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Abstract

The stationary Oseen equations are studied in R3 in its general form, that is, with
a non-constant divergenceless function on the convective term. We prove existence,
uniqueness and regularity results in weighted Sobolev spaces. From this new ap-
proach, we also state existence, uniqueness and regularity results for the generalized
Oseen model which describes the rotating flows. The proofs are based on Laplace,
Stokes and Oseen theories.
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1 Introduction

We study the linearized Navier-Stokes equations at the steady state, that is,
the Oseen equations

−∆u + (a · ∇)u +∇π = f , divu = g in R3. (1.1)

Here u and π are unknown functions denoting the fluid velocity vector and
the pressure function, respectively. The data are the external forces f acting
on the fluid, a function g and a divergenceless function a.
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The presence of a non-constant function a, which is motivated by the rotat-
ing flows, does not allow the use of the potential theory. Indeed, we have no
fundamental solution at all. Under the assumptions that the datum f be-
longs to some weighted Sobolev spaces and the datum a belongs to some
Lebesgue spaces, we will prove the existence of solution to the Oseen model
(1.1). Namely, we state the existence, uniqueness and regularity of solutions
when

(case i) a ∈ L3(R3) with diva = 0,

(case ii) a ∈ L3
loc(R3) with diva = 0, satisfying

∃k > 0, ∃R0 > 0 : a(x ) = ke1, |x | ≥ R0.

Note that in the case ii, a 6∈ L3(R3). Thus it is not included nor in the Oseen
equations in the general form (1.1) nor in the simpler form of the Oseen
equations

−∆u + k
∂u
∂x1

+∇π = f , divu = g in R3. (1.2)

We refer that this classical steady Oseen model is studied by several authors
[6,7,11,13].

We also study the Oseen model in the form, for a constant k > 0, as in [10,14]

−∆u + k
∂u
∂x1

+ (a · ∇)u +∇π = f , divu = g in R3. (1.3)

The model (1.1) could be seen as a particular case (k = 0) of the model
(1.3), however the additional term k ∂u

∂x1
is not a difficulty but it helps the

existence results. We refer to [10,14] and the references therein, where the
study of rotating fluids is based on the decomposition of singular kernel in
Fourier space and on the Littlewood-Paley theory.

Here we restricted our study to R3 but by identical arguments it can be done
to Rn for any n ∈ N, n ≥ 2, provided that a ∈ Ln(Rn).

The outline of the work is as follows. Next section we introduce the functional
framework in the scope of the weighted Sobolev spaces. We prove that the
Oseen problem (1.1) case i has a unique weak solution in a Hilbert space,
a unique generalized solution under the Lp-theory, strong solutions and very
weak solutions in Sections 3, 4, 5 and 6, respectively. Section 7 is devoted to
the proof of existence results of the weak, generalized and strong solutions for
the generalized Oseen problem (1.3). Finally in Section 8, we solve the Oseen
problem (1.1) case ii.
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2 Preliminar results in weighted Sobolev spaces

Let us introduce the weighted Sobolev spaces with the logarithmic factor [3],

Wm,p
α (R3) = {u ∈ D′(R3); ∀λ ∈ N3,

0 ≤ |λ| ≤ κ, ρα−m+|λ| ln−1(1 + ρ2)Dλu ∈ Lp(R3);

κ + 1 ≤ |λ| ≤ m, ρα−m+|λ|Dλu ∈ Lp(R3)}

for any positive integer m, real numbers p > 1, α ∈ R and

κ =

 m− 3/p− α if 3/p + α ∈ {1, · · ·, m}

−1 otherwise ,

and for m = 0, we set

W 0,p
α (R3) = {u ∈ D′(R3); ραu ∈ Lp(R3)}.

Here ρ =
√

1 + |x |2 denotes the weight function where x = (x1, x2, x3) ∈ R3

and | · | is the usual euclidean norm in R3. Throughout this paper, the bold
type characters denote vector distributions or vector Sobolev spaces.

These spaces obey the following embedding

Wm,p
α (R3) ↪→ Wm−1,p

α−1 (R3) (2.1)

if and only if m > 0 and 3/p+α 6= 1. Note that W 1,p
0 (R3) is a reflexive Banach

space endowed with the norm

‖u‖W 1,p
0 (R3) =


(∥∥∥ ρ−1

ln(1+ρ2)
u

∥∥∥p

Lp(R3)
+ ‖∇u‖p

Lp(R3)

)1/p

if p = 3

(‖ρ−1u‖p
Lp(R3) + ‖∇u‖p

Lp(R3))
1/p otherwise.

For a detailed study of these spaces we refer to [3,15]. However, let us recall
some properties that we will need in this paper. It is known that the space
D(R3) is dense in Wm,p

α (R3). So that its dual space, denoted by W−m,p′

−α (R3),
where p′ = p/(p−1) is the conjugate exponent of p, is a space of distributions.
The embedding (2.1) also holds for m ≤ 0 and 3/p + α 6= 3. Remark that
W−1,p

0 (R3) has the following characterization, for all p > 1,

W−1,p
0 (R3) = {f ∈ D′(R3); f = f0 + div f , f0 ∈ E, f ∈ Lp(R3)},

where E is one of the spaces, W 0,p
1 (R3) if p 6= 3/2, or

W 0,p
1,1 (R3) = {u ∈ Lp(R3); ρ ln(1 + ρ2)u ∈ Lp(R3)}, if p = 3/2.
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For p > 3/2 we can take f0 = 0 since the Hardy inequality holds

∀u ∈ W 1,q
0 (R3) , ‖u‖W 1,q

0 (R3) ≤ C‖∇u‖Lq(R3) if q < 3. (2.2)

Moreover, for all p > 1, D(R3) is also dense in W−1,p
0 (R3).

