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Solidlike behavior and anisotropy in rigid frictionless bead assemblies

Pierre-Emmanuel Peyneau∗ and Jean-Noël Roux
Université Paris-Est, UR Navier, LMSGC†, 2 allée Kepler,

Cité Descartes, 77420 Champs-sur-Marne, France

(Dated: Accepted for publication in Phys. Rev. E, October 1, 2008)

We investigate the structure and mechanical behavior of assemblies of frictionless, nearly rigid
equal-sized beads, in the quasistatic limit, by numerical simulation. Three different loading paths
are explored: triaxial compression, triaxial extension and simple shear. Generalizing recent result,
we show that the material, despite rather strong finite sample size effects, is able to sustain a fi-
nite deviator stress in the macroscopic limit, along all three paths, without dilatancy. The shape
of the yield surface in principal stress space differs somewhat from the Mohr-Coulomb prediction,
and is more adequately described by the Lade-Duncan or Matsuoka-Nakai criteria. We study ge-
ometric characteristics and force networks under varying stress levels within the supported range.
Although the scalar state variables stay equal to the values observed in systems under isotropic
pressure, the material, once subjected to a deviator stress, possesses some fabric and force distri-
bution anisotropies. Each kind of anisotropy can be described, in good approximation, by a single
parameter. Within the supported stress range, along each one of the three investigated stress paths,
among those three quantities: deviator stress to mean stress ratio, fabric anisotropy parameter,
force anisotropy parameter, any one determines the values of the two others. The pair correlation
function also exhibits short range anisotropy, up to a distance between bead surfaces of the order
of 10% of the diameter. The tensor of elastic moduli is shown to possess a nearly singular, uniaxial
structure related to stress anisotropy. Possible stress-strain relations in monotonic loading paths
are also discussed.

PACS numbers: 45.70.-n, 83.80.Hj, 81.40.Lm, 83.10.Rs

I. INTRODUCTION

The disordered packing of rigid, frictionless spheri-
cal balls epitomizes the large class of materials made
of athermal, amorphous assemblies of particles with ex-
tremely short range interactions, such as granular ma-
terials [1, 2, 3, 4, 5], concentrated suspensions [6, 7],
or some glasses [8]. Obviously a highly idealized mate-
rial, it is perhaps exclusively studied by numerical simu-
lations [9, 10, 11, 12, 13, 14]. However, its main merit is
to capture the essential role of steric exclusion and pack-
ing geometry in the rheological properties of many dif-
ferent materials (termed “jammed” [15] in the recent lit-
erature). In general, “jammed” particulate systems with
strongly repulsive interactions tend to behave like plas-
tic solids for nearly isotropic stress states, and to flow
like liquids once the deviatoric stress reaches some fail-
ure threshold. The solidlike regime of granular materials
has long been described and modeled at the continuum
scale in the field of soil mechanics [2, 16, 17].

Assemblies of frictionless and cohesionless grains, in
the rigid limit, have two remarkable properties [18].
First, equilibrium configurations under specified exter-
nally applied loads minimize potential energy, thereby
satisfying geometric optimization criteria. In particu-
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lar, equilibrium states under isotropic pressure realize a
local maximum of density in configuration space, sub-
ject to impenetrability constraints. One thus obtains,
with assembling procedures fast enough to bypass incip-
ient crystallisation, the so-called random close packing
(RCP) states of sphere packings [11, 12, 13], with solid
fraction Φ ≃ 0.64. Then, the force-carrying contact net-
work (the backbone) is generically devoid of force inde-
terminacy, and even isostatic with circular or spherical
objects [11, 12, 18]. Consequently, equilibrium forces are
geometrically determined, as well as the load increments
necessary to destabilize contact networks; and such ma-
terials, in the solid state, tend to deform in a sequence of
rearranging events, in which the contact structure gets
continuously broken and repaired [18, 19, 20].

In spite of those appealing properties of frictionless
spheres (or disks in 2D), which highlight the connections
between geometry and mechanics and endow them with
quite generic features, the study of those model mate-
rials is still incomplete in the published literature. Nu-
merical investigations have mostly focused on the geom-
etry of RCP states [11, 12, 13], on the possible effects of
confining pressure variations [21, 22] and specific elastic
properties [23, 24], on the one hand; and on steady-state
shear flows [25, 26, 27] on the other hand. The solid
range, in which moderate deviator stresses are supported
by anisotropic packings in equilibrium, has hardly been
investigated.

In a recent publication [14], we checked that rigid, fric-
tionless bead packings have a finite macroscopic friction
coefficient µ∗ in simple shear, and showed them to be de-
void of dilatancy, unlike dense frictional grain assemblies.
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The non-vanishing value of µ∗ was attributed to the pos-
sibility to form equilibrium structures with anisotropic
contact networks. Both static (yield threshold) and dy-
namic (i.e., measured in steady shear flows) values of µ∗

were shown to agree in the limit of large samples.
The present paper further investigates the mechanical

properties of solidlike assemblies of frictionless beads un-
der quasistatic loading conditions. The model material,
initially assembled under an isotropic pressure, is sub-
jected to different deviatoric loading paths (Section II),
so that a failure criterion, or yield surface, delineating
the stable solid range in stress space can be identified in
the macroscopic limit (Section III) –thus generalizing the
friction angle measured in simple shear. Then we study
the geometric and micromechanical features of equilib-
rium states throughout the supported range of stresses,
generalizing the results obtained on isotropic packings
to systems with various levels and various directions of
anisotropy (Section IV). Stresses are related to fabric and
force distribution anisotropy parameters by a simple for-
mula. We show how the anomalous elastic moduli tensor
of frictionless, nearly rigid networks is affected by stress
anisotropy. A macroscopic stress-strain relation appears
to be approached along the investigated monotonic load-
ing paths, in spite of large statistical uncertainties. The
paper ends with a discussion (Section V).

II. MODEL MATERIAL AND SIMULATED

MECHANICAL TESTS

A. Constituents and microscopic interactions

We consider granular assemblies made of nearly rigid
equal-sized beads of diameter a and mass m, enclosed in
a cuboidal simulation box. Beads interact through their
contacts: the force transmitted is purely normal and is
the sum of a Hertzian elastic term:

F e
N = Ẽ

√
ah3/2/3 ≡ 2

3
KN(h)h, (1)

and of a viscous term:

F v
N = ζ(mẼ)1/2(ah)1/4ḣ = ζ

√

2mKN(h)ḣ. (2)

h is the normal elastic deflection, Ẽ is a notation for
E/(1 − ν2), where E is the Young modulus of the ma-
terial the beads are made of, and ν its Poisson ratio,
and ζ is the level of viscous damping. KN(h) is the
equivalent spring constant associated with the elastic
force given by Eq. (1). Noteworthily, albeit nonlin-
ear, Eqs (1) and (2) entail a velocity-independent nor-
mal restitution coefficient eN(ζ) in binary collisions. All
the simulations reported here have been performed with
ζ = 0.98 (eN = 3.3 × 10−3). This model has already
been employed and discussed in several recent publica-
tions [13, 14]. Finally, as normal contact forces have no
moment on spherical particles, their rotation is ignored.

