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Abstract. Backtrajectory differences and clustering sensitivity to the meteorological input data are studied.
Trajectories arriving in Southeast Spain (Elche), at 3000, 1500 and 500 m for the 7-year period 2000–2006
have been computed employing two widely used meteorological data sets: the NCEP/NCAR Reanalysis and
the FNL data sets. Differences between trajectories grow linearly at least up to 48 h, showing faster growing
after 72 h. A k-means cluster analysis performed on each set of trajectories shows differences in the identified
clusters (main flows), partially because the number of clusters of each clustering solution differs for the trajec-
tories arriving at 3000 and 1500 m. Trajectory membership to the identified flows is in general more sensitive
to the input meteorological data than to the initial selection of cluster centroids.

1 Introduction

Backtrajectory analysis is a commonly used method to iden-
tify atmospheric transport patterns and/or determine the ori-
gin and pathway of air trace substances (e.g., Dorling et al.,
1992; Brankov et al., 1998; Stohl et al., 2002; Jorba et al.,
2004; Salvador et al., 2004).

Trajectory models are sensitive to a variety of parameters,
including the source of wind field data, wind field spatial
resolution, trajectory type (kinematic, isentropic, isosigma,
isobaric) and the numerical integration scheme (for a review,
see Stohl, 1998, and references therein). Differences bet-
ween trajectories have been computed with Euclidean (EU)
distances to study error sources (Rolph and Draxler, 1990;
Stohl et al., 1995) and to study the sensitivity to the meteo-
rological input data set (Harris et al., 2005). In this paper we
report trajectory differences by computing great-circle (GC)
and EU distances, and study the influence of the meteorolo-
gical data on the results of backtrajectory cluster analysis.

While errors in trajectory calculation on the order of 20%
of the distance travelled are considered typical (Stohl, 1998),
the statistical analysis of a large number of trajectories arri-
ving at a study site over a relatively long period of time in-
creases the accuracy of the trajectory analysis. Therefore,
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backtrajectory cluster analysis is a suitable technique to clas-
sify the air masses arriving at a study site.

Cluster analysis is a multivariate statistical technique de-
signed to classify a large data set intonon-predefineddo-
minant groups called clusters. However, clustering involves
some subjective non-trivial decisions: the number of clusters
to use, the selection of centroids in the initialization stage,
etc. To determine the appropriate number of clusters and
handle the sensitivity of the method to the initial centroids
selection we have followed the procedures described by Dor-
ling et al. (1992) and Mattis (2001) and considered some
modifications to them in order to obtain smaller (better) va-
lues of the total Root Mean Square Deviation (RMSD), the
clustering figure of merit.

2 Methodology

96-h backward air trajectories arriving at 12:00 UTC in Elche
(38.3◦N, 0.7◦W) for the period 2000–2006 were computed
using the HYbrid Single Particle Lagrangian Integrated Tra-
jectory (HYSPLIT) model v.4 (Draxler and Rolph, 2003)
with two different meteorological data sets available at the
Air Resources Laboratory of the National Oceanic and At-
mospheric Administration: (a) Data from the National Cen-
ters for Environmental Prediction/National Center for At-
mospheric Research (NCEP/NCAR) Global Reanalysis on a
2.5◦ latitude-longitude grid and 17 pressure levels (RP data
on the following). (b) Data from the final run in the series
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Figure 1. (a) Evolution of the mean, median and 25th and 75th
quartiles of the set of distn values computed with GC distances for
trajectories arriving at 3000 m.(b) Evolution of HTD at the 3 al-
titudes with the 2 distance measures.(c) Evolution of the mean,
median and 25th and 75th quartiles of the Distn values computed
with GC distances for trajectories arriving at 3000 m.(d) Density
distribution of Distn at 96 h for the trajectories arriving at 3000 m
using the GC distance.

of NCEP operational model runs (FNL data), converted from
a 1◦ latitude-longitude grid and 13 pressure levels (Draxler
and Rolph, 2003). Three-dimensional trajectories that use
the vertical wind component of the data set were considered.

The statistical measures of trajectory sensitivity employed
are closely related to those used in earlier studies (Rolph and
Draxler, 1990; Stohl et al., 1995; Harris et al., 2005). The
Horizontal Transport Deviation (HTD)t hours out is investi-
gated by analyzing the frequency distribution of distn(t), the
(GC or EU) distance between the two points corresponding
to t hours of thenth pair of trajectories (FNL, RP) to com-
pare. Then, for example, the HTDt hours out is the mean

HTD(t)=
1
N

N∑
n=1

distn(t) , (1)

whereN is the number of trajectory pairs to compare. This
is identical, when computing Euclidean (latitude, longitude)
distances, to the Absolute Horizontal Trajectory Deviation
(AHTD) used in the literature. The great-circle distance bet-
ween two points is the shortest distance in spherical geome-
try; it was calculated using the haversine formula. An avera-
ge Earth radius of 6731 km is used to convert GC distances
from degrees to km. We have also considered the Horizontal
Deviation Between Trajectories (HDBT) aftert hours as the
mean of the accumulated distance, Distn(t), between points
of the trajectories being compared up tot hours

HDBT(t)=
1
N

N∑
n=1

Distn(t) , Distn(t)=
∫ H

0
distn(t) dt (2)

with H the time interval between the starting and ending
points of the trajectories. Calculation of Distn(t) is performed
in practice as a summation that will depend on the number of
points used along the trajectories; therefore some care should
be taken when comparing this accumulated measure to other
studies, as both hourly and 6-h trajectories are commonly
found in the literature. As long as all trajectories have the
same number of points, HDBT can be computed by summing
the HTD values up to hourt.