For 1 < p < 3, we have the Sobolev embedding W 1,p
0 (R3) ↪→ Lp∗(R3), with

1
p∗ = 1

p
− 1

3
. Consequently, by duality we have, for p′ > 3/2, Lq(R3) ↪→

W−1,p′

0 (R3), with 1
q

= 1
p′

+ 1
3
.

It is known that W 1,3
0 (R3) ↪→ BMO, where BMO is the space of locally

integrable functions v such that

sup
Q

1

|Q|

∫
Q
|v(x )− vQ|dx < ∞,

where Q is an arbitrary cube and vQ = 1
|Q|

∫
Q v(x )dx is the average of v on Q.

For p ≥ 3, the space W 1,p
0 (R3) contains the constants and the weighted

Poincaré inequality holds

∃C = C(p) > 0 : ∀u ∈ W 1,p
0 (R3), ‖u‖W 1,p

0 (R3)/R ≤ C‖∇u‖Lp(R3). (2.3)

For 3/p 6∈ {1, · · · , m}, the spaces Wm,p
0 (R3) and Wm+1,p

1 (R3) contain the poly-
nomial functions P[m−3/p] of degree lesser or equal than [m − 3/p], where [s]
stands for the integer part of s ∈ R+

0 .

Hence further C will denote a generic positive constant that may vary from
line to line.

Let us recall the following results about the behaviour at large distances of
some functions. We begin by considering the case 1 < p < 3 (see [5] or [12,
pp. 60]).

Lemma 2.1. Assume 1 < p < 3 and u ∈ D′(R3) such that ∇u ∈ Lp(R3).
Then there exists a unique constant u∞ defined by

u∞ =
1

4π
lim
|x|→∞

∫
S2

u(σ|x|)dσ, (2.4)

such that u − u∞ ∈ W 1,p
0 (R3) and where S2 denotes the unit sphere of R3.

Moreover, we have the following properties:

u− u∞ ∈ L3p/(3−p)(R3), (2.5)
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with the estimate

‖u− u∞‖L3p/(3−p)(R3) ≤ C‖∇u‖Lp(R3), (2.6)

lim
|x|→∞

∫
S2

|u(σ|x|)− u∞|dσ = lim
|x|→∞

∫
S2

|u(σ|x|)− u∞|pdσ = 0 (2.7)

and ∫
S2

|u(rσ)− u∞|pdσ ≤ C rp−3
∫
{x∈R3, |x|>r}

|∇u|pdx, (2.8)

with r > 0.

Definition 2.2. A function u will be said to tend weakly to a constant u∞ at
infinity if

lim
|x |→∞

∫
S2

|u(σ|x |)− u∞|dσ = 0.

Remark 2.3. Lemma 2.1 implies that, if 1 < p < 3 and u ∈ D′(R3) such that
∇u ∈ Lp(R3), then the previous definition is equivalent to

u− u∞ ∈ W 1,p
0 (R3).

We now give a result for the case p > 3 which can be obtained from the
Sobolev inequalities.

Lemma 2.4. Let r and p be two reals such that 1 < r < ∞ and p > 3. Let
u ∈ Lr(R3) and ∇u ∈ Lp(R3). Then u ∈ C(R3) and

lim
|x|→∞

u(x) = 0 pointwise . (2.9)

Defining

X1,p
α (R3) = {v ∈ W 1,p

α (R3); ∂v
∂x1

∈ W−1,p
α (R3)};

X2,p
α (R3) = {v ∈ W 2,p

α (R3); ∂v
∂x1

∈ W 0,p
α (R3)},

where α will be taken equal to 0 or 1, we recall that D(R3) is dense in X1,p
α (R3)

and X2,p
α (R3) (see [6]). Note that the operator ∂i : X2,p

α (R3) → X1,p
α (R3) is

continuous.

Finally let us state the following auxiliary results.

Proposition 2.5. For u ∈ X1,p
0 (R3), we have

i) if 1 < p < 3, then u ∈ L4p/(4−p)(R3) ∩ L3p/(3−p)(R3) and the following
estimate holds

‖u‖L4p/(4−p)(R3) + ‖u‖L3p/(3−p)(R3) ≤ C‖u‖X1,p
0 (R3). (2.10)
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ii) if p = 3, then there exists a unique constant λ such that u + λ ∈ L12(R3)∩
BMO. In particular, u+λ ∈ Lr(R3) for any r ≥ 12, and the following estimate
holds

‖u + λ‖Lr(R3) ≤ C‖u‖X1,p
0 (R3). (2.11)

iii) if 3 < p < 4, then there exists a unique constant λ such that u + λ ∈
L4p/(4−p)(R3) ∩ C(R3) and the following estimate holds

‖u + λ‖L4p/(4−p)(R3) ≤ C‖u‖X1,p
0 (R3). (2.12)

Proof. i) This proof can be found in [4].

ii) For u ∈ X1,3
0 (R3), we have −∆u + ∂u

∂x1
∈ W−1,3

0 (R3). From scalar Oseen
theory [5, Theorem 4.4], there exists a unique v ∈ X1,3

0 (R3)∩L12(R3) verifying

∆v +
∂v

∂x1

= ∆u +
∂u

∂x1

in R3. (2.13)

By uniqueness argument, we show that ∇u = ∇v, that means, there exists
a unique constant λ such that u + λ = v. As v ∈ BMO, we obtain u + λ ∈
L12(R3) ∩ BMO, and consequently u + λ ∈ Lr(R3) for any r ≥ 12, verifying
(2.11).

iii) For u ∈ X1,p
0 (R3), similarly to the case ii, there exist a unique v ∈

X1,p
0 (R3) ∩ L4p/(4−p)(R3) verifying (2.13) and a unique constant λ such that

u+λ = v. Then we get u+λ ∈ L4p/(4−p)(R3) verifying (2.12). Applying Lemma
2.4 we conclude that u + λ ∈ C(R3).

