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Abstract. Some available processing algorithms used to calculate the aerosol optical depth from radiometric
measurements were tested. The aim was to evaluate the associated uncertainties in polar regions due to the
data processing, in order to adjust the methodology of the calculation and illustrate the importance of these
error sources. The measurements were obtained during a sun photometer campaign in Ny-Ålesund within the
framework of the POLAR-AOD project.

1 Introduction

The radiative forcing of atmospheric aerosols constitutes one
of the main uncertainties in climate change studies. Under-
standing the role of aerosols in polar regions, where the cli-
mate change has been seen to be more intense, is especially
relevant. Thus, within the framework of the International Po-
lar Year 2007/08, the project POLAR-AOD attempts to es-
tablish a bipolar network to characterize the climate-forcing
properties of aerosols in polar regions.

The first activity within POLAR-AOD was a sun-
photometer campaign that took place in Ny-Ålesund
(78◦55′ N–11◦54′ E, Svalbard) in spring 2006. One of the
aims of this campaign was to adjust the calculation proce-
dure for the aerosol optical depth (AOD) in order to achieve
homogeneous AOD evaluations.

Typical values of AOD (500nm) are between 0.02 and
0.08 in Antarctica, and between 0.03 and 0.10 in the Arctic
(Tomasi et al., 2007). Due to these low values and to the crit-
ical observation conditions the final uncertainty in the AOD
can be very significant.

2 Methodology

The study of atmospheric components by radiometric mea-
surements is based on the comparison between the solar irra-
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diance on the Earth’s surface (I) and the extraterrestrial solar
spectrumI0 (Shaw, 1983):

I = I0 · e
−τ m (1)

The difference betweenI0 and I is due to the attenuation
throughout the atmosphere produced by: Rayleigh molecu-
lar scattering, aerosol scattering and absorption, and absorp-
tions by gases. The air mass (m) accounts for the light path
through the atmosphere with respect to the vertical path.

The AOD (τa) is calculated after subtracting from the total
optical depth (τ) the contribution of the other atmospheric
components: molecules (τR), ozone (τO3), water vapour
(τwv), and other gases (τg). Thus, its accuracy is affected
by errors in the other components.

All the atmospheric constituents are not equally dis-
tributed, so the air mass, which depends on the vertical pro-
file, is different for each of them.

τm = τRmR + τama + τO3mO3 + τgmg + τwvmwv (2)

From expressions (1) and (2),

τa = (Ln(I0/I) − τRmR − τO3mO3 − τgmg − τwvmwv)/ma (3)

3 Results and discussion

The following results were achieved from the data obtained
with a Cimel sun-photometer, which is the standard in-
strument of AERONET (Aerosol Robotic Network, http://
aeronet.gsfc.nasa.gov/), during the sun photometer campaign
in Ny-Ålesund.
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Table 1. Differences in the AOD for each working wavelength due to the discrepancies in the SZA at the observation time computed from
the formulas of Spencer and Michalsky.

Wavelength 1640 1020 870 675 500 440 380 340

bias 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.003
RMSE 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.004
maximum 0.001 0.001 0.001 0.001 0.003 0.004 0.006 0.010

Table 2. Dissimilarities in the AOD for each working wavelength considering or not the light refraction due to discrepancies in the SZA.

Wavelength 1640 1020 870 675 500 440 380 340

mean 0.000 0.000 0.000 0.001 0.002 0.002 0.004 0.006
maximum 0.001 0.001 0.001 0.002 0.004 0.005 0.008 0.012

Figure 1. Statistics values: maximum, minimum and mean+/-
standard deviation of the aerosol optical depth for the whole cam-
paign for each working wavelengths.

Figure 2. Relative contribution (%) of each atmospheric compo-
nent to the total optical depth for each wavelength (nm). Graph
obtained with the measurements taken during the Ny-Ålesund cam-
paign (data level 2.0: after cloud screening).

In this paper we focus our interest on the uncertainties in
the data processing. According to expression (3) and ignor-
ing other error sources like calibration and instrument char-
acteristics, the errors will be associated with the contribution
of other atmospheric constituents and the air mass calcula-
tion, which for its part is affected by astronomical coordi-
nates and light refraction.

The AOD was computed with a software package de-
veloped by us based on the algorithms used in the new
AERONET processing version 2 (Smirnov, 2004). Figure 1
shows the mean AOD in each spectral channel, as well as
the standard deviation, maximum and minimum. The mean
AOD (500 nm) was 0.1, just on the limit between clear and
haze conditions in the arctic (Tomasi et al., 2007). Fig-
ure 2 represents a breakdown in the percentages of the rela-
tive contribution of each atmospheric component to the total
optical depth (TOD) for each wavelength. This analysis is
useful in helping to understand the importance of each error
source. Thus, in the ultraviolet range even a small error in the
Rayleigh OD can result in large AOD error. Other algorithms
were subsequently introduced in the data processing to study
their contribution to the uncertainty in the AOD. These will
be analyzed in the following sections.