B. Boundary conditions and numerical tests

Three different mechanical tests are numerically imple-
mented to probe the solid behavior and the yield stress
condition of the material. Those tests involve an external
control on some of the entries of the Cauchy stress tensor
σ. For a granular system at mechanical equilibrium, its
expression involves the volume V of the system, the in-

tergranular force ~Fij and the center-to-center vector ~rij
for all pairs (i, j) of contacting grains [28, 29]:

σ =
1

V

∑

i<j

~Fij ⊗ ~rij (3)

Compressive stresses and shrinking strains are positive
in our convention.

In order to avoid any side wall effect, the simulation
cell has periodic boundary conditions in all three di-
rections (possibly affected by the Lees-Edwards proce-
dure [30] when a non-diagonal stress component is im-
posed). Simulation cell edges have lengths denoted as
(Lα)1≤α≤3 along the three coordinate directions of or-
thonormal basis (~eα))1≤α≤3. Details on the equations
governing the Lα’s and the possible shear strain variable
may be found in Ref. [14].

Before performing a mechanical test, an initial config-
uration is prepared under isotropic pressure P with the
same procedure as in [13, 14]. A granular gas of hard
spheres, initially positioned on an FCC lattice, is ther-
malized with collisions that preserve kinetic energy and
then isotropically compressed [with the dissipative me-
chanical model, Eqs (1)-(2)] until a mechanical equilib-
rium state is reached under presssure P . In the limit of
small P , these isotropic equilibrated configurations are
the RCP states, as studied in Refs. [11, 12, 13].

Once prepared, the material may be subjected to var-
ious loading paths. Three distinct quasistatic mechani-
cal tests have been implemented, on externally applying
stress tensor Σ: (i) Axisymmetric triaxial compression
(TC) test: Σ = Σ1~e1 ⊗ ~e1 + Σ2~e2 ⊗ ~e2 + Σ3~e3 ⊗ ~e3,
with Σ1 = Σ2 < Σ3; (ii) Axisymmetric triaxial extension
(TE) test : Σ = Σ1~e1 ⊗ ~e1 + Σ2~e2 ⊗ ~e2 + Σ3~e3 ⊗ ~e3 with
Σ1 = Σ2 > Σ3; (iii) Shear (S) test: Σ = P (~e1 ⊗~e1 +~e2 ⊗
~e2 + ~e3 ⊗ ~e3) + τ(~e1 ⊗ ~e2 + ~e2 ⊗ ~e1).

Each test is employed to assess the material behavior in
a particular direction of the principal stress space, which
is the three-dimensional Euclidean space spanned by the
stress tensor eigenvalues σ1, σ2, and σ3 (the principal
stresses). The principal stresses, if listed in decreasing
order, are also denoted as σI ≥ σII ≥ σIII in the sequel.
In equilibrium under the prescribed stress loading paths
(TC, TE and S tests) their values are listed in Tab. I.

In all implemented tests, pressure P = TrΣ/3 is kept
constant while deviator stress Σ − P1 is stepwise in-
creased, with increments δΣ. We chose to apply δΣ3 =
0.005×P (or −0.005×P ) in TC (respectively: TE) tests,
whence δΣ1 = δΣ2 = ±0.0025 × P , and δτ = 0.005 × P
in S tests. In principal stress space, the load therefore
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Test σI σII σIII

TC σ33 σ11 σ11

TE σ11 σ11 σ33

S σ33 + |σ12| σ33 σ33 − |σ12|

TABLE I: Principal stresses for the triaxial compression, tri-
axial extension and shear tests.

FIG. 1: (Color online) Sketch of the directions tested in a
deviatoric plane with a triaxial compression test (with σ3 =
σI), a triaxial extension test (with σ3 = σIII), and a shear test
(with (σ1, σ2, σ3) = (σI, σIII, σII)).

remains in a given deviatoric plane, i.e., a plane orthog-
onal to the trisectrix σ1 = σ2 = σ3. The three studied
stress paths are represented in Fig. 1.

For each prescribed stress tensor Σ, one waits until a
satisfactory mechanical equilibrium is reached before in-
crementing Σ. A system is deemed equilibrated if the
resultant force is zero on each bead, with a tolerance
set to 10−4a2P , and σαβ = Σαβ for each imposed stress
component, with a relative error smaller than 10−4. The
calculation is stopped if the packing remains out of me-
chanical equilibrium under the imposed stress tensor af-
ter 5×107 time steps and a total strain of 10%. The last
value of Σ for which an equilibrium state was reached is
kept as an estimate of the failure threshold. This proce-
dure is schematized in Fig. 2. The same simulations are
carried out on a number of different randomly assembled
initial configurations to achieve statistical representativ-
ity. Numerical results are averages over available sam-
ples, the error bars shown on the figures extending to
one r.m.s. sample-to-sample deviation on each side of
the mean value.

C. Dimensionless control parameters

Simulation results depend on a small set of dimension-
less numbers, which combine material properties and me-

FIG. 2: Stepwise procedure employed to assess the failure
properties of the material.

chanical test parameters. Most definitions recalled below
are the same as in Refs. [13, 14].

The stiffness parameter, defined as

κ =

(

Ẽ

P

)2/3

,

is such that κ−1 measures the typical elastic deflection
relative to particle diameter, h/a. Most simulations are
conducted with κ = 3.9 × 104 (corresponding to glass
beads under P = 10 kPa [13, 14]). Half of the S tests
have also been conducted with κ = 8.4× 103. From [14],
we know that with such stiffness levels, the difference
between the various observables measured in the simula-
tions and their values in the rigid limit of κ → +∞ is
smaller than the statistical uncertainty.

Although some dissipation is necessary in the model to
reach mechanical equilibrium, the level of viscous damp-
ing ζ is irrelevant in the quasistatic limit [14]. Here
it is set to 0.98, whence a low restitution coefficient,
eN = 3.3 × 10−3.

When the cell is being deformed, with strain rate ǫ̇,
the importance of inertia effects is characterized by the
inertial number I, defined, as in Refs. [14, 25, 27, 31], by

I = ǫ̇

√

m

Pa

The quasistatic limit corresponds to I → 0. In order to
avoid excessive acceleration of the system, a control on ǫ̇
is enforced, like in [13, 22], so that I never exceeds 10−4.

Ratio δΣ/P of deviator step to pressure is another con-
trol parameter, which should be kept to small values to
track the quasistatic evolution of the system as accurately
as possible. The values given in Sec. II B were observed
to be satisfactory in this respect. As an example, TC
tests with δΣ3/P = 5 × 10−3 and δΣ3/P = 2 × 10−2

yield consistent results.



4

κ I ζ δΣ/P N

{8.4 × 103,3.9 × 104} < 10−4 0.98 0.005 {1372,4000,8788}

TABLE II: Values taken by the dimensionless parameters.

Finally, finite-size effects are expected [14], hence a
fifth dimensionless parameter in the problem, the number
N of particles. Values of the dimensionless control pa-
rameters in the presently reported simulations are listed
in Tab. II. We are chiefly interested in the macroscopic

geometric limit, in which all mechanical properties are
expected to depend on packing geometry alone, as an-
nounced in the introduction. It was defined in [14] as the
triple limit of κ → +∞ (rigid limit), I → 0 (quasistatic
limit) and N → +∞ (thermodynamic limit). This limit
was shown in Ref. [14] to be correctly approached with
the range of parameters displayed in Tab. II.

