number of measured values 2fa/ 8’;] : Oba?i?g o/ B:HZ 2532? gbttri'g]s :nOt glnl)éstheltdiz:’:er?ot
the increase of the probability that the next data pointis in the Xima, b ) 9 X Um varues. ;
asily be determined if one has found a minimum, a point of

correct class is compared to the results from the special casg

program less powerful. In Fig. 8(g), no particular pattern canInflectlon or a (right) maximum. The mathemapcal method
be found. used for the general program is less problematic, but a more

extensive program has to be built. As mentioned before, the
programs search for the best parameters in a local interval de-
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Table 4. Summary of the Monte Carlo simulation variables used together with ranges and statistical characteristics.

Name Maximum | Minimum Mean | Variance | Std. Dev.| Dev./Mean in %
Pnext1.10 0.97 -0.41 0.36 0.05 0.23 64.62
Pnext 1.4 76.87 —33829 0.68 13962 1182 174718
Pnext15 36.23 -0.29 0.88 255 1.60 18113
Pnext1.6 3.27 —-2511 0.63 0.73 0.85 136.09
Pnext1.7 0.97 -0.42 0.54 0.05 0.22 40.09
Pnext1.8 0.97 -0.41 0.48 0.05 0.22 46.90
Pnext1.9 0.98 -0.41 0.41 0.05 0.23 55.74
Phext2.10 141 0.03 0.64 0.05 0.23 36.30
Pnext2.4 33929 —75.87 0.32 13962 1182 365009
Pnext2.5 1.29 —-35.23 0.12 255 1.60 134342
Phext2.6 26.11 —-2.27 0.37 0.73 0.85 22861
Pnext2.7 142 0.03 0.46 0.05 0.22 4754
Pnext2.8 141 0.03 0.52 0.05 0.22 43.04
Phext2.9 141 0.02 0.59 0.05 0.23 3911
al 0.20 0.01 0.10 0.00 0.06 53.32
as 0.30 0.01 0.15 0.01 0.08 54.53
as 0.40 0.10 0.25 0.01 0.09 34.45
ag 0.90 0.01 0.45 0.07 0.26 57.52
as 0.99 0.20 0.59 0.05 0.22 38.35
ag 1.50 0.20 0.85 0.14 0.37 44.08
ay 3.00 0.90 193 0.36 0.60 31.28
ag 19.99 0.01 10.39 3341 5.78 55.64
ag 99.98 10.16 55.01 666.86 25.82 46.94
M1 19.98 0.03 9.78 3394 5.83 59.56
M10 14973 60.01 | 10480 66274 25.74 24.57
M2 39.99 5.11 2292 10368 10.18 4443
M3 35.00 15.02 25.00 3325 5.77 23.06
M4 59.97 20.03 3945 12994 1140 28.90
M5 74.99 30.07 52.68 17480 13.22 25.10
M6 89.83 20.16 55.24 38684 19.67 35.60
M7 79.98 65.01 72.65 18.84 4.34 5.97
M8 10976 3312 71.62 48205 21.96 30.65
M9 12294 67.26 9513 25001 15.81 16.62
1 0.15 0.01 0.08 0.00 0.04 51.35
o 0.29 0.11 0.20 0.00 0.05 26.03
n3 0.40 0.15 0.28 0.01 0.07 26.28
na 0.55 0.22 0.38 0.01 0.09 2461
us 0.70 0.20 0.45 0.02 0.15 3233
e 0.99 0.33 0.66 0.04 0.19 2895
w7 0.90 0.50 0.70 0.01 0.12 16.95
us 1.20 0.40 0.79 0.05 0.23 2858
77 110 0.77 0.94 0.01 0.10 10.23

fined by the user and not by an automatic mode of operationerations using a maximum likelihood estimation. The results
So one can not be certain in gaining the most appropriateeceived from the maximum likelihood estimation are further
parameter values. discussed for the approximation of the large number limit
of possible events. The mathematical formalisms had to be
transformed into computer codes, one, for a finite number
4 Discussion and Conclusion system and one for a large number approximation as a spe-

cial case of a finite number system.
This paper has developed an analytical description and nu-

merical methods for future predictions of events in astro- The procedures developed so far make the intrinsic as-
physics that can be garnered from a sequence of observesbmption that each intensity in the measured sequence of
events. To determine the possible future behavior of occurintensities is known with precision. In fact, any individ-

ring events one first investigates general probability consid-ual measured intensity has a degree of uncertainty, which