3.1 Astronomical coordinates

The exact astronomical parameters at the observation time
are difficult to determine due to the complexity of several
movements that affect the Sun and the Earth. Therefore, in
the literature approximation formulas have been proposed to
calculate these parameters. In this study two of them were
used: Michalsky (1988) and Spencer (1971). Some discrep-
ancies (bias=2.8′; RMSE=3.6′ ; max=6.9′) were obtained in
the solar zenith angle (SZA), which were maximum at sun-
rise, producing discrepancies in the values of the AOD (Ta-
ble 1).

Adv. Sci. Res., 2, 5–8, 2008 www.adv-sci-res.net/2/5/2008/



P. Ortiz de Galisteo et al.: Analysis of aerosol optical depth evaluation in polar regions 7

Table 3. Differences between the AOD for each working wavelength calculated considering the same air mass for all the atmospheric
components and a different one for each of them.

Wavelength 1640 1020 870 675 500 440 380 340

bias 0.001 0.001 0.001 0.000 0.001 0.002 0.002 0.002
RMSE 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002
maximum 0.002 0.002 0.002 0.002 0.003 0.004 0.005 0.005

Table 4. Rayleigh optical depth for each working wavelength (nm) calculated according to the formulas of different authors.

1640 1020 870 675 500 440 380 340

Bodhaine 0.001 0.008 0.015 0.042 0.145 0.242 0.443 0.719
Fröhlich and Shaw 0.001 0.008 0.015 0.042 0.144 0.243 0.444 0.721
Gueymard 0.001 0.008 0.015 0.042 0.144 0.242 0.442 0.717
Bird and Riordan 0.001 0.008 0.016 0.042 0.146 0.246 0.449 0.729
Hansen and Travis 0.001 0.008 0.015 0.042 0.145 0.243 0.444 0.720

3.2 Light refraction

Light refraction makes the Sun appear in an apparent position
with a SZA lower than the real one. The lower the tempera-
ture and the higher the SZA, the larger the refraction. Both
conditions are especially relevant in polar regions, so this ef-
fect is important and must be taken into account.

Two expressions were adopted to determine the effect of
light refraction: Meeus (1991) and US Standard Atmosphere
(1976), resulting in a discrepancy between the SZA calcu-
lated with bias=39′′ and max=1′. Only Meeus’ one takes
into account the temperature and pressure at observation
time. Despite this, no significant dissimilarities were found
in the AOD. Nevertheless if refraction had not been consid-
ered, the error in the SZA (with a mean value of 5′ and a
maximum of 12.5′) would have produced a significant error
in the AOD (Table 2).

3.3 Air mass

In this point we want to illustrate the importance of taking
into account the non-equal distribution of the atmospheric
constituents, especially for observations at high SZA as is
the case in polar regions.

The AOD was calculated using the same air mass for all
the atmospheric components (Kasten and Young, 1989), and
a different one for each of them: molecular (Kasten and
Young, 1989), ozone (Komhyr, 1989), water vapour and
aerosols (Kasten, 1966). The highest discrepancy was 0.005
(Table 3). These differences decrease from sunrise, reach a
minimum at noon, and increase until sunset, due to the fact
that for small SZA the air mass of each component tends to
the same value.

In any case the approximation formulas of air masses used
were developed for mid-latitude atmospheres, and they prob-
ably would need to be adapted to an arctic one.

3.4 Rayleigh scattering

Many expressions for Rayleigh scattering have been pro-
posed in the literature. Five of them were tested: Fröhlich
and Shaw (1980), Bird and Riordan (1986), Gueymard
(1995), Hansen and Travis (1974) and Bodhaine et al. (1999).
Differences as high as 0.012 in 340 nm were obtained (Ta-
ble 4).

To compute the Rayleigh scattering it is necessary to know
the pressure at the observation site. Normally, if pressure
data at the observation time is not available, climatolog-
ical values are used. Both kinds of pressure data were
tested resulting in discrepancies of 10 hPa, about 0.007 in the
Rayleigh optical depth and therefore in the same magnitude
in the AOD.

3.5 Ozone and nitrogen dioxide

The largest error in the ozone and NO2 optical depth comes
from the uncertainty in their columnar content. In the same
way as with the pressure (see above), observed and climato-
logical data for columnar content were used. In the case of
ozone, differences as high as 60DU were detected, causing
a discrepancy of 0.003 in the absorption by ozone in 675 nm
and consequently in the AOD. However, in the case of NO2

its contribution is much less important and the discrepancies
are negligible.
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4 Conclusions

The magnitude of the uncertainties of the data processing is
small, but due to the low pollution levels in polar regions
and to the extreme observation conditions they can involve
a high percentage in the value of the AOD in these regions.
So the data processing to evaluate the AOD must be accu-
rately accomplished, otherwise the errors can be as large as
the variable that we intend to determine.

The errors caused by the processing, especially those re-
lated to the astronomical data, the refraction, the air mass
and the Rayleigh scattering are reduced just by using state-
of-the-art algorithms. Observed data of ozone and pressure
are basic requirements to achieve the necessary accuracy in
the AOD calculation in polar regions.
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