III. FAILURE

The material being initially assembled in an isotropic
state, the range of stress tensors it will sustain in the
solid state can be defined in principal stress space. From
the known behavior of cohesionless granular materials
(with friction in the contacts) [17, 32, 33, 34] it is ex-
pected – and it was explicitly checked in the case of S
tests [14] – that the boundary of the set of supported
stresses is reached on increasing the deviatoric part of
σ, away from the isotropic state. It is customary to de-
fine a loading function (or yield function) f of principal
stresses (σ1, σ2, σ3), such that f < 0 defines the region
of supported stresses (which is believed to be convex in
general [32]) and f = 0 its boundary surface.

For an assembly of perfectly rigid (κ = +∞), non-
cohesive grains, the absence of stress scale implies that
f(λσ) = f(σ) for all λ > 0. Thus, the failure surface
of such a material has a conical shape in principal stress
space. We assume this property to hold for our simulated
system, which is close to the rigid limit. Consequently,
it is sufficient to determine the intersection of the fail-
ure surface with one deviatoric plane, that is the fail-
ure curve. Furthermore, because of the isotropic prepa-
ration method employed, f is a symmetric function of
(σ1, σ2, σ3) and the failure curve is left invariant by all
permutations of (σ1, σ2, σ3).

The (cohesionless) Mohr-Coulomb model

fMC(σ) = σI − σIII − (σI + σIII) sinϕ

is often assumed (at least implicitly) true for granular
materials [35]. Numerous studies have been devoted to
the macroscopic friction of sheared granular assemblies
in various geometries [31], and it is tempting to assume
that the measured angle corresponds to friction angle ϕ
in a Mohr-Coulomb model that would describe the failure
properties of the material. The fourth column of Tab. III

Test N SN ϕ ∆ϕ k ∆k

TC
1372 8 8.3◦ 0.6◦ 27.80 0.11

4000 8 6.8◦ 0.5◦ 27.52 0.08

8788 8 6.0◦ 0.2◦ 27.41 0.03

TE
1372 8 8.6◦ 0.5◦ 27.81 0.10

4000 8 6.9◦ 0.2◦ 27.52 0.02

8788 8 6.0◦ 0.4◦ 27.40 0.05

S
1372 6 9.7◦ 0.3◦ 27.80 0.04

4000 10 7.8◦ 0.3◦ 27.51 0.07

8788 6 7.0◦ 0.4◦ 27.41 0.04

TABLE III: Macroscopic friction angle ϕ and Lade-Duncan
parameter k, measured just before failure on SN distinct ini-
tial configurations, for different mechanical tests and different
system sizes. ∆ϕ and ∆k are the corresponding standard de-
viations.

displays the macroscopic friction angles measured with
the three loading paths employed. It shows that ϕ de-
pends on N , as already observed in Ref. [14], but also on
the kind of mechanical test employed. Consequently, the
material cannot be described by a Mohr-Coulomb crite-
rion. Although TC and TE tests are not sufficient to rule
out the Mohr-Coulomb model since ϕTE − ϕTC is below
the statistical uncertainties vitiating the results, the com-
parison with the shear angles unambiguously invalidates
this criterion.

It would be appealing if one could characterize the fail-
ure properties of the material with a single parameter
that would not depend on the applied load direction.
Such an attempt already proved successful for assem-
blies of frictional equal-sized beads [33, 34], whose failure
curve was successfully modeled by a Lade-Duncan crite-
rion [36]:

fLD(σ) =
(σI + σII + σIII)

3

σIσIIσIII

− k (4)

One should have k ≥ 27 in (4) if condition f ≤ 0 is to
define a non-empty cone of supported stresses (with k =
27 only isotropic stresses would be possible in equilibrium
and the material would behave like a liquid). According
to Tab. III, this failure criterion also works well in the
frictionless case: the values of k deduced from each of the
three loading paths (see Tab. IV) agree with one another.

Making use of the aforementioned permutation sym-
metry, the stresses at failure computed for N = 1372 are
plotted in Fig. 3, in the deviatoric plane, with the Lade-
Duncan curve corresponding to k(1372) and the three
Mohr-Coulomb failure curves pertaining to the three dis-
tinct numerical tests performed. The Lade-Duncan cri-
terion is clearly the best model.

Failure properties are, however, dependent on system
size (Tab. III). Fig. 4 plots the principal stresses at fail-
ure in the deviatoric plane for N = 1372, 4000, 8788
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Test sin ϕ k

TC
Σ3 − Σ1

Σ3 + Σ1

(3 − sin ϕ)3

1 − sin ϕ − sin2 ϕ + sin3 ϕ

TE
Σ1 − Σ3

Σ1 + Σ3

(3 + sin ϕ)3

1 + sin ϕ − sin2 ϕ − sin3 ϕ

S
τ

P

27

1 − sin2 ϕ

TABLE IV: Mohr-Coulomb and Lade-Duncan parameters for
the different loading paths, as functions of applied stress com-
ponents. sin ϕ, as defined in the second column, is used as an
intermediate variable in the expression of parameter k in the
third one.

FIG. 3: (Color online) Calculated points with their error
bars, Lade-Duncan criterion (k = 27.80, blue solid line)
and cohesionless Mohr-Coulomb criteria corresponding to TC
(ϕ = 8.3◦, red dashed line), TE (ϕ = 8.6◦, red dotted line),
and S tests (ϕ = 9.7◦, red dotted and dashed line) for an
assembly of N = 1372 particles.

with the corresponding Lade-Duncan fits. The domain
bounded by the failure limit decreases with increasing N .
To evaluate the failure curve in the macroscopic limit
of N → +∞, principal stresses obtained in finite-size
samples are extrapolated, assuming a linear dependence
with N−1/2. This assumption is proved to be statis-
tically valid thanks to χ2 calculations [37] and the re-
sulting principal stresses are plotted in Fig. 4. A Lade-
Duncan fit of these extrapolated points with parameter
k∞ = 27.22 ± 0.02 works well. As k∞ > 27, the failure
surface is not reduced to the trisectrix in the N → +∞
limit, and macroscopic systems can be equilibrated un-
der moderately anisotropic loads, in agreement with [14].
The value taken by the Lade-Duncan parameter in the
N → +∞ limit corresponds to ϕTC

∞ = 4.4◦±0.2◦ in triax-
ial compression, ϕTE

∞ = 4.5◦ ± 0.3◦ in triaxial extension,
and ϕS

∞ = 5.2◦ ± 0.3◦ for shear tests. The latter value
agrees with the static friction angle given in Ref. [14] in
the macroscopic geometric limit.

One can observe that the shape of the criterion in the
deviatoric plane becomes more rounded with increasing

FIG. 4: (Color online) Principal stresses at failure and cor-
responding Lade-Duncan fits for N = 1372, 4000 and 8788
(red dashed lines). The blue solid curve corresponds to the
macroscopic limit (k = 27.22), whereas the two blue dotted
curves, for k = 27.20 and k = 27.24, bound the uncertainty
interval.

N . Since other criteria predict a nearly circular failure
curve for small deviatoric strength [38], other forms than
the Lade-Duncan yield function could be fitted to the
data in the macroscopic limit. First of all, we observed
that the Drücker-Prager criterion [39] (whose shape is al-
ways circular in the deviatoric plane) does not correctly
fit our results in the N → +∞ limit. The Matsuoka-
Nakai criterion [40], a model specifically tailored to cap-
ture the failure properties of some sands, defined as

fMN(σ) =
(σI + σII + σIII)(σIσII + σIIσIII + σIIIσI)

(σIσIIσIII)
−m,

accurately fits the data extrapolated in the macroscopic
limit (with m = 9.05 ± 0.01). Note however that this
criterion is not suitable to describe failure in the smallest
finite-size systems studied.

