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We prove that under suitable assumptions, the constant term in the Green function of the Paneitz-Branson operator on a compact Riemannian manifold (M, g) is positive unless (M, g) is conformally diffeomophic to the standard sphere. The proof is inspired by the positive mass theorem on spin manifolds by Ammann-Humbert [AH03].

Introduction

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 4. We denote by Q g the Q-curvature for the metric g defined by

Q g := n 2 -4 8n(n -1) 2 S 2 g - 2 (n -2) 2 |E g | 2 + 1 2(n -1) ∆ g S g ,
where ∆ g = -div g ∇ is the Laplace-Beltrami operator, S g stands for the scalar curvature of g, |E g | denotes the g-norm of the Einstein tensor E g := Ric g -Sg n g and Ric g is the Ricci curvature of g. The Paneitz-Branson operator introduced for n = 4 by Paneitz in [START_REF] Paneitz | A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds[END_REF] and whose definition was generalized in dimension greater than 5 by Branson [START_REF] Branson | Group representations arising from Lorentz conformal geometry[END_REF], is defined for all u ∈ C ∞ (M ) by

P g u := ∆ 2 g u -div g (A g du) + n -4 2 Q g u
where

A g := (n -2) 2 + 4 2(n -1)(n -2) S g g - 4 n -2 Ric g .
This operator is closely related to the problem of prescribing Q-curvature in a conformal class as well as the Yamabe operator (see (5) below) is related to the problem of prescribing the scalar curvature in a conformal class. It is a conformally covariant operator in the sense that if g ′ = e 2f g is conformal to g, then for all v ∈ C ∞ (M ),

P g ′ (e -n-4 2 f v) = e -n+4 2 f P g (v). In particular, if n ≥ 5, and if we set u = e n-4 2 f so that g ′ = u 4 n-4 g, we get for all v ∈ C ∞ (M ) P g ′ (u -1 v) = u -n+4 n-4 P g (v). ( 1 
)
From now on, we make the following assumptions:

(a) g is conformally flat; (b) n ≥ 5;

(c) the Yamabe invariant is positive (see for instance [START_REF] Aubin | Some nonlinear problems in Riemannian geometry[END_REF] or [START_REF] Hebey | Introduction à l'analyse non-linéaire sur les variétés[END_REF]) i.e. g is conformal to a metric g ′ for which the scalar curvature is positive. (d) the operator P g is positive.

Under Assumptions (a) to (d), it is well known that the Green's function G g of P g exists, is unique and smooth on M \ {p}. By the conformal convariance of the Paneitz-Branson operator, if g ′ = u 4 n-4 g is conformal to g, then

G g ′ (x, y) = G g (x, y) u(x)u(y) .
Now, let p ∈ M . By (1), up to a conformal change of metric, we can assume (a') g is flat around p.

Then, it is known that we have the following expansion when x is close to p,

G g (x, p) = 1 2(n -2)(n -4)ω n-1 d g (x, p) n-4 + A + α p (x) (2) 
where ω n-1 stands for the volume of the (n -1)-dimensional sphere, A ∈ R, α p is a smooth function defined around p and satisfying α p (p) = 0. By analogy to the case of the conformal Laplacian (see again [START_REF] Aubin | Some nonlinear problems in Riemannian geometry[END_REF][START_REF] Hebey | Introduction à l'analyse non-linéaire sur les variétés[END_REF]), the number A is called the mass of the Paneitz-Branson operator. If g ′ = u 4 n-4 g is another metric conformal to g and flat around p, then the mass A ′ corresponding to the metric g ′ is given by

A ′ = A u(p) 2 .
Hence, the mass A depends on the choice of the metric in the conformal class, but not its sign. This is the reason why in the statement of Theorem 1.1 below, we do not need to assume (a ′ ).

We also make the following assumption (e) G g > 0 on M \ {p}.

For interesting results concerning Assumptions (d) and (e), the reader may refer to Grunau-Robert [START_REF] Grunau | Positivity issues of biharmonic Green's functions under Dirichlet boundary conditions[END_REF].