Proposition 2.6. For u ∈ X2,p
0 (R3), we have

i) if 1 < p < 3/2, then u ∈ L2p/(2−p)(R3) ∩ L3p/(3−2p)(R3);

ii) if 3/2 ≤ p < 2, then there exists a unique constant λ such that u + λ ∈
Lq(R3) for all q ≥ 2p/(2− p);

iii) if 1 < p < 3, then ∇u ∈ L4p/(4−p)(R3) ∩ L3p/(3−p)(R3);

iv) if p = 3, then there exists a unique λ ∈ P1, independent on x1, such that
∇(u+λ) ∈ L12(R3)∩BMO. In particular, ∇(u+λ) ∈ Lr(R3) for any r ≥ 12;

v) if 3 < p < 4, then there exists a unique λ ∈ P1, independent on x1, such
that ∇(u + λ) ∈ L4p/(4−p)(R3) ∩ L∞(R3).

Proof. The proof of i)-ii) can be found in [4], while iii)-v) easily follow from
Proposition 2.5.
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3 Weak solutions in W1,2
0 (R3)

Let us introduce the spaces

V = {v ∈ D(R3); div v = 0 in R3};

Hp = {v ∈ Lp(R3); div v = 0 in R3};

Vp = {v ∈ W1,p
0 (R3); div v = 0 in R3},

and we suppose in this section that a ∈ H3.

Definition 3.1. We say that u ∈ V2 is a weak solution to the problem (1.1),
with g = 0, if it satisfies

∀v ∈ V2,
∫

R3
∇u : ∇v dx +

∫
R3
∇u : (a⊗ v)dx = 〈f , v〉, (3.1)

where 〈·, ·〉 denotes the duality bracket W−1,2
0 (R3)×W1,2

0 (R3).

Remark 3.2. The Sobolev embedding theorem yields W 1,p
0 (R3) ↪→ Lp∗(R3)

if p < 3. If a ∈ L3(R3), then for u, v ∈ W1,2
0 (R3), we have a⊗ v ∈ L2(R3) and

the second integral in (3.1) is meanful. Moreover, thanks to the density of V
in V2 (see [1]), we have the property

∀v ∈ V2,
∫

R3
∇v : (a⊗ v)dx = 0. (3.2)

Theorem 3.3. Given f ∈ W−1,2
0 (R3), a ∈ H3 and g = 0, there exists a

unique weak solution u ∈ V2 of the problem (3.1) and moreover u satisfies the
estimate

‖u‖W1,2
0 (R3) ≤ C‖f ‖W−1,2

0 (R3) (3.3)

and the energy equality∫
R3
|∇u|2dx = 〈f ,u〉W−1,2

0 (R3)×W1,2
0 (R3).

Besides, there exists a unique function π ∈ L2(R3) such that (u, π) solves the
problem (1.1) in the sense of distributions, and the following estimate holds

‖π‖L2(R3) ≤ C(1 + ‖a‖L3(R3))‖f ‖W−1,2
0 (R3). (3.4)

Proof. Let {Rm}m∈N be an increasing sequence of positive reals such that
limm→∞ Rm = ∞ and the sequence of approximate problems defined in the
open balls centered at the origin Bm = BRm(0) ⊂ R3 :

7



Find um ∈ Jm such that, for all v ∈ Jm,∫
Bm

∇um : ∇v dx +
∫

Bm

∇um : (a⊗ v)dx = 〈f , v〉H−1(Bm)×H1
0(Bm), (3.5)

where
Jm = {v ∈ H1

0(Bm); div v = 0 in Bm}.
Note that if f ∈ W−1,2

0 (R3), then its restriction to Bm belongs to H−1(Bm)
and it verifies

‖f ‖H−1(Bm) ≤ ‖f ‖W−1,2
0 (R3). (3.6)

The existence of a unique solution, um ∈ Jm, of (3.5) is a consequence of the
Lax-Milgram Lemma and the property

∀v ∈ Jm,
∫

Bm

∇v : (a⊗ v)dx = 0.

Let us take v = um as a test function in (3.5). Thus the energy equality holds∫
Bm

|∇um|2dx = 〈f ,um〉 = −
∫

Bm

F · ∇umdx ,

observing that f = div F with

F ∈ L2(R3) : ‖F‖L2(R3) ≤ C‖f ‖W−1,2
0 (R3).

Consequently the estimate holds

‖∇um‖2
L2(Bm) ≤ ‖F‖L2(Bm)‖∇um‖L2(Bm) ≤ C‖f ‖W−1,2

0 (R3)‖∇um‖L2(Bm).

Denoting by ũm, the extended function by zero in Rn \ Bm, we have ũm ∈
W1,2

0 (R3) and
‖∇ũm‖L2(R3) ≤ C‖f ‖W−1,2(R3). (3.7)

From the estimates (3.7) and (2.2) then, extracting subsequences if necessary,
we get ũm ⇀ u in W1,2

0 (R3) and

‖u‖W1,2
0 (R3) ≤ C‖f ‖W−1,2

0 (R3).

