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Astronomical Institute Onďrejov AV ČR, Czech Republic
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Abstract. This article discusses and tests the validity of the
frozen in magnetic field paradigm (or ‘ideal magnetohydro-
dynamics (MHD) constraint’) which is usually adopted by
many authors dealing with heliospheric physics.

To show the problem of using ideal MHD in such a coun-
terflow configuration like the heliosphere, we first recapit-
ulate the basic concepts of freezing-in of magnetic fields,
respectively magnetic topology conservation and its viola-
tion (= magnetic reconnection) in 3-D, already done by other
authors with different methods with respect to derivations
and interpretations. Then we analyse different heliospheric
plasma environments. As a model of the stagnation re-
gion/stagnation point in front of the heliospheric nose, we
present and discuss the general solution of the ideal MHD
Ohm’s law in the vicinity of a 2-D stagnation point, which
was found by us.

We show that ideal MHD either leads necessarily to a di-
verging magnetic field strength in the vicinity of such a stag-
nation point, or to a vanishing mass density on the heliopause
boundaries. In the case that components of the electric field
parallel to the magnetic field do not exist due to the cho-
sen form of the non-ideal Ohm’s law, it is always possible
to formulate the transport equation of the magnetic field as a
modified ideal Ohm’s law.

We find that the form of the Ohm’s law which is often used
in heliospheric physics (see e.g. Baranov and Fahr, 2003), is
not able to change magnetic topology and thus cannot lead
to magnetic reconnection, which necessarily has to occur at
the stagnation point. The diverging magnetic field, for in-
stance, implies the breakdown of the flux freezing paradigm
for the heliosphere. Its application, especially at the helio-
spheric nose, is therefore rather doubtful. We conclude that
it is necessary to search for an Ohm’s law which is able to
violate magnetic topology conservation.

Correspondence to: D. H. Nickeler
(nickeler@asu.cas.cz)

1 Introduction

An important question with respect to heliospheric physics
is, whether the magnetic field is frozen into the plasma flow,
or if topology changes of magnetic field can take place, e.g.
in the vicinity of the heliopause. The topology change would
imply, that the heliosphere could become leaky due to mag-
netic reconnection processes. Whether this happens or not
depends on the shape of Ohm’s law for the complex plasma
interface region between the outer heliosphere and the Very
Local Interstellar Medium (VLISM).

The question which velocity fields do transport magnetic
flux and how this is connected with the velocity fields of
plasma components was discussed, e.g. by Newcomb (1958).
Stern (1966) (and references given therein) gives a good
review about the topology conservation of general vector
fields. Here we will apply these concepts to the heliosphere
to shed light on the question, how leaky such an astrospheric
boundary can be due to non-ideal plasma processes.

This paper is organized in the following way: First, in
Sect. 2 and partially in Sect. 4, a necessary review of the
theorems respectively the equations which are important for
the derivation of the transport equation for the flux of a vec-
tor field with a vanishing divergence is given. To demon-
strate the connection between flux conservation and topol-
ogy (conservation) of such a vector field the partial differen-
tial equation (PDE) for a velocity is derived in Sect. 3. This
PDE guarantees the connectivity of the field lines during the
time dependent or stationary evolution of the electromagnetic
field. In Sect. 4 a reasonable connection between magnetic
reconnection and the possibility of defining flux transport-
ing velocity fields of non-ideal MHD flows, starting with a
generalized non-ideal term on the right hand side of Ohm’s
law, is given. Then, in Sect. 5 it is shown, how the results
of Sect. 2 and Sect. 3 work in the vicinity of the magne-
topause of the Earth, where a simplified version of the two
fluid MHD, the so called Hall MHD (with neglected elec-

Published by Copernicus GmbH on behalf of the Arbeitsgemeinschaft Extraterrestrische Forschung e.V.



64 D. H. Nickeler and M. Karlicḱy: Magnetic flux or line conservation

Fig. 1. Flux conservation: The magnetic flux of a magnetic field,
intersecting a closed fluid line, does not change during the move-
ment of the closed fluid line.

tron inertia) is given. Section 6 presents an application to an
Ohm’s law which is valid within the heliosphere: Here it is
shown how flux conservation works in a multifluid plasma.
A discussion is started about the problem that a flux con-
serving velocity field should have a connection to a plasma
species velocity or any other velocity related to the plasma
(components). In Sect. 7 we discuss the ‘frozen in’ or ideal
MHD paradigm of heliospheric physics and the problem of
validity in the vicinity of a stagnation point (here: the helio-
spheric nose). In the last section we summarize the results of
our discussion and draw conclusions, leading us to a series
of important questions, which remain open and could only
be answered by future investigations.

2 The derivation of the flux conserving velocity field

We write down a generalized Ohm’s law

E + vp × B = R , (1)

whereE is the electric field andB is the magnetic field. Here
we introduce the termR, a generalized non-ideal term (see
Priest and Forbes, 2000, and references therein, p. 41),vp

is a velocity which is not necessarily the ion velocity. The
velocity may be an averaged velocity of (all) existing plasma
species or their weighted mean, or the velocity of a certain
plasma species. An example thatvp is dependent on the mul-
tifluid character of the plasma and the corresponding Ohm’s
law will be given in Sect. 5.