The main result of the paper is the following: Theorem 1.1. Under assumptions (a) to (e), the mass A satisfies A ≥ 0 with equality if and only if (M, g) is conformally diffeomorphic to the sphere. Theorem 1.1 has been already proven with the additional assumption that the Poincaré exponent is small enough (see [START_REF] Qing | Compactness for conformal metrics with constant Q-curvature on locally conformally flat manifolds[END_REF][START_REF] Qing | On positive solutions to semilinear conformally invariant equations on locally conformally flat manifolds[END_REF]). In this case, Qing and Raske proved also the positivity of the Green's function of G g . Our proof is inspired from the positive mass theorem on spin manifolds by Ammann-Humbert in [START_REF] Ammann | Positive mass theorem for the Yamabe problem on spin manifolds[END_REF] (see also Raulot [Ra07]). The difficulty here is to overcome the fact that on non-spin manifolds, there is no equivalent of the Schrödinger-Lichnerowicz Formula.

Hebey and Robert proved the nice following result which is an analogue for geometric equations of order 4 of a hard problem concerning the Yamabe Equation:

Theorem (Hebey, Robert; [START_REF] Hebey | Compactness and global estimates for the geometric Paneitz equation in high dimensions[END_REF]). Let (M, g) be a conformally flat compact manifold of dimension n ≥ 5. Assume g has a positive Yamabe invariant, that P g is positive as well as its Green function and that the mass of P g is positive. Then, the geometric equation

P g u = u n+4 n-4 is compact.
In particular, together with Theorem 1.1, we get rid of the positivity of the mass.

Acknoledgements We want to thank Emmanuel Hebey and Frédéric Robert who gave us many helpful informations and references on the subject.

Proof of Theorem 1.1

In the whole proof, we can work with Assumption (a ′ ) which does not restrict the generality as explained above. To avoid complicated formulas, we set

H(x) = 2(n -2)(n -4)ω n-1 G g (x, p).
By Relation (2), H satisfies the following expansion near p

H(x) = 1 d g (x, p) n-4 + B + α(x) (3) 
where B = 2(n -2)(n -4)ω n-1 A and where α = 2(n -2)(n -4)ω n-1 α p is smooth around p and satisfies α(p) = 0. Theorem 1.1 is equivalent to show that B ≥ 0 with equality if and only if (M, g) is conformally diffeomorphic to the standard sphere.

For any metric g, let

L g := 4(n -1) n -2 ∆ g + S g
be the Yamabe operator. We recall some well known facts about L g . The reader may refer to [START_REF] Aubin | Some nonlinear problems in Riemannian geometry[END_REF][START_REF] Hebey | Introduction à l'analyse non-linéaire sur les variétés[END_REF] for further informations. First, as well as

P g , L g is conformally covariant. If g ′ = u 4 n-2 g is conformal to g then L g ′ (u -1 • ) = u -n+2 n-2 L g ( • ) (4) 
It follows that the scalar curvatures S g and S g ′ are related by the following equation

L g u = S g ′ u n+2 n-2 . ( 5 
)
By Assumptions (a ′ ) and (b), the Green's function Λ g of L g exists, is unique, smooth and positive on M \ {p}. Setting Γ(x) = 4(n -1)ω n-1 Λ g (x, p) to simplify formulas, we have when x is close to p

Γ(x) = 1 d g (x, p) n-2 + C + β(x) (6) 
where by C ∈ R, β is a smooth function defined around p and satisfies β(0) = 0. We define a new metric g ′ := Γ 4 n-2 g conformal to g on M 0 := M \ {p}. Then, by (5)

S g ′ = Γ -n+2 n-2 L g (Γ) ≡ 0 (7)
on M 0 . We set H ′ = Γ -n-4 n-2 H. By conformal covariance of the Paneitz-Branson operator (1) and since P g H = 0 on M 0 , we have P g ′ H ′ ≡ 0 on M 0 . Define for all ǫ > 0 small enough, M ǫ := M \ B g (p, ǫ) where B g (p, ǫ) stands for the ball of center p and radius ǫ with respect to the metric g. We have