In order to prove that u is a weak solution to (3.1), let v ∈ D(R3) such that
div v = 0. Choosing n ∈ N such that suppv ⊂ Bn, then for any m ≥ n it
follows

∀v ∈ V ,
∫

R3
∇ũm : ∇v dx +

∫
R3
∇ũm : (a⊗ v)dx = 〈f , v〉. (3.8)

So we can pass to the limit in (3.8) and therefore u satisfies (3.1), for any
v ∈ V . Thanks to the density of V in V2 (cf. [1]), it is clear that (3.1) holds
for any v ∈ V2. Hence, the estimate (3.3) arises.
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The solution u is unique using the standard argument of taking two solutions
u1 and u2 to the linear weak formulation (3.1). Indeed defining w = u1 − u2,
by (3.2) it verifies ∫

R3
|∇w|2dx = 0,

then w = 0 and u1 = u2.

Since a ⊗ u ∈ L2(R3), so that f + ∆u − div(a ⊗ u) ∈ W−1,2
0 (R3). Hence, we

have
∀v ∈ V2, 〈f + ∆u− div(a⊗ u), v〉 = 0.

Therefore, De Rham Theorem in weighted spaces (cf. [1]) guarantees the ex-
istence of a unique pressure π ∈ L2(R3) such that (u, π) satisfies the Oseen
problem (1.1) in the sense of distributions. Moreover, we get

‖∇π‖W−1,2
0 (R3) ≤ ‖f ‖W−1,2

0 (R3) + C
(
‖u‖W1,2

0 (R3) + ‖a⊗ u‖L2(R3)

)
.

Using the estimate (3.3), it follows

‖∇π‖W−1,2
0 (R3) ≤ C

(
‖f ‖W−1,2

0 (R3) + ‖a⊗ u‖L2(R3)

)
.

Applying Hölder inequality, Sobolev embedding and using again the estimate
(3.3) we obtain

‖∇π‖W−1,2
0 (R3) ≤ C(1 + ‖a‖L3(R3))‖f ‖W−1,2

0 (R3).

Finally, using the fact that the operator gradient is an isomorphism from
L2(R3) to W−1,2

0 (R3) ⊥ V2 (see [1]) we conclude (3.4). The previous notation
means the subspace of W−1,2

0 (R3) orthogonal to V2, i.e.,

W−1,2
0 (R3) ⊥ V2 = {f ∈ W−1,2

0 (R3); ∀v ∈ V2, 〈f , v〉 = 0}
=

(
W−1,2

0 (R3)/V2

)′
.

Theorem 3.4. Given f ∈ W−1,2
0 (R3), a ∈ H3 and g ∈ L2(R3), there exists a

unique solution (u, π) ∈ W1,2
0 (R3)× L2(R3) of the problem (1.1) such that

‖u‖W1,2
0 (R3) ≤ C

(
‖f ‖W−1,2

0 (R3) + ‖g‖L2(R3)(1 + ‖a‖L3(R3))
)

:= M (3.9)

‖π‖L2(R3) ≤ M(1 + ‖a‖L3(R3)), (3.10)

and satisfying the energy equality∫
R3
|∇u|2dx = 〈f ,u〉W−1,2

0 (R3)×W1,2
0 (R3) +

∫
R3

πg dx . (3.11)
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Proof. Given g ∈ L2(R3), since the operator div is an isomorphism from
W1,2

0 (R3)/V2 to L2(R3) (see [1, Proposition 2.2]) there exists w ∈ W1,2
0 (R3)

such that divw = g with the estimate

‖w‖W1,2
0 (R3) ≤ C‖g‖L2(R3).

Since f − div(a⊗w) ∈ W−1,2
0 (R3), then we can solve the Oseen problem:

−∆v + (a · ∇)v +∇π = f + ∆w− div(a⊗w) and div v = 0 in R3.

Indeed, the existence and uniqueness of v ∈ V2 and π ∈ L2(R3) follow from
Theorem 3.3. Moreover, we have

‖v‖W1,2
0 (R3) ≤ C(‖f ‖W−1,2

0 (R3) + ‖∆w‖W−1,2
0 (R3) + ‖a‖L3(R3)‖w‖L6(R3))

‖π‖L2(R3) ≤ C(‖f + ∆w‖W−1,2
0 (R3) + ‖a⊗w‖L2(R3))

(
1 + ‖a‖L3(R3)

)
.

Choosing u = v + w ∈ W1,2
0 (R3) then (u, π) ∈ W1,2

0 (R3) × L2(R3) is the
required solution and it satisfies (3.9) and (3.10).

4 Generalized solutions in W1,p
0 (R3)

Let us state the following generalized result using the known Stokes theory in
R3.

Lemma 4.1. For 1 < p < ∞, let f ∈ W−1,2
0 (R3) ∩ W−1,p

0 (R3) satisfy the
compatibility condition: for any i = 1, 2, 3

〈fi, 1〉W−1,p
0 (R3)×W 1,p′

0 (R3)
= 0 if p ≤ 3/2, (4.1)

g ∈ L2(R3) ∩ Lp(R3) and a ∈ H3. If additionally a ∈ L6p/(6−p)(R3) for 1 <
p < 6 or a ∈ L∞(R3) for p ≥ 6, then the solution (u, π) ∈ W1,2

0 (R3)×L2(R3)
given by Theorem 3.4 is such that u ∈ W1,p

0 (R3) and π ∈ Lp(R3).

Proof. Considering that f ∈ W−1,2
0 (R3), g ∈ L2(R3) and a ∈ H3, Theorem 3.4

yields the existence and uniqueness of (u, π) in the space W1,2
0 (R3)× L2(R3)

verifying

−∆u + div(a⊗ u) +∇π = f and divu = g in R3, (4.2)

taking into account that diva = 0. From the Sobolev embedding (cf. Remark
3.2), note that u ∈ L6(R3).
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Case 1: 1 < p < 6. We have a⊗u ∈ Lp(R3) considering that a ∈ L6p/(6−p)(R3).
Then f − div(a⊗ u) ∈ W−1,p

0 (R3). Moreover, we have, for all i = 1, 2, 3,

〈fi − div(aui), 1〉W−1,p
0 (R3)×W 1,p′

0 (R3)
= 0, if p ≤ 3/2.