In general, the expressions of failure criteria (Lade-
Duncan, Matsuoka-Nakai, or Mohr-Coulomb) are purely
phenomenological, and their justification is to provide
a convenient fit function. In the present case, stress
anisotropies will be related to other internal variables
in Sec. IV, but a prediction of the shape of the failure
curve in the deviatoric plane (related to complex geo-
metric properties of sphere packings) is currently beyond
our reach.

IV. SOLID BEHAVIOR AND

MICROSTRUCTURE: THE ROAD TO FAILURE

We now study the evolution of the material within the
solid range, from the initial isotropic state to the fail-
ure limit, with a particular emphasis on microscopic as-
pects. We first investigate in Sec. IVA how the scalar
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variables characterizing the internal state of the pack-
ing evolve with growing deviator stress. Those vari-
ables include solid fraction Φ, connectivity and coor-
dination number, orientation-averaged pair correlations
and force distributions, and were extensively studied
in isotropic RCP states [12, 13]. Structural and force
anisotropies [41, 42, 43, 44] are studied in Sec. IVB. In
the spirit of [45], we will show how stresses relate to
anisotropy parameters. Then, Section IVC reports on
the elastic moduli measured in nearly rigid anisotropic
packings, with results generalizing previous numerical
observations on isotropic RCP state elastic properties.
Finally, the existence of a well-defined stress-strain law
in the thermodynamic limit (N → +∞) is discussed in
Sec. IVD.

A. Scalar quantities

The typical evolution of volume fraction Φ with the
deviatoric stress applied, characterized by sinϕ ≡ (σI −
σIII)/(σI +σIII), is depicted in Fig 5. It shows that what-
ever the load applied, Φ remains approximately equal
to ΦRCP ≃ 0.639 from the initial isotropic state to the
failure threshold. In particular, the relative variations
of Φ remain smaller by more than an order of magni-
tude than the deviatoric strains (see Sec. IVD). This
is consistent with Ref. [14] which showed the material
to be devoid of dilatancy in the macroscopic geometric
limit. Φ evolves quite erratically with sinϕ; however, Φ
seems to increase systematically when the applied stress
is moderately anisotropic, then it reaches a maximum
and finally, it decreases when the material approaches its
failure limit. We have currently no convincing explana-
tion for this phenomenon. The jumps in Φ are correlated
to network rearrangements: we checked that the greater
the jump, the more important the change in the contact
list.

The connectivity of the contact network is the set (pn)
of probabilities for one grain to be involved in n con-
tact forces. The coordination number z is linked to (pn)
through z =

∑

n npn. Average fractions pn have been
recorded for the three loading paths with N = 1372,
4000 and 8788. At equilibrium, whatever the deviator
applied, the set (pn) is found identical to the distribution
measured on frictionless isotropic packings [13]. For such
packings, p1, p2 and p3 vanish, because normal repulsive
forces on a bead with less than four contacts cannot bal-
ance. As in the case of isotropic packings, some grains,
the rattlers, do not belong to the force-carrying structure:
their proportion is estimated at p0 ≃ 1.3%, which is close
to the value obtained with isotropic packings [13]. In all
simulations carried out with κ = 3.9× 104, the backbone
coordination number z∗ = z(1 − p0)

−1 remains equal to
6.08±0.03 between the initial isotropic state and the fail-
ure limit. By the isostaticity property of the backbone,
z∗ tends toward 6 in the κ→ +∞ limit [11, 13, 14].

If we now replace the contact network by network Ch

FIG. 5: (Color online) Volume fraction Φ as a function of sin ϕ
(as defined in Table IV) for N = 8788 and κ = 3.9×104 . Solid
squares are for one TC test, solid triangles for one TE test
and circles for one S test. Curves are stopped at the value of
sin ϕ corresponding to the failure limit.

defined on declaring a bond to join all pairs of grains sep-
arated by a distance smaller than h, then its coordination
number z(h) is drawn as a function of h/a in Fig. 6 at the
failure limit. Curves corresponding to the three studied
loading paths are identical. z(h) starts from coordina-
tion number z at h = 0 and is the cumulated integral
of the pair correlation function up to distance a+ h be-
tween sphere centers. One gets z(h)−z(0) ∝ (h/a)0.6 for
h/a ≪ 1 in all equilibrated packings. The same power
law with exponent 0.6 has already been observed to fit
z(h) data in the same range of gap h with isotropic pack-
ings (RCP states) [12, 13]. (No theoretical basis has been
proposed for this power law, the prefactor and the expo-
nent of which might slightly depend on the range of h
fitted and on the treatment of rattlers [13, 23].)

The probability distribution functions p(f) of normal-
ized contact forces, f = F/〈F 〉, has a similar shape as
reported in many numerical [12, 13, 46, 47, 48] and some
experimental [49, 50] studies on granular media. p(f)
first exhibits a slight increase, up to f ≃ 0.5, and then
it decreases, roughly exponentially for large f . Remark-
ably, thanks to Kolmogorov-Smirnov tests [37], we ob-
served that all p.d.f. in the equilibrium configurations
obtained for the different simulated stress states coin-
cide. Neither the number of grains, nor the direction of
the loading path, nor the proximity of the failure limit
alter the force distributions, which remain statistically
indistinguishable. p(f) thus coincides, within statistical
uncertainties, with the form parametrized, e.g., in [12].
As the backbone is isostatic, p(f) is geometrically deter-
mined in the rigid limit. The p.d.f. may in particular be
characterized by its moments, which we denote, for any
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FIG. 6: (Color online) Average coordination number z(h) of
network Ch as a function of h/a, computed from some equi-
librated configurations near their failure limit under TC, TE
and S tests. All three group of data collapse on a single curve.
Inset: power law behavior of z(h)−z(0) for h/a ≪ 1, revealed
by a double logarithmic plot.

x > 0, as

Z(x) = 〈fx〉 =
〈F x〉
〈F 〉x , (5)

and we obtain, e. g., Z(2) = 1.53 ± 0.02 and Z(5/3) =
1.29 ± 0.01 (those results will be useful in Sec. IVC).

Finally, using the same indicators as in [13], we ob-
served no tendency towards the formation of locally crys-
talline patterns in the configurations under varying devi-
ator stresses.

B. Anisotropy

Previous works showed that the very origin of shear
strength in granular materials is the anisotropy, both
structural and mechanical, induced by the deviatoric
stress [51]. We now explore this connection in the par-
ticular case of frictionless, rigid bead assemblies.

Mathematically, material anisotropy can be character-
ized by the joint probability density function P (~n, F ) of
finding an intergranular contact oriented along the unit
vector ~n and carrying a force of intensity F . This quan-
tity is of central importance since it intervenes in the
expression of the Cauchy stress tensor. Bearing in mind
that κ ≫ 1 and denoting the number of contacts by Nc,

Eq. (3) can be rewritten as:

σ =
Nca

V
〈~F ⊗ ~n〉

=
Nca

V

∫

dΩ dF P (~n, F )F~n⊗ ~n

=
Nca

V

∫

dΩE(~n)〈F 〉~n ~n⊗ ~n (6)

〈F 〉~n is the angular force density (it is equal to 〈F 〉/(4π)
in the isotropic case) and E(~n) is the probability density
function of finding a contact along ~n.

