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Abstract. The TWINS project (Two Wide-angle Imaging

Neutral-atom Spectrometers) is mainly devoted to measure

high energy neutral atoms (ENAs) originating via charge ex-

change of protons with geocoronal hydrogen atoms in the

plasmasphere and magnetosphere. In order to unfold the

local ion density along the line-of-sight (LOS) from the in-

tegrated ENA flux measurements, a good knowledge of the

geocoronal hydrogen density distribution is needed. There-

fore, two Lyman-α detectors (LADs) - designed and cali-

brated by the authors - were added to the TWINS package.

These detectors register line-integrated Lyman-α resonance

emission intensities which then can be used to get the actual

local hydrogen densities with the help of a numerical inver-

sion routine.

1 Instrumentation

The TWINS mission consists of two spacecraft. Each one

will be 3-axis stabilized and approximately nadir pointed.

The orbits are so called Molniya orbits with an inclination

of 63.4◦, a perigee of roughly 1000 km and an apogee of

7.2 earth radii (Fig. 1) The first spacecraft will be launched

at the beginning of 2006 and the second one in 2007. The ex-

pected minimal lifetime of the instruments is about 3 years,

so that for at least 1.5 years both spacecraft will be measur-

ing simultaneously. A stereo view will be accomplished by

a 180◦ shift in the longitudes of the rising nodes of the two

satellite orbits. A sketch of the whole scientific instrumen-

tation is shown in Fig. 2. Each instrument consists of two

ENA-particle detectors and two Lyman-α detectors (LADs).

The Lyman-α detectors are arranged in a plane parallel to the

two ENA-particle sensor heads and inclined to the rotation

axis of the actuator by ± 40◦.
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Fig. 1. Orbits of the two TWINS satellites.

Fig. 2. Sketch of the scientific payload. The light pink areas above

the detectors indicate the field of view of the respective sensor.

Hence, the Lyman-α detectors are pointing almost to the

same directions as the TWINS particle imagers. During the

mission the actuator will rotate the instrument in a wind-
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Fig. 3. Sketch of a LAD sensor with light path and electric circuitry.

Fig. 4. Local quantum efficiency QE′ at Lyman-α measured over

one LAD sensor surface (without filter). The numbers on the con-

tours are in cts per 100 photons, i.e. percent.

shield wiper mode, i.e. back and forth, through 180◦ with

a rotation speed of approximately 3◦ per second with the ro-

tation axis pointing to the center of the earth. Since the two

sensors are oriented symmetrically with respect to the rota-

tion axis, a full circle is mapped. At the two turning points,

i.e. at 0◦ and 180◦, the Lyman-α sensor #1 will point to the

same direction as sensor #2 in the opposite position, and vice

versa, thus enabling a check of the relative calibration of the

two sensors. An absolute in-flight re-calibration may also be

possible, if a bright star with a known spectrum near Lyman-

α will be seen accidentally.

In order to avoid possible hazard caused by the radiation

belts all scientific instruments will be switched off below an

orbital radius of 4.5 earth radii. Because the ± 40◦ inclina-

tion of the field of view of the LAD sensors with respect to

the rotation axis the closest approach of the LOS to the earth

is approximately 2.9 earth radii. It is not yet decided whether

or not the instruments will be switched on at lower heights

again towards the end of the mission.

Figure 3 shows the measurement principle of each sensor:

The Lyman-α radiation enters a collimator (Baffle) through

an optical interference filter with a bandwidth of about 10 nm

(FWHM) centered at about 120 nm. The collimator is made

of blackened aluminum honeycomb material, with a length

of 2.54 cm and a cell pitch of 1.53 mm, defining an al-

most circular field-of-view (FOV) of approximately 4◦. The

Lyman-α radiation is then detected by a channeltron mul-

tiplier with an attached amplifier/discriminator circuit. The

output pulse frequency of the discriminator is proportional

to the Lyman-α intensity and is determined by a digital pulse
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Fig. 5. Total quantum efficiency QE for all 4 LAD sensors

(without filter).

counter. The company von Hörner and Sulger (vH&S) in

Schwetzingen, Germany was the main contractor, and did all

development, manufacturing, and qualification of the LAD

instruments, while the EBOX as part of the TWINS instru-

mentation is supplied by the payload.

2 Calibration

All four Lyman-α sensors were calibrated at the Berlin Elec-

tron Synchrotron (BESSY II) in Berlin-Adlershof, Germany.

The synchrotron was operated at very low ring currents -

some µA - yielding a Lyman-α radiation at an intensity range

of the expected geocoronal values. In Fig. 4 the result for one

of the four detectors is given. Shown is the local quantum ef-

ficiency QE′ at Lyman-α measured across the entrance area

of the channeltron given in cts per 100 photons, i.e. percent.