Strictly speaking, the ideal Ohm’s law is a ‘relic’ of the
momentum equation of the electron in the two-fluid the-
ory, containing e.g. ‘friction’ respectively resistive terms, so
called inertial terms, additional isotropic or anisotropic pres-
sure terms, Hall term and so on (see Priest and Forbes, 2000).
In the case of multifluid MHD, especially for partially ion-
ized plasmas, or plasmas with different ion species, the terms
on the right hand side of Ohm’s law could look even much

more complicated (see Schlüter, 1958; Kulikovskii and Lyu-
bimov, 1965).

If we now take also Faraday’s law

∇ × E = −
∂B

∂t
(2)

into consideration we get

∂B

∂t
= ∇ × (vp × B) − ∇ × R . (3)

The criterion for magnetic flux conservation is given by the
following condition: The magnetic flux8m intersecting the
area which is enclosed by a closed fluid line with the sur-
faceF , does not change during the movement of the closed
fluid line (see Fig. 1). Using Ohm’s law, Faradays law and
the Gauss-Stokes theorem we can recapitulate the condition
for flux conservation in the form of the vanishing convective
derivative of the magnetic flux8m, see e.g. the derivation in
Priest and Forbes (2000) :

d8m

dt
= 0 ≡

d

dt

∫

F

B · df (4)

=
∫

F

∂B

∂t
· df +

∫

∂F

B ·
(

vp × ds
)

(5)

=
∫

F

∂B

∂t
· df −

∫

∂F

(

vp × B
)

· ds , (6)

yielding

d8m

dt
= 0 (7)

=
∫

F

∂B

∂t
· df −

∫

F

∇ × (vp × B) · df (8)

⇒ 0 =
∫

F

(−∇ × R) · df (9)

⇒ ∇ × R = 0 , (10)

whereF is the comoving surface enclosed by the fluid line,
and∂F the closed fluid line itself,ds the line element of the
closed fluid line, anddf the corresponding surface element.
This implies, that it is a necessary and sufficient criterion for
flux conservation that the non-ideal term can be written as a
gradient, if Ohm’s law is given by Eq. (1). The physical in-
terpretation is, that any moving closed fluid line in this ideal
plasma (ideal conductor), which is intersected by the mag-
netic field, encloses the same (integrated) magnetic flux at
every moment, as illustrated in Fig. 1.

In general the above shown procedure can also be inter-
preted in the following way: for a givenE(x, t) andB(x, t)

a velocity fieldv(x, t) which represents the transport of the
magnetic field, especially the magnetic flux, must be found
such thatE⋆ defined by

E⋆ := E + v × B (11)
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D. H. Nickeler and M. Karlicḱy: Magnetic flux or line conservation 65

can be written as a gradient. The velocity fieldv 6= vp is
not necessarily a plasma (species) velocity. The equation to
solve is then

∇ × (E + v × B) = 0

⇔
∂B

∂t
− ∇ × (v × B) = 0 , (12)

with v as an ‘abstract’ velocity field which describes the
movement of the magnetic field. Thus the vector fieldv is
nothing else than the transport velocity of the magnetic flux.
Therefore the relation Eq. (12) also holds, if a kinetic de-
scription of the plasma has to be taken into account. The
relation above and also the field line conservation critereon
(see below Eq. (28)) do only depend on the structure of the
magnetic field and not on the question if a kinetic descrip-
tion or a fluid theory is used. The Eq. (12) is therefore an
exact definition for the flux conserving velocity field and is
equivalent to Newcomb’s result, see the system Eq. (31) and
Eq. (32). With additional appropriate boundary conditions,
this linear partial differential equation will have a unique so-
lution for given respectively known magnetic fieldB(x, t).
For reasonable physical boundary conditions it may happen
that there is no solution, which is a criterion for magnetic
reconnection (see Sect. 4).

An example is given for an ideal MHD plasma, which has
only localized nonideal regions, see Sect. 4. In Sect. 4.1 and
also Sect. 4.2 it can also be seen that there is a difference
betweenvp andv. In the case of a magnetic neutral sheet
the flux conserving velocity field is a field aligned flow, in
contrast to the plasma flow, which may have perpendicular
components if e.g. a resistive term is present in this region
around the current sheet, as discussed in Sect. 4.2.