1. Structural anisotropy and its relation to stress ratios

The anisotropy of the contact network is described by
E(~n). E is defined on the unit sphere of R

3, so it can
be expanded in a series of spherical harmonics. Since
contacts are undirected, odd order coefficients in the ex-
pansion vanish. At the lowest order, the expansion is
restricted to the spherical harmonics of order 2 and the
coefficients are related to the second-order fabric tensor
F ≡ 〈~n⊗~n〉. Furthermore, for shear tests, it was shown in
Ref. [14] that a single anisotropic term of the expansion
dominates:

E(~n) ≃ 1

4π
+ F12 dxy(θ, ψ) (7)

with dxy(θ, ψ) = 15 sin2 θ sin(2ψ)/(8π) (θ is the colat-
itude angle and ψ the longitude angle of the spherical
coordinates). In the case of a triaxial test, by axial sym-
metry, the expansion of E in spherical harmonics up to
the second order reads:

E(~n) ≃ 1

4π
+ (F33 −

1

3
)dz2(θ, ψ) (8)

with dz2 = 15(3 cos2 θ − 1)/(16π).
Fig. 7 shows how the anisotropic term evolves with

(σ33−σ11)/(σ33 +σ11) (σ11 and σ33 are principal stresses
under a triaxial load), for systems of two different sizes
subjected to a TC or TE test. Whatever the test per-
formed, the absolute value of the anisotropic term in-
creases with the applied deviator intensity. An analysis
of the regression of fluctuations for the data of Fig. 7 in-
dicates that the evolution of the anisotropic terms with
stress deviator intensity tends to a well-defined curve in
the macroscopic limit. The dependence is roughly lin-
ear, even if one can notice that the slope of the curves
seems to change around the boundaries of the solid range
in the limit of N → +∞. (Other expressions involving
principal stress ratios could have been used to charac-
terize stress anisotropy). Although the maximum value
of the anisotropy parameter is size-dependent, the slope
Sfab of the straight line fitting in the macroscopic solid
range the (sample-averaged) anisotropy parameter as a
function of (σ33 − σ11)/(σ33 + σ11) for triaxial tests, and
of σ12/σ22 for shear tests, does not depend on N if the
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FIG. 7: (Color online) Average evolution of the structural
anisotropic term with r = (σ33 − σ11)/(σ33 + σ11) under TC
(r > 0) and TE (r < 0) tests. Red crosses correspond to
N = 1372 and blue squares to N = 8788.

number of grains is large enough. For N ≥ 4000, numer-
ical simulation yield Sfab = 0.197 ± 0.010 for TC tests,
Sfab = 0.210±0.015 for TE tests, and Sfab = 0.158±0.015
for S tests.

The range of anisotropic pair correlations can be stud-
ied by considering the fabric tensor of network Ch (defined
in Section IVA) as a function of h. Anisotropy parame-
ters are plotted as functions of h in Fig. 8, for maximum
stress anisotropies (at the failure limit). They first de-
crease for increasing h, and reach zero near h/a = 0.2.
The small values of opposite sign measured at larger dis-
tances are of the order of the statistical noise (≃ 0.001)
observed on isotropic configurations and should be in-
terpreted with care. The spatial distribution of near,
but distant neighbors thus tends to cancel the anisotropy
of the distribution of contacting ones. The material
anisotropy is short-ranged. In particular it is very nearly
negligible on averaging over the complete first neighbor
shell (i. e. up to the distance corresponding to the first
minimum in the pair correlation function, h/a ≃ 0.35
from Refs. [12, 13]).

2. Force anisotropy and its relation to stress ratios

The mechanical anisotropy is described by the angular
dependence of 〈F 〉~n. Like E(~n), it can be expanded in
a series of spherical harmonics of even order. To make
things easier, only the expansion up to the second order
is considered. As for the structural anisotropy, a single
term, with the same symmetry, was assumed to domi-
nate. For shear tests

〈F 〉~n ≃
(

1

4π
+H12 dxy(θ, ψ)

)

〈F 〉 (9)

FIG. 8: (Color online) Dominant structural anisotropic term
at the failure limit as a function of the gap h ith N = 8788 for
TC tests (circles), TE tests (crosses) and S tests (triangles).

and for triaxial tests

〈F 〉~n ≃
(

1

4π
+H33 dz2(θ, ψ)

)

〈F 〉 (10)

with 〈F 〉 the average force intensity.
Force anisotropy parametersH12 andH33 are obtained

by dividing the unit sphere in small regions. This allows
to compute some values of 〈F 〉~n , and coefficientsH12 and
H33 are then derived by calculating the scalar product—
defined as 〈f, g〉 =

∫

(dΩ/(4π))f(θ, ψ)g(θ, ψ), with f and
g two functions defined on the unit sphere—of 〈F 〉~n with
dxy and dz2 .

The build-up ofH33 under a triaxial load for two differ-
ent system sizes is displayed on Fig.9. It is very similar to
the build-up of F33−1/3. The numerical data evidence a
one-to-one correspondence with stress anisotropy, which
is approximately linear for moderate deviators. The slope
Sfor of the plot of Fig. 9 seems to be independent of N
when N is sufficiently large. With N ≥ 4000, one has
Sfor = 0.250±0.012 for TC tests, Sfor = 0.235±0.015 for
TE tests, and Sfor = 0.173 ± 0.014 for S tests (for which

H12 relates to stresses approximately as H12 = Sfor

σ12

σ22

).

3. General connection between stress and anisotropy

The observed relations between stress and fabric
(Sec. IVB 1) or force (Sec. IVB2) anisotropies were not,
to our knowledge, previously reported in the literature.
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FIG. 9: (Color online) Average evolution of the mechanical
anisotropic term with r = (σ33 − σ11)/(σ33 + σ11) under TC
(r > 0) and TE (r < 0) tests. Red crosses correspond to
N = 1372 and blue squares to N = 8788.

We argue below in Section IVD that they are specific to
frictionless grains in the rigid limit.

Yet, a more general connection between stress and
both fabric and force anisotropies can be derived on us-
ing spherical harmonics expansions for the relevant stress
components, as deduced from Eqs. (8,10) for triaxial tests
and from Eqs. (7,9) for shear tests. Such a relation
was repeatedly used for frictional systems, most often
in 2D [44, 45, 51].

In the case of triaxial tests, keeping only the terms up
to the second order yields

E(~n)×〈F 〉~n ≃
[

1

16π2
+

(

H33 + F33 − 1/3

4π

)

dz2(θ, ψ)

]

〈F 〉

Combining this relation with Eqs. (6), one gets

σ11 ≃ Nca〈F 〉
V

[

1

12π
− 1

8π
(H33 + F33 − 1/3)

]

σ33 ≃ Nca〈F 〉
V

[

1

12π
+

1

4π
(H33 + F33 − 1/3)

]

Consequently, one obtains

σ33

σ11

≃ 2
H33 + F33

1 −H33 − F33

. (11)

In the case of shear tests, neglecting terms of order
larger than 2 yields

E(~n) × 〈F 〉~n ≃
[

1

16π2
+

(

F12 +H12

4π

)

dxy(θ, ψ)

]

〈F 〉

By inserting the above equation in (6), one gets

σ12 ≃ F12 +H12

4π

Nca〈F 〉
V

,

σ22 ≃ 1

12π

Nca〈F 〉
V

,

FIG. 10: (Color online) Numerical test of the approximations
given by Eqs. (11) and (12) with N = 8788 for TC tests
(circles), TE tests (crosses) and S tests (triangles).

hence the result:

σ12

σ22

≃ 3(F12 +H12). (12)

Although Eqs. (11) and (12) are simple approximations,
they work surprisingly well, as shown by Fig. 10.