The classification of the FNL and the RP trajectory sets
was performed by k-means cluster analysis. Hourly latitude
and longitude were used as input variables in the clustering
procedures. We have followed the method described by Dor-
ling et al. (1992) to reduce the subjectivity in the selection
of the appropriate number of clusters: the algorithm was run
for a range of cluster numbers between 30 and 2, and the per-
centage change in the total RMSD (i.e. the sum of the RMSD
of each cluster) when the number of clusters is reduced from
k to k−1 was used to find out the proper number of clus-
ters. When this percentage change is large (Dorling et al.,
1992) or exceeds some predefined value, e.g. 5% (Brankov
et al., 1998; Jorba et al., 2004),k is selected as the appro-
priate number of clusters. We retain the smallest number of
clustersk for which the smallest total RMSD change is found
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Figure 2. Final centroids (cluster means) for the trajectories arriving at 3000 m (left), 1500 m (center) and 500 m (right) for the 7-year study
period computed with the FNL and the NCEP/NCAR reanalysis (RP) data.
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Figure 3. Seasonal variation of the frequency of the identified air mass types for the trajectory sets computed with the FNL and the RP data.

when decreasing fromk+1 tok; that means that it is possible
to reduce by one the number of clusters with small worsening
in the total RMSD.

With respect to the way of reducing clusters fromk to k−1,
and the way of dealing with the dependence of the final clus-
ter solution on the initial centroids, different approaches have
been considered. The details of the clustering methodology
we have followed and its comparison with the procedures
of Dorling et al. (1992) and Mattis (2001) will be published
elsewhere. Here we note that the computation of 100 000
clustering analyses for eachk made independently from the
previousk+1 clustering, with initial cluster centroids taken
from randomly chosen real trajectories, provides smaller to-
tal RMSDs and hence better clustering solutions than the ap-
proaches usually found in the literature. We have considered
as best solution for eachk the one with the smallest RMSD.

3 Results and discussion

Figure 1 shows how the differences grow over time along
the trajectories. Differences grow linearly at least up to 48 h,
showing faster growing around 72 h in all cases. The distri-
bution of the differences is strongly skewed. The horizontal
transport deviation (HTD) at 96 h is 20% smaller than that
found by Harris et al. (2005) in their comparison between tra-
jectories computed with the ERA-40 and the NCEP/NCAR
reanalysis data. Trajectory differences exhibit similar growth
behavior using EU and GC distances (Fig. 1b) as most of the
trajectories arriving at the study site remain in mid latitudes,
though larger differences are found when computing EU dis-
tances. The use of the GC distance is more appropriate when
trajectories pass over high latitudes so this distance metric
should be preferred. The highest differences are found in
both cases for trajectories arriving at 1500 m: on one hand,
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Table 1. Percentage of daily trajectories classified into each air flow type for each trajectory set (columns FNL and RP) where Miss stands
for days when trajectories were not available for the cluster analysis. Percentage of trajectories that fall in the same type of air flow both
in FNL and RP trajectories (column FNL=RP). Percentage of days classified in the same type of air flow for the FNL trajectories when
considering different clustering procedures (columns FNL= FNLDorling, FNL= FNLMattis). Percentage of trajectories classified into the same
type of air flow considering the results for the same number of clusters both for FNL and RP trajectories (column FNL=RP*).

3000 m

FNL (%) RP (%) FNL=RP (%) FNL= FNLDorling (%) FNL=RP* (%)

MedR 13.65 8.33 51.58 99.71 65.90
NWfast 6.57 8.29 85.71 96.43 86.31
NWmod 13.03 10.99 55.56 86.19 68.77
NWslow 14.83 14.08 63.06 96.04 58.05
SW 29.58 20.38 41.53 83.33 80.69
SWslow − 20.38 − − −

W 17.14 13.96 52.28 − 75.80

Miss 5.20 3.60

1500 m

FNL (%) RP (%) FNL=RP (%) FNL= FNLMattis (%) FNL=RP* (%)

MedR 21.24 20.34 69.24 79.37 46.78
NWmod 11.62 9.97 70.03 86.20 84.18
NWslow 15.21 12.55 61.18 61.44 61.44
SW − 17.40 − − −

W 18.11 17.32 60.26 88.34 73.65
WR 33.16 21.71 46.23 91.63 64.03

Miss 0.66 0.70

500 m

FNL (%) RP (%) FNL=RP (%) FNL= FNLDorling (%) FNL= FNLMattis (%)

Med 11.42 13.69 74.32 97.95 97.95
MedR 28.55 30.74 66.85 87.26 87.40
N-EU 19.08 14.78 43.24 − −

NWmod 9.46 9.82 59.09 42.15 34.71
NWslow 7.24 11.50 42.16 84.32 86.49
WR 23.93 19.40 58.01 79.25 81.21

Miss 0.31 0.08

the higher the altitude, the longer the trajectories can be and
the larger the differences can grow; on the other hand, the
lower the altitude, the higher the probability of a low pressure
gradient situation that could lead to large differences between
the computed trajectories.