3 Line conservation

The condition for topology, respectively line conservation for
vector fields was derived in different ways, e.g. by Newcomb
(1958) and Stern (1966). We will now derive this condition
for line conserving flows in a different way and show the con-
nection to flux conservation with a vivid respectively visual
method: The sketch in Fig. 2 shows how plasma elements
are ‘mapped’ within time from one field line to another. In
an ideal conductor, but in general also in a non-ideal but mag-
netic topology conserving plasma flow, two plasma elements
which are lying on one field line, connected by the arc length
or line elementδl at a certain timet are also connected by
one field line after each time stepdt , i.e. are also lying on
one field line at a later timet + dt . The plasma elements are
then connected by the line elementδl + d(δl), and the cor-
responding tangential vectors to the magnetic field lines are
given by

δl = |δl| B/|B| ≡ δl B/|B (13)

and by analogy

δl + d(δl) = (δl + d(δl)) B/|B| . (14)

l + d(  l)δδ

δl

(v +   v) dtδ B(t + dt)

B(t)

v dt

Fig. 2. This sketch shows how plasma elements are ‘mapped’
within time from one field line to another. In an ideal conductor
two plasma elements which are lying on one field line at a certain
time t are also connected by one field line after each time stepdt ,
i.e. are also lying on one field line at a later timet +dt . This defines
magnetic connection (magnetic topology) and enables to find topol-
ogy conserving velocity fields (conserving the line connection).

The above described behaviour defines magnetic connec-
tion, respectively magnetic topology (conservation) and en-
ables to find corresponding velocity fields with the help of
the definitions in Eq. (13), which we will show now: Using
the Taylor expansion for the velocity fieldv (for a fixed time)
we get

δv = (δl · ∇)v (15)

and with the help of Fig. 2

δl + d(δl) = δl + (v + δv)dt − v dt (16)

it follows

dδl

dt
= δv = (δl · ∇)v . (17)

With

δl × B = 0 (18)

as initial condition, it is necessary for line conservation (con-
servation of line connection), i.e. for magnetic topology con-
servation to demand that the time derivative of the initial con-
dition Eq. (18) vanishes, i.e.

d(δl × B)

dt
= 0 . (19)

The left hand side of Eq. (19) results in

d(δl × B)

dt
=

d(δl)

dt
× B + δl ×

dB

dt
(20)

= [(δl · ∇)v] × B

+δl × [(B · ∇)v − B (∇ · v) − ∇ × E⋆] . (21)

With the help of the convective derivative ofB, the ‘convec-
tive’ electric fieldE⋆ in Eq. (11), and Faraday’s law (Eq. (2))
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the operator on the left hand side of Eq. (12) can be writ-
ten as:

∂B

∂t
= −∇ × E = ∇ × (−E⋆ + v × B) (22)

= (B · ∇)v − (v · ∇)B − (∇ · v)B − ∇ × E⋆. (23)

With Eq. (13) we see that

(δl · ∇)v × B = −δl × (B · ∇)v (24)

is valid. Thus, the first term and the first term in brackets of
the line conserving constraint Eq. (21) cancel each other and
it follows

0 = δl × [−B (∇ · v) − ∇ × E⋆] (25)

= −δl × (∇ × E⋆) . (26)

As δl ‖ B1 we can therefore conclude that

B × (∇ × E⋆) = 0 (27)

⇔
∂B

∂t
− ∇ × (v × B) = λB . (28)

This equation is similar to the well known induction equation
of ideal MHD and is a differential equation for calculating
the line respectively topology conserving velocity fieldv for
a given magnetic field. The difference to the usual induction
equation is the termλB which corresponds to the freedom of
the motion of the flux-/line conserving velocity field in the
direction of the magnetic field. For vanishingλ we conclude
that v conserves magnetic flux, for non-vanishingλ mag-
netic lines are conserved (magnetic flux is transported along
the fieldlines). For ergodic vector fieldsB, i.e. for magnetic
fields for which no first integrals exist,λ must be a constant.
This implies that the general solution of Eq. (28) has a ‘con-
tinous spectrum’ and the form of an eigenvalue problem.

With this it is shown:

– Flux conservation implies line conservation, but not
vice versa (Stern, 1966)!

– A non-ideal term is necessary for violation of line or
flux conservation, but not sufficient.

4 Searching for ‘redefined’ velocity fields

The chosen plasma velocity fieldvp in generalized Ohm’s
law E + vp × B = R, whereR is a given non-idealness, is
only flux conserving, ifR can be written as a gradient. IfR

cannot be written as a gradient it is possible to find a ‘sub-
stitute’ or ‘redefined’ velocity field which is flux conserv-
ing/transporting instead. In the first subsection we will show
how this works for the general caseB 6= 0, and in the sec-
ond subsection the problem will be briefly discussed for the
special caseB = 0 locally.

1Due to the initial conditionδl × B = 0.

4.1 The case:B 6= 0 everywhere

To ensure the ideal transport of the magnetic flux and to en-
sure topology conservation it is necessary to find a function
X and a vector fieldv such that for knownE andB, and an
Ohm’s law given byE + vp × B = R,

E + v × B = ∇X ⇔ E + vp × B = R , (29)

wherevp is a plasma velocity andR a given non-idealness.
By solving forv the magnetic flux is frozen-in with respect
to velocity fields

v = vp −
B × (R − ∇X)

|B|2
+ νB (30)

or, equivalently

v = (E − ∇X) × B

|B|2
+ ν̃B (31)

which was found first by Newcomb (1958). Hereν, re-
spectivelyν̃ are functions in space andX is the solution of
the PDE

B · ∇X = R · B ≡ E · B . (32)

That this equation needs appropriate boundary conditions
and/or auxiliary conditions had not been noted by Newcomb
(1958). The fulfillment of Eq. (32) is a necessary condi-
tion for the fulfillment of Eq. (31). The system Eq. (32) and
Eq. (31) is equivalent to Eq. (12). Note: The whole proce-
dure, discussed in this section, is only necessary and reason-
able ifR is not itself a gradient.