In Sections IVB 1 and IVB 2, fabric and force
anisotropies were separately related to stress ratio (with
approximate, linear relations involving parameters Sfab

and Sfor). Thus one should check for the consistency be-
tween such observations and relations (11) and (12). In
the case of triaxial tests, on writing down all quantities
to first order in the small anisotropy parameters H33 and
F33 − 1/3, one obtains the consistence condition:

Sfor + Sfab =
4

9
. (13)

Similarly, for S tests one should have:

Sfor + Sfab =
1

3
. (14)

The values of Sfab and Sfor obtained in Sections IVB 1
and IVB2 satisfy conditions (13) and (14) with good
accuracy.

The simple connection between stress and anisotropy
parameters expressed by Eqs. (11) and (12) emphasizes
the microscopic origin of a macroscopic quantity (a stress
ratio in this case). In view of the different internal fab-
ric symmetries in the triaxial and the shear tests, it is
finally not surprising that the corresponding friction an-
gles differ (whence the inadequacy of the Mohr-Coulomb
criterion, Section III).
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In granular materials with friction, the shape of the
particles influences the relative roles of geometry and me-
chanics in the sustained stress [45]. For frictionless spher-
ical grains, near the failure limit, we find that the pa-
rameters describing both anisotropies are approximately
equal, so that half of stress ratio σ33/σ11 or σ12/σ22 is
explained by geometric anisotropy and the other half by
mechanical anisotropy.

Despite those simple relations between stresses and
anisotropy parameters, theoretically predicting the stress
ratio at failure still remains a challenge.

C. Elastic moduli

The motivation for computing elastic moduli is
twofold. First, elastic properties are usually more eas-
ily measured in the laboratory than geometric data such
as near neighbor correlations and coordination numbers,
as discussed in Ref. [24]. Then, the elastic moduli of fric-
tionless bead packs under isotropic stresses were stud-
ied by numerical simulations [11, 24], and shown to ex-
hibit singular properties, which we now seek to generalize
to anisotropic stress states. Specifically, while the bulk
modulus, B, shows little difference with well coordinated
frictional packings [24], the shear modulus, G, is anoma-
lously small. G/B tends to vary proportionally to the
degree of force indeterminacy [24, 52], which vanishes in
the rigid limit, as κ−1/2. Isotropic frictionless bead packs
also possess stiffness matrices (or “dynamical matrices”)
with an anomalous distribution of eigenmode frequen-
cies [11], which stems from the nearly isostatic character
of the contact network [53].

For simplicity, we restrict our investigations to the elas-
tic moduli of equilibrium configurations obtained in TC
or TE tests. They are numerically evaluated on building
the stiffness matrix of contact networks and solving lin-
ear systems of equations for displacements in response to
small load increments, as explained in [24]. The results
are devoid of size effects and sample to sample fluctua-
tions regress as N increases. There are five independent
elastic constants in such cases (a number which would in-
crease to nine for simple shear tests), which express a lin-
ear relation between stress increments ∆σij and strains
ǫij , from a reference equilibrium anisotropic state, as


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ǫ12
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











(15)
The material symmetries – invariance by rotation around
axis 3 and by symmetry about all three planes of coordi-
nates – determine the form of the matrix of elastic moduli
in (15), and also request that C11−C12 = 2C55 (express-

ing the equality of two shear moduli in plane 1,2). Such
symmetries are very well satisfied (one has, e.g., C13 =
C23 with relative errors smaller than 10−3 for N = 8788).
The moduli in the initial isotropic state all relate to B
and G as C11 = B+4G/3 = C33, C12 = B−2G/3 = C13,
C44 = C55 = G. Then, longitudinal moduli (i.e., Cii,
with i=1, 2, 3) are larger in the direction of the major
principal stress: thus one observes C33 > C11 in triaxial
compression and the opposite inequality in triaxial ex-
tension. This corresponds to different longitudinal sound
wave velocities

√

Cii/ρm (ρm denoting the mass density
of the material) propagating in direction 3 and in the or-
thogonal plane. Such anisotropies of the elastic moduli
were reported in the literature on sands [54, 55, 56] and
bead packings [57]. They can be attributed to the ef-
fect of both anisotropies, of fabric and forces, evidenced
in Section IVB: the material is stiffer in the principal
stress direction because it is favored in the distribution
of contact orientations, and also because contacts nearly
parallel to this direction tend to carry larger forces. As

Hertz’s law, Eq. (1), entails that KN ∝ F
1/3

N , such con-
tacts are stiffer. To sort out the possible effects of fabric
and force anisotropies, we computed elastic moduli both
for the Hertzian contact model and for linear contact
elasticity, with some constant, force-independent contact
stiffness KN . (As the packing geometry is very nearly
that of a set of rigid beads, statistically similar config-
urations would have been obtained on simulating bead
assemblies with linear unilateral elastic contact forces).
We focus in the sequel on the upper left square block of
order 3 within the matrix of moduli written in Eq. (15),
which we denote as c. All of its elements are larger by
about 2 orders of magnitude than shear moduli C44 and
C55, whatever the stress anisotropy. The ratio of all other
elements of matrix c to C33 are plotted in Fig. 11, for
Hertzian and for linear contact elasticity. The variations
of C11/C33 with σ33/σ11 shown on Fig. 11 are qualita-
tively expected. More surprisingly, since the moduli eval-
uated with linear contact elasticity are not sensitive to
force anisotropy, the dependence of such ratios on stress
anisotropy is about the same for both contact laws.

Such results, as we now explain, are due to the pecu-
liar nature of matrix c. Let ŝ1, ŝ2, ŝ3 denote unit vectors
in the space of stress or strain tensors with eigendirec-
tions parallel to the coordinate directions, forming an or-
thonormal basis in which coordinates are ∆σii (i=1, 2, 3)
(or ǫii) for stress (resp. strain) increments. Matrix c de-
fines a linear operator within this space. Under isotropic
stresses, c has eigenvalues CI = 3B, CII = CIII = 2G,

and eigenvectors are Ŝ1 = (ŝ1 + ŝ2 + ŝ3)/
√

3, and any

pair of vectors orthogonal to Ŝ1. The increment of stress
in direction Ŝ1 is proportional to the preexisting equilib-
rium stress tensor (denoted here as vector P

√
3Ŝ1). As

an approximation, since CI ≫ CII and CI ≫ CIII , one
may write:

c ≃ CI Ŝ1 ⊗ Ŝ1, (16)

bearing in mind that the right-hand-side is of course a
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FIG. 11: (Color online) Ratios C11/C33 (red), C13/C33

(pink), and C12/C33 (blue), in TE and TC tests, versus princi-
pal stress ratio, for Hertzian (square dots) and linear (round
dots) contact elasticity and N = 8788. Continuous (black)
lines correspond to the predictions of Eqs. (18).