Astrophys. Space Sci. Trans., 3, 1-13, 2007 www.astrophys-space-sci-trans.net/3/1/2007/
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Table 5. Probability statistics for inpuippexi2.g showing the

1 Ll
chances of findingnext2 g in given ranges as well as the cumu- Tomado Gr “Ph

lative probability of obtaining a value fQfnext 2.8 less than a spec- ——— | |

ified worth. J—
Variables | Correlation Coef.
w7 0.0112
M1 —0.0144
e 0.0153
3 —0.0181
aa 0.0187
M9 —0.0193
ag 0.0205
us —0.0214
as 0.0232
w1 0.0254
ag 0.0261 -
a 0.0262 -1.0 -05 o 05 10
ay —0.0269 Correlation Coefficient
wo 0.0285
M3 0.0304 Fig. 9. Sensitivity of the outpupnext2.g in a Tornado Graph with
ag 0.0325 the abscissa being the correlation coefficient raqgg, 1). The
2 —0.0534 largest values have the most influence on the sensitivipefi 2.8
na —0.0538 and are taken from Table 5.
M10 0.0543
az 0.0610
M?2 0.0642 value chosen fofct, there will be corresponding uncertain-
M7 0.0657 ties in the parameter§, u anda and also an uncertainty on
ar —0.0682 assessing whether th@/ +1)*' intensity is predictable as
Pnext14 —0.0953 being in the lower or upper classes. Fortunately, these prob-
Prext24 _8‘2223 lems can be addressed readily using Monte Carlo procedures
22:2;2 0:1144 as follows. Given that one knows the uncertainty distribution
us 0.1223 around the mean on each of the measured values then one
PrextL6 _0.1278 chooses the same distribution for a suite of Monte Carlo runs
Prext2.6 0.1278 from which one can compute the likely membership classes,
M5 0.1646 the average values and uncertaintiesNom and fora given
M6 0.2064 sequence of measurements, and the uncertainty on the prob-
M4 0.2129 ability that the next value will lie above or below thgy;
©s 0.2489 value. A numerical illustration of this Monte Carlo proce-
Pnext1.10 —0.7059 dure is now given using data set 1.
Pnext2.10 8;21513 That simulation was performed with 1000 Monte Carlo
Pnext2.7 07648 iterations for the input set (“Value’y, a) and the output
Pnext1.7 - .
Prext2.9 0.8125 set (Pnext1, Pnext2). Note that the output set s_tarts with the
Prext1.9 _0.8125 fourth value ofpnext1 and pnext2 because the first three val-
Prext 1.8 —1.0000 ues are less thafyy. A continuously uniform distribution

was used for the parametgranda and a discrete uniform
distribution for the parameter “Value”.
Table 4 provides a summary of the Monte Carlo simula-

is why results are usually quoted te Yoccasionally 2). tion. The most important quantity is the mean value, be-
The cut intensity level/, is, of course, precisely known cause it represents the "best” value for the Monte Carlo out-
because one can choose the value. If a particular membgyut. The maximum and minimum values mark the edges of
of the measured sequence has a mean intefisgych that  the simulation interval while the other quantities are stan-
| I; — Iyt | < 1o then, with confidence, one can ascribe that dard statistical descriptors. Table 5 and Fig. 9 show, as an
member to either the class less than or greater than the cuéxample, the sensitivity to the data (correlation coefficients)
However, when the uncertainty dnis sufficiently large that  of the outputpnexi2.8 and the corresponding visualization in

| I; — Icut | > 1o one does not know into which category the a Tornado Graph. Herpnext2.8 is the probability that the
member is to be assigned. Accordingly, depending on thenext event lies in class 2 using eight measured values. It is

www.astrophys-space-sci-trans.net/3/1/2007/ Astrophys. Space Sci. Trans., 3, 1-13, 2007