Mǫ P g ′ H ′ dv g ′ = 0. ( 8 
)
By Relation (7) and from the definition of P g we have

P g ′ H ′ = ∆ 2 g ′ H ′ -div g ′ 4 n -2 Ric g ′ dH ′ - n -4 (n -2) 2 |E g ′ | 2 H ′ .
Set S ǫ := ∂M ǫ = ∂B g (p, ǫ) be the (n -1)-dimensional sphere of center p and radius ǫ. We let ds g ′ (resp. ds g ) be the volume element induced by g ′ (resp. g) on S ǫ . Integrating by part the above relation, we obtain

Mǫ P g ′ H ′ dv g ′ = -I + 4 n -2 II - 1 2 Mǫ |E g ′ | 2 H ′ dv g ′ (9) 
where

I = Sǫ ∂ ν ′ ∆ g ′ H ′ ds g ′ II = Sǫ Ric g ′ (grad g ′ H ′ , ν ′ )ds g ′ .
Here, ν ′ denotes the unit outer normal vector on S ǫ = ∂M ǫ with respect to the metric g ′ .

2.1. Computation of I. First, we notice that the scalar curvatures S g and S g ′ vanish on S ǫ . For g, this comes from Assumption (a ′ ) and for g ′ , this follows from (7). Consequently, using Formula (4) and

∆ g ′ H ′ = n -2 4(n -1) L g ′ H ′ = n -2 4(n -1) Γ -n+2 n-2 L g (ΓH ′ ) = n -2 4(n -1) Γ -n+2 n-2 L g Γ 2 n-2 H We obtain ∆ g ′ H ′ = Γ -n+2 n-2 ∆ g Γ 2 n-2 H . ( 10 
)
We set r := d g (x, p). From Formulas (3) and ( 6), we have:

Γ 2 n-2 H = 1 r n-2 + C + β(x) 2 n-2 1 r n-4 + B + α(x) .
Then, using Taylor formula at p,

Γ 2 n-2 H = r 2-n + Br -2 + O(r -1 )
where in the whole proof, O(r m ) denotes a smooth function defined in a neighborhood of p and which satisfies

|∇ k g O(r m )| g ≤ C k r m-k for all k ∈ N.
Since g is flat around p, we have for radially symmetric functions f ,

∆ g f (r) = -f ′′ (r) - n -1 r f ′ (r). (11) 
Hence, this gives that near p,

∆ g Γ 2 n-2 H = 2(n -4)Br -4 + O(r -3 )
and hence by ( 10) and ( 6)

∆ g ′ H ′ = Γ -n+2 n-2 ∆ g H = 2(n -4)Br n-2 + O(r n-1 ).
We then obtain ∂ ∂r

(∆ g ′ H ′ ) = 2(n -2)(n -4)Br n-3 + O(r n-2 ). (12) 
On S ǫ , r ≡ ǫ. In addition,

ν ′ = -Γ -2 n-2 ∂ ∂r = -(ǫ 2 + o(ǫ 2 )) ∂ ∂r (13) 
and

ds g ′ = Γ 2 n-1 n-2 ds g = Γ 2 n-1 n-2 ǫ n-1 ds = ǫ 1-n + o(ǫ 1-n ) ds. (14) 
where ds for the standard volume element on the unit (n -1)-sphere. By Formulas (12), ( 13) and ( 14), we obtain

I = -2(n -2)(n -4)ω n-1 B + o(1) (15) 
2.2. Computation of II. If g ′ = e 2f g is conformal to g, then the following formula holds (see [START_REF] Hebey | Introduction à l'analyse non-linéaire sur les variétés[END_REF] p. 240 or [START_REF] Aubin | Some nonlinear problems in Riemannian geometry[END_REF]):