singular matrix. On using (16), all moduli would be
equal to B in the isotropic state and all ratios equal to 1
in Fig. 11 for σ11 = σ33, which is very nearly satisfied. In
[24], it was argued that the “dominant” modulus, B is in-
sensitive to the “barely rigid” character of the nearly iso-
static contact network because it expresses the response
to a load increment proportional to the preexisting load.
We now apply similar ideas to anisotropic stress states.
We first define Ŝ1 as the unit vector proportional to the
preexisting, equilibrium stress. The loading parameter
in triaxial loading paths may be defined as α such that
σ11 = σ22 = (1 − α)P while σ33 = (1 + 2α)P . We thus
set:

Ŝ1 =
1√

3 + 6α2
[(1 − α)(ŝ1 + ŝ2) + (1 + 2α)ŝ3] . (17)

We observed Ŝ1 to be, with very good approximation, an
eigenvector of c, with eigenvalue CI close to its value in
the isotropic state. Due to the material symmetries in TC
and TE tests, the second eigenvector should be Ŝ2 = (ŝ1−
ŝ2)/

√
2, a property also well satisfied by the numerical

data – and the third one is of course orthogonal to Ŝ1 and
Ŝ2. We observed the corresponding eigenvalues CII and
CIII to remain below 0.02 × CI in all cases, whatever
the stress anisotropy and the contact law (Hertzian or
linear). Thus it is possible to approximate matrix c on

using relation (16), with definition (17) for vector Ŝ1.
This yields theoretical expressions for the ratios between
moduli:

C11

C33

≃ (1 − α)2

(1 + 2α)2
≃ C12

C33

;
C13

C33

≃ 1 − α

1 + 2α
. (18)

Fig. 11 shows that those approximations are quite ac-
curate. Thus stress anisotropies influence the tensor of

FIG. 12: (Color online) Dominant eigenvalue CI of tensor of
elastic moduli, for Hertzian and linear contact elasticity (N =
8788), versus principal stress ratio along TE and TC loading
paths, compared to the predictions of Eqs. (19) and (20),
depicted, due to the slight statistical uncertainty, as narrow
zones between horizontal dashed lines.

elastic moduli in a peculiar way, due to its nearly uniax-
ial, singular structure, which is independent of the con-
tact law. In a good approximation all moduli, except the
very small, singular ones, are proportional to CI with
coefficients that are determined by the stress state.

On exploiting the isostaticity property of the contact
network, it turns out that the dominant eigenvalue of
tensor c, CI can be written, in very good accuracy, as
a simple function of solid fraction Φ, coordination num-
ber z and moments of the (geometrically determined)
force distribution. Such a relation was established for
the bulk modulus B of isotropic states in [24], where it is
called the Reuss estimate. In general, it provides a lower
bound to the modulus, which becomes exact when force
increments are proportional to preexisting forces. This
condition is exactly fulfilled by the response of isostatic
contact networks to an increment of stress tensor that is
proportional to the preexisting stress tensor. On adapt-
ing the approach followed in [24] to the case of anisotropic
stress states, one readily obtains, in the case of Hertzian
contacts:

CI = CH
I =

31/3

2Z (5/3)

(

zΦ

π

)2/3

Ẽ2/3P 1/3. (19)

For linear contact elasticity, the corresponding prediction
reads

CI = CL
I =

zΦKN

πaZ(2)
. (20)

Z(5/3) and Z(2) values are given after Eq. 5. All quan-
tities appearing in those formulas were observed in Sec-
tion IVA to remain constant throughout the range of
supported stresses. Thus CI should not depend on prin-
cipal stress ratio. Fig. 12 shows that the numerical data
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abide very well by the predictions of Eqs (19) and (20).
Thus, all moduli, except the soft ones that vanish in the
rigid limit, are predicted. In the case of simple shear, we
expect similar properties to apply, on adequately redefin-
ing Ŝ1 in the direction of the applied load. In general,
for arbitrary applied stresses within the supported range
f(σ) < 0 defined in Section III, one should have a nearly
uniaxial tensor of elastic moduli.

The stress increment or strain range for elastic re-
sponse is expected to shrink to naught in the double limit
of κ→ +∞ and N → ∞, like the stability range of a con-
tact network [20]. Thus, in practice, in order to observe
the peculiar elastic properties of nearly rigid frictionless
bead assemblies, one should adequately choose stiffness
level κ, which should be large enough to approach the
rigid limit but small enough for some elastic response to
be measurable. Interestingly, poorly coordinated pack-
ings of frictional disks [58, 59] or spheres [24, 60] tend to
exhibit similar elastic anomalies, although, most often,
in a weakened form, because such systems do not spon-
taneously form isostatic contact structures in the rigid
limit [13]. Even though truly frictionless particles do not
exist in the laboratory, our results might therefore bear
some relevance in more general situations of contact net-
works with quite a small level of force indeterminacy.

D. Constitutive relations

The observations of Sections IVB and IVC are
strongly reminiscent of the results obtained on dealing
with exactly rigid frictionless grains [20, 61]. If contacts
are rigid, the response to an applied stress increment pro-
portional to the preexisting stress is also perfectly rigid:
the corresponding strain is exactly zero. For all other
stress increment orientations, the rigid contact network,
in the limit of N → ∞, has to rearrange [20]. The
resulting strain is determined by the geometry of the
packing, rather than by some material stiffness. Thus,
using the notations of Sec. IVC, CI is infinite, while
CII = CIII = 0. This behavior also entails a one-to-one
correspondence between stress and fabric anisotropy, in
agreement with Sec. IVB1. Because of isostaticity, the
force distribution is completely determined by the force
network, whence the relation evidenced in Sec. IVB 2.
In this respect, assemblies of frictionless grains differ
from systems with intergranular friction, in which one
given contact network may support stresses within a fi-
nite range in the thermodynamic limit, for arbitrary large
stiffness levels κ [61] (whence vertical parts in stress ver-
sus strain plots, as obtained in simulations with models
of rigid grains [51, 62, 63]). This property of frictional
grain assemblies excludes the possibility of a one-to-one
relation between stresses and fabric.

Rigid frictionless grain assemblies, on the other hand,
were reported [20, 61] to be devoid of the stress-strain
relations (which depend on loading history) obtained in
simulations of model frictional systems [33, 34, 51], and

FIG. 13: (Color online) Evolution of strain ǫ33 with σ33/σ11

in triaxial tests, for N = 1372 (red crosses connected by a dot-
ted line), N = 4000 (brown triangles connected by a dashed
line), and N = 8788 (blue squares connected by a solid line).
Results are averaged over all available samples, and restricted
to the macroscopic solid range.

classically modeled, for sands, in soil mechanics [16, 17].
This conclusion was based on a statistical analysis of the
strain response to stress increments, which was modeled
as a Lévy-distributed random variable [64], precluding
the regression of strain fluctuations in the thermody-
namic limit. Such results contrast with the ones obtained
with particles interacting with soft potentials, such as
Lennard-Jones glasses, in which case fluctuations around
the average stress-strain curve were explicitly shown to
regress in the thermodynamic limit [65].