Thus the Stokes theory [1, Proposition 3.3] guarantees the existence of a so-
lution (v, η) ∈ W1,p

0 (R3)×Lp(R3), where η is unique and v is unique, up to a
constant of R3 if p ≥ 3, of the Stokes problem

−∆v +∇η = f − div(a⊗ u), div v = g in R3. (4.3)

Thus the uniqueness argument implies first that the harmonic function η − π
belonging to Lp(R3) + L2(R3) is necessarily equal to zero and with similar
argument, we obtain also ∇u = ∇v ∈ Lp(R3) ∩ L2(R3). Note that u = v if
p < 3 and u = v + k ∈ W1,p

0 (R3) with k ∈ R3, if p ≥ 3.

Case 2: p ≥ 6. We have, for all 2 ≤ q ≤ 6, f ∈ W−1,q
0 (R3) and a ⊗ u ∈

L2(R3) ∩ L6(R3). Then we can apply case 1 to obtain u ∈ W1,q
0 (R3) for all

2 ≤ q < 6. In particular, we get u ∈ L6(R3) ∩ L∞(R3). Then a ⊗ u ∈
L2(R3) ∩ L∞(R3) ↪→ Lp(R3) and arguing as in the case 1 we conclude the
proof of Lemma 4.1.

Lemma 4.2. Let 1 < p < ∞ and a ∈ Hp. Then, there exist ψ ∈ Vp such that

a = ∇×ψ, (4.4)

and a sequence {am}m∈N ⊂ V such that

am → a in Lp(R3). (4.5)

Proof. For a ∈ Hp, we get ∇ × a ∈ W−1,p
0 (R3) ⊥ P[1−3/p′]. From Laplace

theory (see [3]), there exists ψ ∈ W1,p
0 (R3) such that −∆ψ = ∇ × a in R3

with
‖∇ψ‖Lp(R3) ≤ C‖a‖Lp(R3).

Then, we have divψ ∈ Lp(R3) such that ∆(divψ) = 0 in R3. Thus it results
that divψ = 0 and consequently ψ ∈ Vp. Since diva = 0, we deduce that

∆(∇×ψ) = −∇× (∇× a) = ∆a.

Taking w = ∇× ψ − a ∈ Lp(R3) we obtain ∆w = 0 and we conclude w = 0
and (4.4) holds.

Since D(R3) is dense in W 1,p
0 (R3), we have

ψ = lim
m→+∞

ψm in W1,p
0 (R3), ψm ∈ D(R3).
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Taking am = ∇×ψm ∈ V , we obtain clearly (4.5).

The following results deal with the existence to the problem (1.1) under the
data into Banach spaces with p−exponent.

Theorem 4.3. For 1 < p < 3, let f ∈ W−1,p
0 (R3) satisfy (4.1), g ∈ Lp(R3)

and a ∈ H3. If there exists a positive constant K, only dependent on p, such
that

‖a‖L3(R3) < K, (4.6)

then the Oseen problem (1.1) has a unique solution (u, π) ∈ W1,p
0 (R3)×Lp(R3)

such that

‖u‖W1,p
0 (R3) + ‖π‖Lp(R3) ≤ CK(‖f ‖W−1,p

0 (R3) + ‖g‖Lp(R3)). (4.7)

Proof. By (4.1) and [3], we have f = div F with F ∈ Lp(R3)3×3. Then, there
exist sequences {Fm} ⊂ D(R3)3×3 and {gm} ⊂ D(R3) such that

f m = divFm → f in W−1,p
0 (R3) and gm → g in Lp(R3),

with f m satisfying the condition (4.1). From Lemma 4.2, we can take a se-
quence {am} ⊂ V convergent to a in L3(R3). Thanks to Lemma 4.1, there
exists a unique solution

um ∈ W1,2
0 (R3) ∩W1,p

0 (R3), πm ∈ L2(R3) ∩ Lp(R3)

satisfying

−∆um +∇πm = fm − div(am ⊗ um), divum = gm in R3. (4.8)

From the Stokes theory [1, Theorem 3.3] and applying Hölder and Sobolev
inequalities, we obtain

‖um‖W1,p
0 (R3) + ‖πm‖Lp(R3) ≤

≤ c(‖f m‖W−1,p
0 (R3) + ‖am ⊗ um‖Lp(R3) + ‖gm‖Lp(R3))

≤ c1(‖f ‖W−1,p
0 (R3) + ‖a‖L3(R3)‖um‖Lp∗(R3) + ‖g‖Lp(R3))

≤ c1(‖f ‖W−1,p
0 (R3) + c2‖a‖L3(R3)‖um‖W1,p

0 (R3) + ‖g‖Lp(R3)),

where c1, c2 > 0 are the Stokes and Sobolev constants, respectively. By the
assumption (4.6), it follows

(1− c1c2K)‖um‖W1,p
0 (R3) ≤ c1(‖f ‖W−1,p

0 (R3) + ‖g‖Lp(R3));

‖πm‖Lp(R3) ≤ c1(‖f ‖W−1,p
0 (R3) + ‖g‖Lp(R3)).
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Taking 0 < K < 1/(c1c2), we can extract subsequences of um and πm, still
denoted by um and πm, such that

um ⇀ u in W1,p
0 (R3) and πm ⇀ π in Lp(R3),

where (u, π) ∈ W1,p
0 (R3)× Lp(R3) verifies (1.1) and the estimate (4.7) holds.