Ric g ′ = Ric g -(n -2)∇ 2 f + (n -2)∇f ⊗ ∇f + ∆ g f -(n -2)|∇f | 2 g g. (16) In this context, f = 2
n-2 log(Γ). By (6), we have near

p f = 2 n -2 log 1 r n-2 + O(1) = -2 log(r) + O(r n-2 ). ( 17 
) Let (r, Θ 1 , • • • , Θ n-1 ) be polar coordinates on R n . The Christoffel symbols Γ r r,Θi
of the Euclidean metric in these coordinates identically vanish. This implies that for any radially symmetric function h, the mixed terms ∇ 2 rΘi h are zero. Since g is flat near p, we deduce that Using (11), one also computes that ∇f ⊗ ∇f = 4 r 2 dr 2 + Ō(r n-4 )

∇ 2 f = 2 r 2 dr 2 + b + Ō(r n-4 )
∆ g f = 2(n -2) r 2 + O(r n-4 ) |∇f | 2 g = 4 r 2 + O(r n-4
). Since g is flat near p, Ric g vanishes and g = dr 2 + r 2 σ n-1 where σ n-1 stands for the usual metric on the standard sphere S n-1 . We deduce from these computations that

Ric g ′ = -(n -2)b 2(n -2) r 2 dr 2 + 4(n -2) r 2 dr 2 + 2(n -2) r 2 - 4(n -2) r 2 + O(r n-4 ) (dr 2 + r 2 σ n-1 ) + Ō(r n-4 ) = -(n -2)b -2(n -2)σ n-1 + Ō(r n-4 ).
We get from (3), ( 6) and the definition of

H ′ that on S ǫ grad g ′ H ′ = Γ -4 n-2 grad g 1 + O(r n-4 ) = O(r n-1 ) ∂ ∂r + v (19) 
is a vector field such that Ric g ′ (v, ν ′ ) = 0. Observe that by ( 13) and (18), we have σ n-1 ( • , ν ′ ) = 0 and b( • , ν ′ ) = 0 on S ǫ . In addition, the estimates (13), (18) then imply that on S ǫ

Ric g ′ (grad g ′ H ′ , ν ′ ) = Ō(r n-4 )(grad g ′ H ′ , ν ′ ) = O(ǫ 2n-3 ).
Relation (14) then leads to

II = O(ǫ n-2 ) = o(1). (20) 
2.3. Conclusion. Using (8), ( 9), (15), (20) and passing to the limit ǫ → 0, we obtain that

0 = 2(n -2)(n -4)ω n-1 B - 1 2 M\{p} |E g ′ | 2 H ′ dv g ′ . (21) 
Assumption (e) implies that H ′ > 0 and hence B ≥ 0. This proves first part of Theorem 1.1. Now, assume that B = 0. Then E g ′ ≡ 0 on M \ {p}. This implies that (M \ {p}, g ′ ) is Einstein and scalar flat hence Ricci flat. Since in addition the Weyl curvature is zero, (M \{p}, g ′ ) turns to be flat (see [START_REF] Hebey | Introduction à l'analyse non-linéaire sur les variétés[END_REF] p. 123) . It is known that (M \{p}, g ′ ) is asymptotically flat and that its mass satisfies m(g ′ ) = c n C where c n > 0 (see e.g. Lee-Parker [START_REF] Lee | The Yamabe problem[END_REF]). Since g ′ is flat, m(g ′ ) = 0 so is C and by a positive mass Theorem by Schoen-Yau [START_REF] Schoen | Conformally flat manifolds, Kleinian groups and scalar curvature[END_REF], (M, g) is conformally diffeomorphic to (S n , g).

Remark 2.1. It is clear from the proof that Assumption (a) can be weakened and replaced by (a) g is locally flat around a point p and the standard Positive Mass Theorem is valid on M (i.e. with the notations of Section 2, C ≥ 0 with equality if and only if (M, g) is conformally diffeomorphic to S n ). In particular, by [START_REF] Schoen | On the proof of the positive mass conjecture in general relativity[END_REF] and [START_REF] Ammann | Positive mass theorem for the Yamabe problem on spin manifolds[END_REF], this assumption holds if n ∈ {5, 6, 7} or if M is spin.
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