10 C. Rdken and I. Lerche: Maximum Likelihood Estimation

Table 6. Correlation coefficients (sensitivity data) for the proba-

= 230 bility that the next event is in class 2 with =8, ppext2.8, Orga-
£ 200 nized from lowest to highest in absolute value. The variaples
= andg; are the bestt anda parameters for measured valuesf;
= 150 (i=1,..,10).
; 100 4 Class Mark | Freq. | Ac. Freq.| Freq. in% | Ac.Freqg. in %
< 0.05 1 1 0.10 0.10
= 07 0.10 17 18 1.70 1.80
E o 0.15 15 33 1.50 3.30
O T S S N B - - 0.19 15 48 1.50 4.80
s 2% & = 9= 2 = = = &= 0.24 1 49 0.10 4.90
Frobable value of Pnest,2 8 0.29 39 88 3.90 8.80
0.34 4 92 0.40 9.20
0.39 36 128 3.60 12.80
Fig. 10. Graph of the distribution fopnext 2 g due to uncertainties 0.43 152 280 1520 28.00
in parameters and input data. 0.48 22 302 2.20 3020
0.53 227 529 22.70 52.90
0.58 129 658 12.90 65.80
. - . 0.62 47 705 4.70 70.50
most sensitive to changes in inpug (best value ofx using 067 | 203 008 20.30 90.80
eight measured values). The statistical data and the distribu- 0.72 30 938 3.00 93.80
tion plot for pnext2.8 are illustrated in Table 6 and Fig. 10. 077 6 944 0.60 94.40
The most probable value f@ieyxt 2.8 is 0.52, but the range to 0.82 6 950 0.60 95.00
half the peak value indicatgex2.s = 0.52 (T J15). thereby 0.86 0 950 0.00 95.00
providing some measure of the influence of uncertain data 0.91 0 950 0.00 95.00
values and uncertain parameters on the predictability of the 0.96 0 950 0.00 95.00
next event. 101 0 950 0.00 95.00
- 1.05 0 950 0.00 95.00
The programs as built include only 10 measurement value 1.10 0 950 0.00 95.00
inputs. More data can be included in the programs but it was 115 0 950 0.00 95.00
felt that 10 data points more than sufficed to illustrate the 1.20 2 952 0.20 95.20
principles involved. In addition, in any future extension of 1.25 4 956 0.40 95.60
the programs one should increase the number of classes for 1.29 12 968 1.20 96.80
data points so that one can incorporate more information than 134 15 983 1.50 98.30
that values lie either above or beld. 139 8 991 0.80 99.10
In order to improve on the procedure itself for assessin 144 9 1000 0.90 10000

the probability of predicting future events one must move
from a user-intensive, and limited, manual input of param-

eter estimates to procedures that provide systematic updat€cts for which one is attempting to apply statistics. The as-
ing based on priors. In the next paper we discuss thesumptions of independence of pulses and non-recurring peri-

Bayesian update method and the systematic parameter detddic nature from an individual source are the basic linchpins

mination procedure as relevant improvements of predictabil2f the procedure and should not be violated. But within that
ity for which basic mathematical developments are given in[famework, one has now available a set of procedures that en-
Appendix A and Appendix B. able one to provide assessments of future chances of observ-

The relevance of the prediction procedure for individual ing events from a source and of determining what percentage

sources of high energy photons is that it enables one to soft' © likely to be weak or strong intrinsically.

out whether a source is truly weak or whether one is merely

observing on the edge of a focused beam for a strong sourc@ppendix A Bayesian updating

In addition, because the generation of pulses of high energy

photons from individual objects appears to be somewhat ran€onsider that one has used the fikstobserved events

dom in time, the present procedure allows one to at least ety > k > i > 1) and constructed the probability distribution

timate from a given number of observed pulses a minimump k; N, i, a) using Eq. 18) with M =k. Now construct

number one is likely to observe. a Monte Carlo suite of runs oN(> M), n(0< u < 1) and
One should be careful not to apply the procedure to alla(> 0), recording the resultp(k; 2,) whereg,, is the vec-

high energy photon sources simultaneously because then orier (N, 11, a) for the &' Monte Carlo run. One is free to

has no idea of the mixture of long-lived and short-lived ob- choose the underlying distributions for each &f .« and

Astrophys. Space Sci. Trans., 3, 1-13, 2007 www.astrophys-space-sci-trans.net/3/1/2007/
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a from which individual values are chosen for the Monte probability distribution functions for the Monte Carlo suite

Carlo runs, subjectonly ty > M, 0<u <1 anda > 0. Let operations one has not only to ensure that one honors the

the joint probability distribution for these underlying choices physical requirements ab (> M), u(0< u < 1) anda(> 0)

be P.(2,). Now suppose one is interested in adding thebut one also has to choose maximum valuesNoand a,

next observed eventk + 1). Bayes theorem (Jaynes, 1978; say Nmax @ndamax. It can happen that the values &fand

Lerche, 1997; Harbaugh et al., 1977; Feller, 1968) then states needed to satisfy the observed events lie greater than the

that for the given setQ2,} of Monte Carlo run parameters chosen value®/max and /oramax.