The parallel transport of the magnetic field, described by
the termνB respectivelyν̃B does not influence the flux-
freezing properties of the flow with respect to the magnetic
field. Nevertheless, we briefly discuss the meaning of the the
functionν respectivelỹν: these functions are connected with
the parallel Alfv́en Mach number of the f lowMA‖ by

ν̃ :=
±MA‖√

µ0 ρ
. (33)

SinceMA‖ is defined by

|v‖|2 =
M2

A‖
µ0 ρ

|B|2 , (34)

it follows thatν respectivelỹν is connected with the magnetic
field. Here the mass density isρ. The magnetic field aligned
component of the velocity field isv‖.

To find solutions of Eq. (32), appropriate constraints
and/or appropriate boundary conditions are needed. In most
cases in astrophysical plasmas, theE × B–drift velocity
(v⊥ := E × B/|B|2) is the perpendicular component of the
plasma velocityvp and is a good approximation for the flux
transporting velocityv almost everywhere (see Priest and
Forbes, 2000). Thus only in a small subset of the domain
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the perpendicular component of the flux transporting veloc-
ity is different from the velocity of theE × B-drift. This can
happen e.g. due to MHD, multifluid-MHD- or electrostatic
turbulence, leading to non negligible non-ideal terms or re-
sistive terms (current driven) on the right hand side of Ohm’s
law. The deviations from the drift velocityE × B are often
strictly localized in space, which has to be taken into account
for the boundary conditions of the potentialX. Thus the
flux conserving velocity field inside this non-ideal regionDR

must converge to the usual flux conserving velocity field be-
tween the boundary of the ideal and the non-ideal region, i.e.
on the boundary∂DR of the non-ideal domainDR. We con-
clude here: To enable the convergencev⊥ → v⊥ outside the
non-ideal domain, it is necessary to assume that∇X × B = 0
outsideDR in Eq. (31). This leads us to

∇X = µB , (35)

whereµ is a scalar function. Taking the curl of Eq. (35)
we get

∇µ × B + µ ∇ × B = 0 , (36)

yielding

(∇ × B) · B = 0 . (37)

This equation implies either only perpendicular currents,
writing

j · B = 0 (38)

with respect to the magnetic field, or withµ = const it
follows

∇ × B = 0 , (39)

implying that the magnetic field must be potential. This
result allows only a very special class of magnetic fields
to be transported by theE × B-drift velocity. In addition
the influence of theE‖ := (E · B)

|B|2 B should be minimized.
Strong electric field components will accelerate each of the
charged particle species in a different way, e.g. with respect
to the different masses of ions and electrons. This will lead
to strong charge separation, induce additional collisions be-
tween the particles and thus destroy the quasi-neutrality of
the plasma and the idealness of the plasma. Due to this rea-
son it makes sense to assume that outside the non-ideal re-
gionDR, E‖ = 0. In factE · B = 0 is the (necessary) condi-
tion for ideal MHD2, because this condition implies (i) mag-
netic topology conservation and (ii) the fact that without any
restrictionX can be set constant everywhere outside the non-
ideal domainDR. There is another reason thatX must be
zero or at least constant on the boundary: Assuming that
the field is ideal, i.e.E · B = 0, outside a non-ideal domain
DR the equationB · ∇X = 0 cannot be fulfilled in the case

2The necessary condition for the ideal transport of the magnetic
field is only thatR could be written as agradient.

of general 3-D magnetic fields. The reason for that is that
no first integralX exists in the case of ergodic fields (see
the discussion and the references in the book of D’haeseleer,
1990).

The converging ofv → vp is therefore guaranteed by the
boundary condition

X = const ∀ x ∈ D \ DR and especially on∂DR , (40)

only, which is discussed in similar form in Priest et al.
(2003), but with a slightly different interpretation. Using the
identities

E · B = R · B , (41)

∇ · (XB) = B · ∇X , (42)

we calculate
∫

D

B · ∇X dV =
∫

D

R · B dV (43)

⇒
∫

D

∇ · (XB) dV =
∫

D

E · B dV (44)

⇒
∫

∂D

X B · dS =
∫

DR

E · B dV (45)

(40)⇒ X

∫

∂D

B · dS

︸ ︷︷ ︸

≡0

=
∫

DR

E · B dV . (46)