As can clearly be seen, the efficiency is best near the cen-

ter, i.e. close to the anode and decreases towards the edge of

the channeltron. The total quantum efficiency QE(λ) of the

whole surface is given by

QE(λ) =

∫

QE′(λ)dA,

where the integration has to be performed over the whole

detector surface (circular, diameter 2 cm). These total quan-

tum efficiencies of all four detectors (without interference fil-

ters) are plotted as a function of the wavelength in Fig. 5.

It is evident that all four channeltrons produce roughly the

same output. This changes a little bit - shown in Fig. 6 -

when the complete sensor, i.e. channeltron plus filter is con-

sidered, caused by slight differences in the filter transmis-

sivities. The peak of the detector sensitivities is shifted to

115 nm, say, due to the folding of the filter transmissivity

Tr(λ) (almost a Gaussian centered at Lyman-α) with the

total quantum efficiency QE(λ) shown in Fig. 5. Look-

ing through the exosphere in the above described geometry

Fig. 6. Total quantum efficiency QEf for all 4 LAD sensors

(with filter).

almost only backscattered solar Lyman-α radiation will be

measured by the detectors. A potential contribution of the

oxygen 130.4 nm radiation will effectively be suppressed by

a factor of 4 – 5, as can be seen in Fig. 6, though for the

height regime which is primarily of interest (≥ 2.9 earth radii,

see Sect. 1) this contribution will be negligible. Usually air-

glow emission rates are given in units of rayleighs (R), where

1 R =106/(4π) phot/(cm2 s steradian). For the LAD detec-

tors with an aperture angle of 4◦ one thus gets

1 R
∧

=
106

4 π
× 2 π

[

1 − cos

(

4◦

2

)]

× QEf (121.6)
cts

s
,

which yields a conversion factor of approximately 2 cts/s/R

for all 4 detectors. Since the geocoronal Lyman-α intensity

is to be expected in the range of some thousand Rayleighs

resulting in a detector signal of some 2 thousand cts/s, and in

view of the measured detector noise level of less than 1 cts/s,

a signal to noise ratio of > 2× 103 is accomplished.

3 Geocoronal Model

In order to deconvolute the three dimensional geocoronal hy-

drogen distribution from Lyman-α line-of-sight (LOS) mea-

surements a theoretical/empirical hydrogen model is needed.

One mathematical advanced model that is suitable for this

purpose was published by Hodges (1994). It not only

tries to model mathematically the radial, but also the lon-

gitudinal and latitudinal density distribution of the hydro-

gen geocorona. Furthermore, its mathematical formulation

can easily be adapted to what may be suggested by the

measurements.

In detail, this model describes the hydrogen exosphere up

to 10 Re based on a Monte-Carlo simulation and includes

a comprehensive number of relevant scattering-, gain- and
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Fig. 7. Hodges’ parameter N(r) for equinox conditions.

loss effects of different coupling regions. Thermal and non-

thermal scattering- and charge-exchange processes are con-

sidered. An exosphere/plasmasphere coupling is included as

well as solar wind interactions in the magnetospheric cavity

and at its boundary.

The model hydrogen densities are in good agreement with

IMAGE-observations below 6 Re (Østgaard et al., 2003). H-

density ratios between the equatorial night- and day side

or the pole/equator-asymmetry calculated with the Hodges

model are also in good agreement with observations from

Brinton and Mayr (1971) and Vidal-Madjar et al. (1973).

The Hodges model comes formally as a third order spheric

harmonic expansion with the altitude-dependent coefficients

N(r), Alm(r) and Blm(r):

nH(r, φ, θ) = N(r)
√

4π

3
∑

l=0

l
∑

m=0

Z(r, φ, θ),

with

Z(r, φ, θ) = [Alm(r)cos(mφ) + Blm(r)sin(mφ)]Ylm(θ),

where Ylm(θ) are the spherical harmonic Legendre

functions.

Hodges published results for the above mentioned coeffi-

cients N(r), Alm(r), and Blm(r) for 2 different earth posi-

tions (solstice and equinox) using 4 different solar 10.7 cm-

fluxes (80, 130, 180, 230 [× 10−22 Ws/m2]). The geocentric

distance r is separated in 40 nonequidistant steps. This re-

sults in a total of 16× 40 =640 coefficients for each solar

flux value and orbital position of the earth. (At the equinox

position the sun is above the earth equator, at solstice above

the tropic of cancer or the tropic of capricorn, respectively.)