The mean and median values of the horizontal deviations
between trajectories (HDBTs) grow up ast2 up to nearly
72 h, showing a higher growing rate at longer times (Fig. 1c).
HDBTs are log–normal distributed for the trajectories arriv-
ing at 3000, 1500 and 500 m, irrespective of the computed
(EU or GC) distance (the case for 3000 m, using the GC dis-
tance, is shown in Fig. 1d). This would imply that HDBTs
are the result of many small, multiplicative random effects,
although dramatic differences between trajectories are found
in some cases when the air parcels go through low pressure
gradient regions.

Trajectories arriving at 3000, 1500 and 500 m computed
with the FNL data are found to be clustered in 6, 5 and 6
groups, respectively, while trajectories computed with RP
data are clustered in 7, 6 and 6 groups, respectively (Figs. 2
and 3).

Most of the 3000 m trajectories correspond to westerly
flows, identified as northwesterlies (NW) of different speeds,
and southwesterly (SW) and zonal (W) flows. At lower al-
titudes there is an elevated occurrence of slow flows due to
low pressure gradient situations that last several days: 54%
(59%) of the days for trajectories arriving at 1500 m, and
72% (65%) at 500 m, for the FNL (RP) data. The slow
flows correspond to short trajectories which show a path-
way variability within the cluster that is greater than the cen-
troid length, induced by weak synoptic forcing. Such flows
include regional Mediterranean recirculations (MedR), slow
westerlies (WR), and SW (arriving at 1500 m computed with
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RP data) and N-Eu (arriving at 500 m) flows. Stagnant situa-
tions, as well as situations where sea-breeze regime and the
Iberian thermal low can develop thus inducing mesoscale re-
circulations in the spanish Mediterranean basin (Millan et al.,
1997), are associated to these slow flows. A short description
of the identified air masses with FNL data trajectories can be
found in Cabello et al. (2008). It is noteworthy that the origin
of the trajectories at the different heights is strongly decou-
pled. Air flows arriving in SE Spain show a clear seasonal
pattern (Fig. 3), northwesterlies are more frequent during the
winter, while SW (3000 m) and slow flows and recirculations
are common in summertime.

Clustering results are sensitive both to the meteorologi-
cal input data set and to the initialization stage of the cluster
algorithm. One more cluster is identified with RP trajecto-
ries than with the FNL ones for 3000 and 1500 m trajecto-
ries. For 3000 m, this additional cluster, slow southwester-
lies (SWslow), is classified within SW and MedR types when
employing the FNL data; for 1500 m, SW flows found with
RP data are mainly within WR and W flows when FNL is
used. Looking at the number of days classified into the same
type of trajectory when using distinct methods (see Table 1),
clustering results are more sensitive to the input meteorolo-
gical data than to the initial selection of centroids. On the
other hand, sensitivity to the initial centroids is greater the
lower the trajectory arrival height, while sensitivity to the in-
put data does not depend significantly on it.

If we retained the same number of clusters for the 3000
and 1500 m trajectories computed with the two input data,
even though that would add some subjectivity to the analy-
sis, it would be found that overall, trajectories were classi-
fied into the same type of air flows in greater (but moderate)
proportion (Table 1). However, identifying a different num-
ber of clusters due to differences in the meteorological data
could be of some relevance for later studies of dependence of
pollutants concentrations on the identified air flows.

4 Conclusions

We have computed 96-h backtrajectories arriving in SE Spain
at 3000, 1500 and 500 m with the HYSPLIT single–particle
Lagrangian model for a 7-year period using two widely em-
ployed meteorological input data sets. Differences in trajec-
tories caused by using different meteorological data are sig-
nificant. Such differences grow linearly at least up to 48 h,
showing faster growth after 72 h in all cases.

Agreement among trajectories obtained from different in-
put data or from different numerical models would give more
confidence to the trajectory pathway. Similarly, agreement
among trajectory sets with common characteristics would
lend confidence to the trajectory analysis and its applications.
Therefore, in addition to computing trajectory differences,
their influence on subsequent analysis should be assessed.

The main flows identified by means of backtrajectory clus-
ter analysis do not differ substantially with respect to the
meteorological data, even though the number of trajectory
groups is different. However, differences caused by the in-
put meteorological data are higher than those obtained when
comparing different trajectory cluster procedures. Trajectory
membership to the identified flows is in general more sensi-
tive to the input meteorological data than to the initial selec-
tion of centroids.
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