One can see very easily that the left hand side due to the
boundary conditions Eq. (40) can only be fulfilled, if and
only if the right hand side integral in Eq. (46) vanishes iden-
tically. In contrast to the authors in Priest et al. (2003), who
conclude that there will be no solution in general asE · B 6= 0
in the non-ideal domain, we see at least a possibility to
guarantee the existence of (continuous) flux velocities: This
means that deviations from the ‘ideal’ conditionE · B = 0
integrated over the non-ideal domain should only be statisti-
cal fluctuations, canceling each other, so that the whole in-
tegral vanishes. Only the ‘isotropic’ turbulence for the case,
that E · B 6= 0 in DR, would enable to fulfill the boundary
condition forX. If the right hand side does not vanish, then
the flux transporting velocity field inside the non-ideal region
does not converge to theE × B-drift ouside the non-ideal do-
main, asX cannot vanish on the boundary ofDR. Thus the
boundary condition cannot be fulfilled,X is a non-vanishing
function outsideDR. This implies a discontinuity of the flux
transporting velocity, which can be interpreted as a ‘shock’
of the flux transporting velocity field. Thus the field lines
are transported different at the boundary of the non-ideal
domain and this gives an ‘observer’ the impression of field
line tearing, i.e. of a discontinous transport of magnetic flux
and magnetic field lines: magnetic reconnection takes place.
Magnetic reconnection is a breakdown of magnetic topology
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conservation, therefore the flux- or line-conserving velocity
fields either must not exist or must have a discontinuity.

There is a connection of generalized helicity which is a
generalized gauge independent concept of magnetic helic-
ity and is based on the value of

∫

(E · B) dV (see the above
boundary conditions) with the concept of flux conserving ve-
locity fields. This concept was developped by Schindler and
Hesse (1988) and has the advantage that it is gauge invariant.
The changing of magnetic helicity in an ideal plasma with
localized non-idealnessR changes magnetic topology (def-
inition for general magnetic reconnection) if and only if the
integral overE · B does not vanish. This is equivalent to the
problem of satisfying the boundary condition in Eq. (40) for
the flux conserving velocity field with respect to the integral
expression Eq. (46). Thus for non-reconnective flows

d

dt

∫

D

[(A + A0) · (B − B0)] dV

= (−2)

∫

DR

(E · B) dV = 0 , (47)

whereB0 andA0 are reference fields for the magnetic field
B and the magnetic vector potentialA, chosen in such
a way that boundary conditions and initial conditions like
dS · ∂B/∂t = 0 on the boundary of the plasma far away from
DR, and alsoE × dS = 0, wheredS is the boundary of the
plasma far away fromDR, are satisfied.DR is again the non-
ideal domain. In our case no non-ideal domain exists, where
E · B 6= 0, as will be discussed in Sect. 6, i.e.E · B = 0 ev-
erywhere. Thus the generalized magnetic helicity cannot be
changed with the given non-idealness R in our manuscript.

4.2 The case:B = 0 locally

Current sheets are not a problem in reality, as they have a
finite width and e.g. withR = ηj there is in principle also
a possibility to define a redefined velocity field which in
general is not the plasma plasma bulk velocity, respectively
plasma velocity. To find such a flux transporting velocity
field is, of course, easiest ifηj is a gradient in special sys-
tems. Only thenv = vp is valid. Current sheets do not nec-
essarily imply magnetic neutral sheets (B = 0), even in sym-
metric systems, so that the large current can be generated
by some magnetic shear component, i.e. components of the
magnetic field in the invariant direction (direction of symme-
try) or for 180 degrees shear without magnetic neutral line
with a magnetic jump across a boundary line. Only in the
case of 180 degrees shear with neutral sheets, e.g. antiparal-
lel magnetic fields above and below a magnetic neutral line,
and also in the case of an magnetic null line in 2-D (null
point from the 2-D perspective) the method of Newcomb is
in general not valid. In this case only parallel flows are flux
conserving, see the discussion in Sect. 7 about null lines in
2-D ideal MHD flows.

For 3-D isolated null points of the magnetic field it is pos-
sible to find velocity fields, see the discussion in Titov and
Hornig (2000) and Sect. 7.

How can we apply the above concept and discussion in the
case of non-ideal plasmas to different space plasma regimes,
for example the magnetopause region of the Earth, or for our
interest, under heliospheric conditions, i.e. at the heliopause?

5 Application to the two fluid case/Hall-MHD

We will briefly show how flux conservation can be valid
in a non-ideal plasma environment. In the vicinity of the
Earth’s magnetopause, the ion inertia length becomes com-
parable to typical lengthscales of the magnetopause. There-
fore sometimes the following approximation of two-fluid the-
ory is used, which is called Hall-MHD, see Freidberg (1987)
and for discussion of applicability Dreher (1997). As it has
only to serve as an example for the difference of flux- and
field line conservation we drop the Ohmic termηj . Then
Hall Ohm’s law is written as (vi is the ion velocity,Pe is the
electron pressure):

E + vi × B =
1

n e
[j × B + ∇Pe] (48)

⇒ E + ve × B =
1

n e
∇Pe (49)

⇒ R =
1

n e
∇Pe (50)

due toj = n e (vi − ve). The used relations take strictly the
quasi-neutral and quasi-stationary conditions of the plasma
into account.