An upcoming problem with the usage of the mentioned

Hodges model for TWINS purposes was to handle the huge

amount of free coefficients within the procedure to fit the

hydrogen density distribution ( 16× 9 =144, if only heights

Fig. 8. Hodges’ parameter N(r) for solstice conditions.

relevant for the TWINS mission are considered for a specific

earth position and 10.7 cm-flux).

A detailed inspection of the r-dependence of the Hodges-

coefficients N(r), Alm(r) and Blm(r) allowed for the fol-

lowing simplifications to the model without a significant de-

viation in the resultant density distribution for the heights rel-

evant to the TWINS mission (r≥ 15 000 km):

- For all fluxes and earth positions discussed by Hodges

the coefficient N(r) shows the same functional relation-

ship according to

N(r) = a × rb,

which is shown in Figs. 7 and 8 for equinox and solstice

conditions, respectively.

- The coefficients Alm(r) can be set to

Alm(r) = alm + blm × r.

- The coefficients Blm(r) can be set to

Blm(r) = 0.

- The order of the expansion can be reduced from 3 to 2.

The newly introduced coefficients (a, b, alm and blm for

l =1, 2 and m≤ l) are, of course, different for each solar flux

and orbital position of the earth.

By these measures the number of coefficients to be fitted

was reduced from 144 to only 12 yielding a very stable be-

havior of the fitting procedure.

In order to test the usability and the quality of the fitting

procedure Lyman-α LOS intensities were calculated on the

basis of the Hodges model with feasible geocoronal and so-

lar parameters assuming a suitable Molnya-type orbit. To
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Fig. 9 Shown is for equinox conditions and f10.7 = 130 in

the midnight meridian plane the geocoronal hydrogen den-

sity distribution (red lines) as obtained by the described fit-

ting procedure. This compares quite well to the original

Hodges densities (black lines). The direction to the sun is

indicated by the yellow dot (not to scale!).

Fig. 10 Same as Fig. 9, but for solstice conditions. The direc-

tion to the sun is indicated by the yellow dot (not to scale!).

these intensities some interplanetary background (based on a

standard hot model) was added. These total intensities then

were converted into count rates according to the instrumental

calibration factors. Addition of some instrumental random

noise yielded a simulated LAD data set. This data set then

was used as input for a least square fit procedure in order to

determine the above mentioned coefficients (a, b, alm and

blm). Figures 9 and 10 show the comparison between the

original (Hodges model) and the fitted regenerated density

distribution, in the midnight meridian plane for equinox and

solstice conditions, respectively. For all cases considered by

Hodges the agreement between his model and the here dis-

cussed modified model is sufficiently good to allow the mod-

elling of the geocoronal hydrogen density on the basis of the

TWINS-LAD data. It should be mentioned that only the data

of half an orbit are sufficient to generate a complete density

distribution.

4 Conclusions

It was shown that fitting the Lyman-α measurements of the

TWINS-LAD experiment yields an exospheric hydrogen dis-

tribution for each specific day, based on a modified Hodges

model. The model coefficients, of course, will depend on so-

lar flux and orbital position of the earth, i.e. vary with time.

These dependencies will be determinable during the TWINS

mission which is to last for at least 3 years. It is hoped that

the development of a new improved empirical model of the

hydrogen geocorona will be possible on the basis of the mea-

surements during this mission.

Acknowledgements. This work was supported by the German DLR

(project no. 50 OE0001). We are grateful to the referees for helpful

remarks and comments.

Edited by: M. Gruntman

Reviewed by: R. R. Hodges, Jr. and N. Østgaard

References

Brinton, H. C. and Mayr, H. G.: Temporal variations of thermo-

spheric hydrogen derived from in situ measurements, J. Geophys.

Res., 76, 6198–6201, 1971

Hodges, Jr., R. R.: Monte Carlo simulation of the terrestrial hydro-

gen exospere, J. Geophys. Res., 99, 23 229–23 247, 1994

Østgaard, N., Mende, S. B., Frey, H. U., Gladstone, G. R., and

Lauche, H.: Neutral hydrogen density profiles derived from

geocoronal imaging, J. Geophys. Res., 108AJ, SMP 18-1,

doi:10.1029/2992JA009749, 2003

Vidal-Madjar, A., Blamont, J. E., and Phissamay, B.: Solar Ly-

Alpha changes and related hydrogen density distribution of the

earth’s exobase (1969–1970), J. Geophys. Res., 78, 1115–1144,

1973

www.astrophys-space-sci-trans.net/2/27/2006/ Astrophys. Space Sci. Trans., 2, 27–31, 2006