So the proof of Theorem 4.3 is finished.

Remark 4.4. For all p < 3 and u ∈ W1,p
0 (R3), as a ∈ L3(R3) then we have

a⊗ u ∈ Lp(R3) and div(a⊗ u) ∈ W−1,p
0 (R3).

Finally the following existence result can be stated via a dual argument.

Theorem 4.5. For p ≥ 3, let f ∈ W−1,p
0 (R3), g ∈ Lp(R3) and a ∈ H3 satisfy

(4.6). Then the Oseen problem (1.1) has a solution (u, π) ∈ W1,p
0 (R3)×Lp(R3),

where u is unique up to a constant vector, such that

‖u‖W1,p
0 (R3)/P[1−3/p]

+ ‖π‖Lp(R3) ≤ CK(‖f ‖W−1,p
0 (R3) + ‖g‖Lp(R3)). (4.9)

Proof. We will follow the duality argument already used in [2]. On one hand,
Green formula yields, for all v ∈ W1,p′

0 (R3) and (u, π) ∈ W1,p
0 (R3)× Lp(R3)

〈−∆u + (a · ∇)u +∇π, v〉
W−1,p

0 (R3)×W1,p′
0 (R3)

=

〈u,−∆v− div(a⊗ v)〉
W1,p

0 (R3)×W−1,p′
0 (R3)

− 〈π, div v〉Lp(R3)×Lp′ (R3),

taking into account that a ∈ H3 and v ∈ W1,p′

0 (R3) ↪→ L3p/(2p−3)(R3) imply
that a⊗ v ∈ Lp′(R3) and consequently div(a⊗ v) ∈ W−1,p′

0 (R3).

On the other hand, for all η ∈ Lp′(Ω),

〈u,∇η〉
W1,p

0 (R3)×W−1,p′
0 (R3)

= −〈divu, η〉Lp(R3)×Lp′ (R3).

Then the Oseen problem (1.1) has the following equivalent variational formu-
lation:

Find (u, π) ∈ W1,p
0 (R3)×Lp(R3) such that for all v ∈ W1,p′

0 (R3), η ∈ Lp′(R3),

〈u,−∆v− div(a⊗ v) +∇η〉
W1,p

0 (R3)×W−1,p′
0 (R3)

− 〈π, div v〉Lp(R3)×Lp′ (R3)

= 〈f , v〉
W−1,p

0 (R3)×W1,p′
0 (R3)

− 〈g, η〉Lp(R3)×Lp′ (R3). (4.10)

According to Theorem 4.3 applied with p′ ≤ 3/2, for each (f ′, g′) ∈ W−1,p′

0 (R3)×
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Lp′(R3) satisfying
〈f ′i , 1〉W−1,p′

0 (R3)×W 1,p
0 (R3)

= 0,

there exists a unique solution (v, η) ∈ W1,p′

0 (R3)× Lp′(R3) such that

−∆v− (a · ∇)v +∇η = f ′, div v = g′ in R3,

with the estimate

‖v‖
W1,p′

0 (R3)
+ ‖η‖Lp′ (R3) ≤ CK(‖f ′‖

W−1,p′
0 (R3)

+ ‖g′‖Lp′ (R3)).

Observe that the mapping

T : (f ′, g′) 7→ 〈f , v〉
W−1,p

0 (R3)×W1,p′
0 (R3)

− 〈g, η〉Lp(R3)×Lp′ (R3),

is linear and continuous with

|T (f ′, g′)| ≤ ‖f ‖W−1,p
0 (R3)‖v‖W1,p′

0 (R3)
+ ‖g‖Lp(R3)‖η‖Lp′ (R3)

≤ CK

(
‖f ‖W−1,p

0 (R3) + ‖g‖Lp(R3)

) (
‖f ′‖

W−1,p′
0 (R3)

+ ‖g′‖Lp′ (R3)

)
.

Note that f ′ belongs to W−1,p′

0 (R3) and f ′ ⊥ R3. Thus Riesz representation
Theorem guarantees the existence of a unique (u, π) ∈ (W1,p

0 (R3)/P[1−3/p])×
Lp(R3) such that

T (f ′, g′) = 〈u, f ′〉
W1,p

0 (R3)×W−1,p′
0 (R3)

− 〈π, g′〉Lp(R3)×Lp′ (R3),

with
‖u‖W1,p

0 (R3) + ‖π‖Lp(R3) ≤ CK(‖f ‖W−1,p
0 (R3) + ‖g‖Lp(R3)).

By definition of T , it follows

〈f , v〉
W−1,p

0 (R3)×W1,p′
0 (R3)

− 〈g, η〉Lp(R3)×Lp′ (R3)

= 〈u, f ′〉
W1,p

0 (R3)×W−1,p′
0 (R3)

− 〈π, g′〉Lp(R3)×Lp′ (R3)

which is the variational formulation (4.10).

Remark 4.6. Supposing that the data f ∈ W−1,p
0 (R3) ∩W−1,q

0 (R3) satisfies

〈fi, 1〉W−1,p
0 (R3)×W 1,p′

0 (R3)
= 〈fi, 1〉W−1,q

0 (R3)×W 1,q′
0 (R3)

= 0 if p, q ≤ 3/2,

g ∈ Lp(R3) ∩ Lq(R3) and a ∈ H3 satisfies (4.6), from Theorems 4.3 and 4.5
there exists a solution (u, π) ∈ (W1,p

0 (R3)∩W1,q
0 (R3))× (Lp(R3)∩Lq(R3)) to

the Oseen problem (1.1), for any 1 < p, q < ∞.
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5 Strong solutions in W2,p
0 (R3) and in W2,p

1 (R3)

We begin by proving the existence of a unique strong solution in W2,p
0 (R3)×

W 1,p
0 (R3) for 1 < p < 3 in the following sense.