If we assume a barotropic law:Pe = Pe(n) it follows that

∇ × R = 0 (51)

which guarantees flux conservation. Thus the magnetic flux
is frozen into the electron velocityve. Although in general
the electron pressurePe is not constant on field lines, i.e.
E · B ≡ B · ∇Pe 6= 0, implying that we here are talking about
non-ideal MHD, the transport of the magnetic field is ideal,
i.e. conserves magnetic flux.

A non-barotropic lawPe 6= Pe(n) in general does not allow
for flux conservation, as the Jacobian determinants ofPe and
n do not vanish and therefore the following relation (which
is equivalent to the Jacobian determinants∂(Pe, n)/∂(xi, xj )

with i 6= j andi, j = 1, 2, 3)

⇒ ∇n × ∇Pe = χB (52)

is only able to lead to line conservation as the Jacobian and
therefore Eq. (52) does not allow vanishingχ ’s. The above
equation results in

B · ∇n = 0 (53)

B · ∇Pe = 0 (54)
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The equations Eqs. (53) and (54) imply, that the functionχ is
dependent onPe andn, the latter can be used as Euler poten-
tials of the magnetic field. These conditions Eqs. (52–54) are
severe restrictions of possible configurations, allowing line
conservations.

6 Application to the heliospheric plasma flow

We now turn to the problem which initially/actually should
be addressed, the problem of the multi-fluid interface of the
outer heliosphere/VLISM region. In this case the non-ideal
termR is supposed to have the following shape (see Baranov
and Fahr, 2003, and references therein):

R ≡
(1 − α)2c2

Kia

[
α ∇P × B

1 + α

+
B

µ0
× ((∇ × B) × B)

]

, (55)

whereKia is the resistance coefficient, discussed by Florin-
ski and Zank (2003) and in references therein, that is
proportional to the charge exchange collision rate, and
α := n/n + na is the degree of ionization, withn, na as num-
ber densities of the ions and neutral atoms.

Ohm’s law,E + v × B = R, can be written as

E + v × B = 0 (56)

with

v = v −
(1 − α)2c2

Kia

[
α∇P

1 + α
−

1

µ0
((∇ × B) × B)

]

. (57)

This implies that it is possible for every parameter range
of the transport coefficients to find a flux conserving velocity
field given by Eq. (57). Therefore the non-ideal term given
by Eq. (55) representing charge exchange processes, cannot
lead to a change of magnetic topology. Hence the charge ex-
change process described by Eq. (55) cannot be responsible
for magnetic reconnection.

Initially the term in Eq. (55) was supposed to represent ad-
ditional interactions (some kind of ‘anomalous’ collisions),
to violate the frozen in paradigm for the heliosphere. The
remaining question is therefore, whether there may be addi-
tional multi-fluid or charge exchange processes, which can
lead to non-ideal terms, inducing magnetic reconnection.
However, from Eq. (57) it is not clear in advance, which com-
ponent of the plasma is responsible for the flux transport: the
flux transporting velocity fieldv is in general not known, but
must be determined from solving the whole set of multifluid
equations. Thusv is neither a particular species velocity nor
the plasma velocity. In the discussion between Baranov and
Fahr (2003) and Florinski and Zank (2003), it seems that the
frozen in velocity is approximately represented by the ion
velocity for such a multifluid plasma with neutral particles.

Our paper should not be misunderstood as a continuation
of the dispute between Florinski and Zank on one hand and

Baranov and Fahr on the other hand. We only want to shed
new light on the question what kind of shape Ohm’s law must
have to violate the frozen in condition seriously, leading to
magnetic reconnection. Thus to refer to Baranov and Fahr,
or Florinski and Zank is only to show with this example of
an Ohm’s law that there are open questions which need more
intensive discussion and research.

Nevertheless, the∇ × B-term on the right hand side of
Eq. (55) has maybe a value which is not negligible at the he-
liopause: Due to the fact that thin current sheets can exist
at the location of the heliopause the∇ × B-term can change
the value of the whole term by orders of magnitude. In simu-
lations this behaviour can lead to numerical reconnection, as
discussed by Ratkiewicz et al. (2004).

In spite of this interesting and important ansatz for finding
points where reconnection probably will take place, we will
see in the next section that the existence of singular points of
the flow (= stagnation points) leads to the demand of finding
a multi-fluid Ohm’s law with terms suitable to violate the
frozen in condition and to lead toreal magnetic reconnection.