In the present case, the macroscopic mechanical re-
sponse is also dominated by packing rearrangements:
macroscopic strains are much larger than typical contact
deflections (of order κ−1). Macroscopic strains, as plot-
ted versus applied stress ratio along the triaxial test paths
in Fig. 13, do not appear to behave like a Lévy flight tra-
jectory: results pertaining to the two larger sample sizes
tend to cluster around the same average curve. However,
the regression of fluctuations in the limit of N → ∞ is
much less clearcut than in the results of, e.g., Fig. 7: er-
ror bars are only very slightly reduced between N = 1372
and N = 8788, and still extend to a notable fraction of
averages (typically 30%). Our data very likely provide
unsufficient statistics because of sample size limitations,
and larger systems should be studied. Yet it is tempting
to speculate that large enough samples, for given κ, do
approach a well-defined stress-strain behavior for given
loading paths, but that their size should exceed a cer-
tain characteristic length ξ that diverges in the limit of
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κ → +∞. In this interpretation, for any given value of
κ, samples of (linear) size below ξ would exhibit the sin-
gular behavior observed in Ref. [20] (in which rigid con-
tacts were simulated, with a specific numerical technique
exploiting the isostaticity property). Only for samples
larger than ξ (and hence, for larger and larger samples
as κ is increased) should one recover a well-defined stress-
strain relationship in monotonic loading. Further inves-
tigations of this conjecture are beyond the scope of the
present paper.

V. DISCUSSION

The present study generalizes the results on the macro-
scopic friction of frictionless bead packs, previously ob-
tained in simple shear, to other loading paths, and pro-
poses a form of the failure criterion valid for arbitrary
stress directions. This failure condition is somewhat dif-
ferent from the Mohr-Coulomb condition and best ex-
pressed in the Lade-Duncan form. As previously ob-
served [14], despite rather strong finite size effects, the
system is able to sustain finite stress deviators in the
macroscopic geometric limit, in which the Lade-Duncan
parameter, evaluated at k∞ = 27.22 ± 0.02, is to be re-
garded as a basic geometric property of disordered sphere
assemblies. Changes of volume fraction Φ as deviatoric
stresses evolve from zero to yield threshold values are
quite small and erratic (in spite of a very slight tendency
toward contractance under small deviator, and to volume
increase close to failure) and might be neglected, given
statistical uncertainties, in a first approach. Thus Φ re-
mains approximately equal to the RCP value. All classi-
cal characterizations of packing geometry and force net-
works by scalar or orientation-averaged variables, includ-
ing the distribution of normal forces, do not distinguish
anisotropic equilibrium states from the initial isotropic
structures equilibrated under hydrostatic pressure.

Thus the equilibrated configurations may be regarded
as anisotropic random close-packing states. Isotropic
RCP states, in the limit of rigid particles, are local min-
ima of sample volume in configuration space, under the
constraint of impenetrability of particles. Anisotropic
ones also minimize the potential energy of the applied
stresses, viz.

W = −V
∑

α,β

Σαβǫαβ

where strain tensor ǫ, assumed small, has to be defined
with respect to some arbitrary reference configuration.
Consequently, they do not maximize volume fraction Φ,
and, although stable equilibrium states, do not qual-
ify as “strictly jammed” according to the definition of
Refs. [66, 67]. That their volume fraction is no smaller
(and occasionally slightly larger) than ΦRCP obtained in
isotropic configurations is due to the multiplicity of differ-
ent possible equilibrium networks and minima of poten-

tial energies W , which are not connected by quasistatic
trajectories.

Fabric and force anisotropies can be efficiently charac-
terized with one coefficient in an expansion in spherical
harmonics. Each one of such coefficients is a function of
stress anisotropy. The existence of such relations is spe-
cific to frictionless systems, in which any change of stress
direction tends to entail rearrangements and changes in
the contact network. Meanwhile, like in granular systems
with friction, stresses can be expressed, in good approx-
imation, as combinations of fabric and force anisotropy
parameters.

Elastic moduli exhibit similar anomalies in the rigid
limit as in isotropic states, with a nearly uniaxial tensor
of elastic moduli, the dominant eigenvalue of which (the
only non-singular one) expresses the response to load in-
crements parallel to the preexisting load in stress space.
Meanwhile, the moduli in orthogonal directions vanish in
the rigid limit, as in isotropic systems (and the “density
of states” for eigenmodes is expected to exhibit the same
singularities [53]). These properties can be expected to
apply to any situation of very small force indeterminacy
in particle packings.

Our results seem to indicate that a deterministic stress-
strain curve for monotonic loading along given devia-
toric paths should be obtained in the macroscopic limit,
thereby contradicting the conclusions of [20], based on an
exactly rigid system in 2D, although the simulated sam-
ples still seem too small to reach a clear conclusion about
the regression of strain fluctuations for given applied
stresses. This point obviously deserves further investiga-
tions, as well as the spatial structure and displacement
correlations in deformation and rearrangement mecha-
nisms. The possibility of a diverging length scale in the
rigid limit of κ → +∞ (entailing the non-commutation
of the limits of κ → +∞ and of N → +∞) should be
explored in further simulations of larger systems with
varying stiffness level.

Another issue worth investigating is that of the pos-
sible uniqueness of equilibrium states, in the statistical
sense, under a given supported state of stress. Just like
simulation results appear to support the idea of a unique
RCP state under isotropic pressure [13], provided a fast
enough assembling process bypasses crystal nucleation,
the results reported here suggest that the internal state of
the packing in equilibrium could be uniquely determined
by the current value of stresses, whatever the loading
history. Such a conjecture is, in particular, supported by
the observation of a one-to-one correspondence between
stress and all measured internal state variables, such as
fabric or force anisotropy parameters.

Eventually, we expect that the knowledge of the be-
havior of frictionless granular assemblies will be useful in
the design of compaction strategies (lubrication, vibra-
tion, cyclic loading...), which can be regarded as meth-
ods to circumvent the influence of friction [13]. Other
interesting perspectives involve the treatment of differ-
ent particle shapes [45, 68] and polydispersities [69].
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[5] R. Garćıa Rojo, H. J. Herrmann, and S. McNamara, eds.,

Powders and Grains 2005 (Balkema, Leiden, 2005).
[6] J. J. Stickel and R. L. Powell, Annu. Rev. Fluid Mech.

37, 129 (2005).
[7] G. Ovarlez, F. Bertrand, and S. Rodts, J. Rheol. 50, 259

(2006).
[8] P. G. Debenedetti, Metastable liquids (Princeton Univer-

sity Press, Princeton NJ, 1996).
[9] H. A. Makse, N. Gland, D. L. Johnson, and L. Schwartz,

Phys. Rev. Lett. 83, 5070 (1999).
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[41] F. Radjäı, D. E. Wolf, M. Jean, and J.-J. Moreau, Phys.
Rev. Lett. 80, 61 (1998).

[42] N. Kruyt and L. Rothenburg, ASME Journal of Applied
Mechanics 63, 706 (1996).

[43] R. Bathurst and L. Rothenburg, Journal of Applied Me-
chanics 55, 17 (1988).

[44] L. Rothenburg and R. Bathurst, Géotechnique 39, 601
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[46] F. Radjäı, M. Jean, J.-J. Moreau, and S. Roux, Phys.
Rev. Lett. 77, 274 (1996).

[47] S. Ouaguenouni and J.-N. Roux, Europhysics Letters,
39, 117 (1997).

[48] L. E. Silbert, G. S. Grest, and J. W. Landry, Phys. Rev.
E 66, 061303 (2002).

[49] S. N. Coppersmith, C.-h. Liu, S. Majumdar, O. Narayan,
and T. A. Witten, Phys. Rev. E 53, 4673 (1996).

[50] D. L. Blair, N. W. Mueggenburg, A. H. Marshall,
H. Jaeger, and S. R. Nagel, Phys. Rev. E 63, 041304
(2001).
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