Theorem 5.1. For 1 < p < 3, let f ∈ Lp(R3), g ∈ W 1,p
0 (R3) and a ∈ H3

satisfy (4.6). Then the Oseen problem (1.1) has a unique solution (u, π) ∈
(W2,p

0 (R3)/P[2−3/p])×W 1,p
0 (R3) such that

‖u‖W2,p
0 (R3)/P[2−3/p]

+ ‖π‖W 1,p
0 (R3) ≤ C(1 + CK)(‖f ‖Lp(R3) + ‖g‖W 1,p

0 (R3)). (5.1)

Proof. For all 1 < p < 3, Sobolev embedding holds

W
1,3p′/(3+p′)
0 (R3) ↪→ Lp′(R3)

and by duality we obtain

Lp(R3) ↪→ W
−1,3p/(3−p)
0 (R3). (5.2)

Since g ∈ W 1,p
0 (R3) ↪→ L3p/(3−p)(R3) and f ∈ W

−1,3p/(3−p)
0 (R3), Theorems 4.3

and 4.5 guarantee the existence of a solution

(u, π) ∈ W
1,3p/(3−p)
0 (R3)× L3p/(3−p)(R3)

to the Oseen problem (1.1) with the estimate

‖u‖
W

1,3p/(3−p)
0 (R3)/P[2−3/p]

+ ‖π‖L3p/(3−p)(R3) ≤ CK(‖f ‖Lp(R3) + ‖g‖W 1,p
0 (R3)).

Note that the compatibility condition (4.1) is not required because we have
3p/(3−p) > 3/2. Besides, we have (a ·∇)u ∈ Lp(R3). We can apply the Stokes
regularity theory (cf. [1, Theorem 3.8]) to deduce the existence of (v, η) ∈
W2,p

0 (R3)×W 1,p
0 (R3) verifying (4.3), unique up to an element of P[2−3/p]×{0}.

Moreover, the estimate holds

inf
λ∈P[2−3/p]

‖v + λ‖W2,p
0 (R3) + ‖η‖W 1,p

0 (R3) ≤

≤ C(‖f ‖Lp(R3) + ‖a‖L3(R3)‖∇u‖L3p/(3−p)(R3) + ‖g‖W 1,p
0 (R3)),

with C denoting a constant only dependent on p.

Let w = v− u and θ = η − π, then

−∆w +∇θ = 0 and divw = 0 in R3,
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with θ ∈ L3p/(3−p)(R3) and w ∈ W
1,3p/(3−p)
0 (R3). As 4θ = 0 in R3, then θ = 0

and w ∈ P[2−3/p] ⊂ W2,p
0 (R3). Consequently, u ∈ W2,p

0 (R3) and π ∈ W 1,p
0 (R3)

and we obtain the estimate (5.1).

Remark 5.2. Observe that Theorem 5.1 does not include the case p ≥ 3,
under its assumptions, that is, f ∈ Lp(R3), g ∈ W 1,p

0 (R3) and a ∈ H3. Indeed
if it would be possible to find u ∈ W2,p

0 (R3) and π ∈ W 1,p
0 (R3) such that

(a · ∇)u = ∆u−∇π + f ∈ Lp(R3),

it would happen a contradiction, since a ∈ L3(R3) and ∇u 6∈ L3p/(3−p)(R3).

In order to present a strong solution for p ≥ 3, we state the following results.

Theorem 5.3. For p ≥ 3, let f ∈ Lp(R3), g ∈ W 1,p
0 (R3) and a ∈ H3 sat-

isfy (4.6). If we additionally assume f ∈ Lq(R3), g ∈ W 1,q
0 (R3) and a ∈

L3pq/(q(3+p)−3p)(R3) for some 3p/(3 + p) ≤ q < 3, then the solution (u, π) ∈
W2,q

0 (R3)×W 1,q
0 (R3) given by Theorem 5.1 belongs also to W2,p

0 (R3)×W 1,p
0 (R3)

and it satisfies

‖u‖W2,p
0 (R3)/P[2−3/p]

+ ‖π‖W 1,p
0 (R3) ≤ C(1 + CK)(‖f ‖Lp(R3) + ‖g‖W 1,p

0 (R3)). (5.3)

Proof. Since f ∈ Lq(R3) and g ∈ W 1,q
0 (R3), for 3/2 ≤ q < 3, we can apply

Theorem 5.1. Then there exists a unique solution (u, π) ∈ (W2,q
0 (R3)/R3) ×

W 1,q
0 (R3) satisfying the Oseen problem (1.1). Thus it results (a ·∇)u ∈ Lp(R3)

since ∇u ∈ L3q/(3−q)(R3) and a ∈ L3pq/(q(3+p)−3p)(R3) for some 3p/(3 + p) ≤
q < 3. Next proceeding as in the proof of Theorem 5.1 we can conclude that
(u, π) ∈ (W2,p

0 (R3)/P[2−3/p])×W 1,p
0 (R3) verifies (5.3).

Note that in Theorem 5.3, a ∈ L∞(R3) if q = 3p/(3 + p), and if q is close to
3 then 3pq/(q(3 + p)− 3p) is close to p.

Finally, we take f in weighted Lp(R3), more precisely f ∈ W0,p
1 (R3), and the

data g in the corresponding weighted Sobolev space W 1,p
1 (R3).