chosen the conditional probabili§, ;- 1(£2,) that one knows What one needs is a procedure to supplement the

event(k + 1) is provided through Bayes updating that systematically and deterministically

will obtain the parameter triadN, u, a) that will allow

Pr(Ra) ptk + 1 o) (A1) pmu(M; N, u,a) to honor the ordered sequence Mf ob-

2o Pr(Qa)pk +1; Q) served events, starting with the triad determined from the

Thus one has updated the probability distribution of She Bayes updating procedure that has the highest relative prob-

so that one is progressively changing the probability that gbility, but allowing determination of parameter values not

given R, triad (Ny, 11, a¢) Will more closely honor the ob- chosen in the original Monte Carlo suite of operations.
served events. Note from Eq. (18), that In addition, any such systematic procedure must deter-

mine Nmax and amax SO that the highest absolute probabil-

Pry1(82) =

plk+1; Ry) = plk; Ry) % ity for p(M; N, u, a) is contained inNpax> N > M and
[ks1.17% (N SINP0 — yii1) + ki1 27 (N COL6 — 8111)] amax> a > 0. This aspect of the problem is addressed in Ap-
: : - endix B.
ra(N Sir?6 — yi11) + N o260 — 8541) P
= p(k; Qo) (k + 1; Q) (A2)
ith Appendix B Systematic determination of
wit parameter values
Vil = Vk +kis11, kg1 = Sk + kig12 (A3)

Let the triad valueq be that with highest relative probabil-
so that one merely has to calculate the Monte Carlo suitdty p(M; o) of satisfying allM observed events obtained
of values for the bracketed factor in Eq. (A2) once for eachfrom Bayesian updating. Now if the situation were to match
event. Bayes updating then proceeds iteratively by addingPerfectly with the observed! events then not only would
the next eventk + 2, and so, in general, one obtains after all P (M; $2o) be unity but so, too, would each individual factor

M events have been added probability p(k; o) (k=1, ..., M) (see Eq. (A2)). To the
extent that there is not perfectiop(k; o) will differ from
Py—1(S2) p(M — 1; 24) P plk; S20)

Py (Q20) = (A4) unity. To determine the parameter triad that will match the
> Pr-1(Qa)p(M — 1; Qq) M observations most closely define

and so providing, for each tria®, chosen, the probability M

Py (S ) that the set of2, comes as close as possible to hon- y2(@) = p—1 2[1 — plk; )12 (B1)

oring all the observed events. What the Bayes updating does k=1

notdo is provide information on whether the 4€1,} cho-
sen represents the best possible fit. The point is that a finit
suite of Monte Carlo calculations is involved. Thus one hasstarting with the Bayesian updated tri&, and allowing

chosen a finite number of values f@v,, tq, aq). ' . .
The Bayes updating procedure indicates which of these fiNmax and amay to range outside of the values assigned in

nite number of values has the highest relative probability ofthe Bayesian update method. Such a systematic procedure

honoring all the data but provides no information on non- can be developed as follows. Becaube: M, itis useful to

chosen values of the parameters. Thus the absolute highe\é\/rlte N = M10" wherex > 0, and consider as a basic vari-

probability of honoring all the events may depend on otherable' Then suppose, initially, one t_ak_es ea_ch component of
. . the vector parameter= (x, 1, @) to lie in an initial chosen

values than those chosen. One could iterate many times the @) @) ) )

whole Monte Carlo scheme, and associated Bayesian updaf&"99max= ¢ = gmin where: =1 2 or 3 according as one

ing, with different random choices of the parameter triad @ndles withy, w ora, respectively. Then set

(N, u, a) from the underlying distributions of the parame- 0 )

ters. In this way one would construct (eventually!) a densesir? @ = Imx—9 _

set of parameter values and so identify almost surely the best ‘bgr%lx - Clr(éi)n

parameter triad honoring most closely the observed events. . . . ‘ .

However, such a procedure is not only computer intensive butith the initial value sif 05" = (giax — 4§ )/ (@inax — i)

may also be futile. The point is that in constructing the basisandqéi) determined from the Bayesian update procedure. An

ecause, with perfectiom(k; Rpesp) =1. Then one wishes
0 obtain a systematic procedure so thatR) is minimized,

(B2)
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iteration scheme (Lerche, 1997) designed to ensure convemwell asN1/(N1+ N») = u2. The total numberN, of pos-

gence to the smallest value gf in Eq. (B1) is sible observable events, as well as the observability iaglex
D) should likely be independent of the chosen intensity Iéyg!
0 — M exp[ —s® Ix /89,,. (B3) if the observed number of event¥,, is representative of the
nHl T " |3X2/39(§l)\ total N. Numerical implementation of Appendices A and B

is considered in the second paper of this series.
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