7 Stationary ideal MHD in the vicinity of a
standard stagnation point

A singular point where the velocity of a flow vanishes
(= stagnation point) is always sufficient and necessary for
the determination of a separatrix, i.e. a contact surface or
a so called ‘pause’. Here two topologically distinct flows
encounter. In the case of the interstellar medium flowing
around the cavity of a stellar wind (= astrosphere) a so called
‘astropause’ forms (see e.g. Nickeler et al., 2006). In the
case of the counterflow between the sun and the interstellar
medium this separatrix is called the heliopause. The defini-
tion of an existing domain/structure as an astro- or a helio-
sphere requires that a quasi-stationary structure exists, which
represents the mean physical values of such a counterflow
configuration. It is therefore reasonable to assume∂/∂t ≈ 0,
neglecting ‘oscillations’ of the system. As an example we
use the image of a region in the direct neighbourhood of the
stagnation point in a 2-D ideal MHD flow. We briefly show
and discuss the solution for such a scenario, discussed also in
Nickeler and Fahr (2006). The logical conclusion which can
be drawn from such a solution (with respect to heliospheric
research), namely the breakdown of ideal MHD in the vicin-
ity of a stagnation point, will be discussed in more detail in
the remaining of this section.

In the vicinity of the heliopause nose, i.e. at the front stag-
nation point of the heliopause, the mass density should have
a maximum due to the fact that at this location there exists a
‘stagnation region’. The maximum in the density would lead
to small gradients of density. Thus “incompressibility” is an
approximation; this assumption does not directly contradict
the observations of Voyager that the flow is compressible
directly behind or in the vicinity of the termination shock.
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Fig. 3. Streamlines in the vicinity of a standard stagnation point.
They also lead to a stagnation of the magnetic flux, but a divergent
one.

Therefore we can demand that at least along the stream lines
the density should be constant. Applying a two dimensional
picture here should illustrate the problem of demanding the
flux conserving or ‘flux freezing constraint’, i.e. that some
plasma velocity transports the magnetic flux in such a way,
that flux conservation is valid. We therefore introduce the
streaming vector

√
ρv := w = ∇ζ × ez to represent the in-

compressible flow, wherev again is not necessarily the ion
velocity or any other plasma velocity,ρ(ζ ) is the mass den-
sity, andζ(x, y) is a correspoding potential. Curves given
by ζ(x, y)= const are streamlines and the mass density is an
explicit function of the stream functionζ . By introducing
B = ∇α(x, y)× ez the corresponding ideal Ohm’s law can
be written as

∂ (ζ, α)

∂ (x, y)
=

∂ζ

∂x

∂α

∂y
−

∂ζ

∂y

∂α

∂x
= −√

ρ E0 (58)

where E0 is the constant electric field in the invariantz-
direction. A standard stagnation point in the incompressible
case can be represented by usingζ = axy, see the stream-
lines drawn in Fig. 3. Herea is a normalization constant.
The potentialζ represents the potential for the linearized ve-
locity field around the stagnation point. This linearization of
the velocity field in the vicinity of the stagnation point does
not exclude globally asymmetric configurations.

The general solution of Eq. (58) leads to the occurrence of
logarithmic singularities:

α = −
E0

2a

√
ρ

(

k1 ln (x/x0)
2 + (1 + k1) ln (y/y0)

2
)

. (59)
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Fig. 4. Magnetic field lines resulting from a solution of Eq. (58)
with the densityρ ∝ ζ4 ∝ (xy)4. This solution represents the mag-
netic field for a prescribed velocity field in the vicinity of a stag-
nation point. The magnetic field structure and its topology is much
more complex than that of the streaming, i.e. velocity field. The
magnetic field shows additional separatrices, which are obviously
crossed by the flow whose stream lines can be seen in Fig. 3. The
plasma flow crossing magnetic separatrices is normally a critereon
or at least a hint for magnetic reconnection in 2-D.

One can calculate the Laplacian ofα and see, that the field
is not a potential field, i.e.1α = −µ0jz 6= 0, wherejz is the
current density inz-direction. The singularities of the mag-
netic field (the magnetic field on the separatrices is infinity)
can be removed by demanding a vanishing mass density on
the separatrices: In this case the magnetic field would re-
main finite, but show a much more complex topology than
the velocity field (see Fig. 4, for a mass density given by
ρ ∝ ζ 4 ∝ (xy)4). The velocity fieldv diverges on the sep-
aratrices, but no mass is transported, i.e.

√
ρw = ρv → 0.

Additional separatrices occur, and the general solution given
by Eq. (59) shows that singular current sheets exist in that
domain. But even with density structures which converge
much more quickly to zero density on the separatrices than
that density used to calculate the magnetic field structure in
Fig. 4, no solution of the Euler equation could be found by us
(including isotropic plasma pressure) for the magnetic fields
of the general solution given by Eq. (59) (see Nickeler and
Fahr, 2006).

Such singularities for the magnetic field would also occur
in compressible flows in 2-D Cartesian geometry. From sta-
tionary ideal Ohm’s law it follows

vxBy − vyBx = −E0 , (60)
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whereE0 6= 0 is the constant component of the electric field
in z-direction. Thus at the stagnation point the magnetic
field, or at least one component has to be infinitely, which
is not a reasonable physical result. This leads to the con-
clusion that ideal MHD cannot be used in the vicinity of a
stagnation point. Only for a flow which is field aligned ev-
erywhere in the poloidal plane, implying thatE0 is zero, the
problem could in principle be solved.

The diverging of the magnetic field seems to be a gen-
eral problem for symmetric and stationary systems in ideal
MHD, see e.g. Contopoulos (1996), where the vanishing
electric field component into the invariant direction (direc-
tion of symmetry) leads to the demand of a pure field aligned
flow or, for non-vanishing electric field, to an infinite mag-
netic field strength at the stagnation point. This can be seen
by inspecting the poloidal part of Ohm’s law,

vzBr − vrBz = constant/r (61)

which leads to flows being field aligned in pure 2-D axissym-
metric systems, if the constant is zero. Here∂/∂φ = 0 with φ

as coordinate (angle around the axis),r is the distance to the
axis, andz the z-coordinate. If the constant is not zero, for
the stagnation regionvz → 0 andvr → 0 at least one mag-
netic field component has to diverge, so it it is not possible
to get regular solutions of the ideal MHD equations. Thus
the above statements show clearly, that ideal MHD cannot
be valid in the vicinity of stagnation points, as the magnetic
field should, of course, be finite everywhere.

If components in the invariant direction exist, it is not
necessary that the flow is field aligned. But the case that
vpoloidal‖ Bpoloidal is very special and excludes realistic sym-
metric ideal MHD flows which have an angle between the
poloidal velocity and the poloidal magnetic field compo-
nent. Solutions withvpoloidal‖ Bpoloidal do represent situa-
tions which characterize very idealized situations, but at least
it is doubtful, whether they occur in nature.

An extension to generic 3-D solution (without an ignor-
able coordinate respectively symmetry) of the ideal transport
problem has been done by Titov and Hornig (2000). But
their solution is restricted to a special magnetic topology in
the vicinity of a 3-D stagnation point and gives no hint for a
configuration without a null point of the magnetic field. This
implies that this is a structure which can lead to magnetic
reconnection, but does not likely lead to stationary or quasi-
stationary MHD configurations.

8 Conclusions

In this article criteria for magnetic field line conservation and
magnetic flux conservation are reviewed to show their im-
portance for heliospheric physics. In the application to helio-
spheric plasma physics we showed, that the often used Ohm’s
law leads to a possibility to determine a flux conserving ve-
locity field: However this velocity field depends on the solu-

tion of the whole set of multifluid equations, and is therefore
neither a determined plasma species velocity nor a weighted
mean of the plasma species velocities. Thus it would be in-
teresting as a future perspective to get more insight into the
relation between the plasma velocities (e.g. species veloci-
ties or bulk velocity) and the flux- or line-conserving velocity
fields in the frame of multifluid theory.

It is also shown that in the vicinity of stagnation points
within the frame of stationary MHD flows with symmetry,
additional non-ideal terms have to be considered to avoid the
occurence of magnetic singularities. If no non-ideal terms
are present in Ohm’s law, stationary or quasi stationary solu-
tions show a divergent behaviour on the separatrices, or need
a diverging velocity field, or, as one of our suggestions, an
‘exotic’ density distribution. This may give a hint that the
ideal Ohm’s la breaks down at the heliospheric nose or at
stagnation points in general.

Therefore some open questions and unsolved problems
remain:

– Is there any way to define a flux conserving velocity in
a partially ionized plasma which is directly coupled to a
plasma species velocity or to any other plasma velocity?

– Therefore: How is it possible to define magnetic recon-
nection in a partially ionized plasma?

Flux conservation is defined by the criterion of New-
comb (1958), but not sufficiently, ignoring the impor-
tance of the expressionE · B and a minimal flux pre-
serving velocity field as boundary condition, as was
shown in Sect. 4. For the case of the heliosphere or for
any other partially ionized plasma the up to now used
model of e.g. Baranov and Fahr (2003) lacks a term
which can violate magnetic flux respectively magnetic
topology conservation, due to the fact thatE · B = 0.

– Is there any additional term which for physical reasons
has to be added to Ohm’s law, so that this term leads
to a violation of the frozen in paradigm and therefore
to magnetic reconnection processes, e.g. due to charge
exchange processes?

The transport equations used by Baranov and Fahr
(2003), Florinski and Zank (2003), based on the re-
search of Schlüter (1958), Kulikovskii and Lyubimov
(1965) and Cowling (1976) are only one possibility how
the interaction of neutrals, and ions and electrons can
look like. The “friction force” Fij in these models is
represented as linear relation, which is the most simplest
form one can think of (even complicated enough) by a
constant coefficientKij : Fij = ±Kij (vi − vj ). Maybe
things can be much more complicated, thus there is
enough “material” for discussion, but this is beyond the
scope of this paper.

– Is ideal MHD valid in the vicinity of a 3-D stagnation
point or does the ideal theory break down there?
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To answer the last question, results from numerical simu-
lations should be analyzed carefully with respect to the topol-
ogy of field and streamlines in the vicinity of the stagnation
point. The calculation of the characteristic surfaces in 3-D
can help to find out whether regular and stable solutions of
flux conserving flows in the vicinity of a stagnation point can
be found. This investigation must be left for future work.
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