Theorem 5.4. Let p 6= 3/2, f ∈ W0,p
1 (R3) satisfy (4.1), g ∈ W 1,p

1 (R3) and
a ∈ H3 ∩ L∞(R3) satisfy (4.6) and

∃L > 0, |a(x)| ≤ L

|x|
, a.e. x ∈ R3. (5.4)

Then the Oseen problem (1.1) has a unique solution (u, π) ∈ W2,p
1 (R3)/P[1−3/p]×

W 1,p
1 (R3) satisfying

‖u‖W2,p
1 (R3)/P[1−3/p]

+ ‖π‖W 1,p
1 (R3) ≤ C(1 + LCK)(‖f ‖W0,p

1 (R3) + ‖g‖W 1,p
1 (R3)).

(5.5)
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Proof. Since W 1,p
1 (R3) ↪→ Lp(R3) and for p 6= 3/2 we have W0,p

1 (R3) ↪→
W−1,p

0 (R3), thanks to Theorems 4.3 and 4.5, there exists a solution (u, π) ∈
W1,p

0 (R3)× Lp(R3) to the Oseen problem (1.1) satisfying (4.9).

Considering the assumption (5.4), we get (a · ∇)u ∈ W0,p
1 (R3). Moreover, we

have, for all i = 1, 2, 3,

〈(a · ∇)ui + fi, 1〉W 0,p
1 (R3)×W 0,p′

−1 (R3)
= 0, if p ≤ 3/2.

Thus the conditions of Stokes regularity result are fulfilled (cf. [1, Theorem
3.1]) and we can conclude the existence of (v, η) ∈ W2,p

1 (R3) × W 1,p
1 (R3),

unique up to an element of P[1−3/p] × {0} and satisfying

inf
λ∈P[1−3/p]

‖v + λ‖W2,p
1 (R3) + ‖η‖W 1,p

1 (R3) ≤

≤ C(‖f ‖W0,p
1 (R3) + L‖∇u‖Lp(R3) + ‖g‖W 1,p

1 (R3)).

Then the proof’s conclusion of Theorem 5.4 is identical to the one of Theorem
5.1.

Remark 5.5. Observe that W 0,p
1 (R3) ↪→ Lp(R3), W 1,p

1 (R3) ↪→ W 1,p
0 (R3) and

if p ≥ 3 then W 0,p
1 (R3) ↪→ Lq(R3) for all q ∈ [3p/(3 + p), 3[. The assumptions

on a stated in Theorem 5.4 are also stronger of those in Theorems 5.1 and
5.3.

Remark 5.6. i) It is known that L3(R3) ↪→ L3,∞(R3) and 1/|x | ∈ L3,∞(R3),
where L3,∞(R3) is the space of measurable functions v defined on R3 satisfying

∃C > 0, ∀t > 0, t3meas{x ∈ R3; |v(x )| > t} ≤ C.

ii) When p = 3/2, the previous existence result holds provided we suppose
that f ∈ W

0,3/2
1 (R3) ∩W

−1,3/2
0 (R3) (see (2.1)).

6 Very weak solutions in Lp(R3)

In this section we show how very weak solutions to the problem (1.1) can
easily been obtained from the existence of strong solutions as in Section 5 via
a dual argument. We begin by precising the meaning of very weak variational
formulation.

Lemma 6.1. For p > 3/2, the problem of finding a pair (u, π) ∈ Lp(R3) ×
W−1,p

0 (R3) verifying (1.1), with f ∈ W−2,p
0 (R3) and g ∈ W−1,p

0 (R3), has the
following variational formulation
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∫
R3

u · (−∆v− div(a⊗ v) +∇η)dx− 〈π, div v〉
W−1,p

0 (R3)×W 1,p′
0 (R3)

= 〈f , v〉
W−2,p

0 (R3)×W2,p′
0 (R3)

− 〈g, η〉
W−1,p

0 (R3)×W 1,p′
0 (R3)

(6.1)

for all v ∈ W2,p′

0 (R3) and η ∈ W 1,p′

0 (R3).

Proof. By a density argument ofD(R3) into respectively W 2,p′

0 (R3) and W 1,p′

0 (R3),
we have the following equalities

〈−∆u, v〉
W−2,p

0 (R3)×W2,p′
0 (R3)

= 〈u,−∆v〉Lp(R3)×Lp′ (R3)

〈∇π, v〉
W−2,p

0 (R3)×W2,p′
0 (R3)

= −〈π, divv〉
W−1,p

0 (R3)×W 1,p′
0 (R3)

〈divu, η〉
W−1,p

0 (R3)×W 1,p′
0 (R3)

= −〈u,∇η〉Lp(R3)×Lp′ (R3).

Since a ∈ H3 and p > 3/2, on one hand a⊗ u ∈ L3p/(3+p)(R3) ↪→ W−1,p
0 (R3)

and (a · ∇)u = div(a ⊗ u) ∈ W
−1,3p/(3+p)
0 (R3) ↪→ W−2,p

0 (R3). On the other
hand, for any v ∈ W2,p′

0 (R3) we have ∇v ∈ W1,p′

0 (R3) ↪→ L3p/(2p−3)(R3) and
div(a⊗ v) = (a · ∇)v ∈ Lp′(R3). Then we obtain

〈div(a⊗ u), v〉
W−2,p

0 (R3)×W2,p′
0 (R3)

=−〈a⊗ u,∇v〉
W−1,p

0 (R3)×W1,p′
0 (R3)

= 〈u,−div(a⊗ v)〉Lp(R3)×Lp′ (R3).

Thus Lemma 6.1 holds.

Definition 6.2. We say that (u, π) ∈ Lp(R3) × W−1,p
0 (R3) is a very weak

solution to the problem (1.1) if it satisfies (6.1).

Theorem 6.3. For p > 3/2, let f ∈ W−2,p
0 (R3) satisfy the compatibility

condition: for any i = 1, 2, 3

〈fi, 1〉W−2,p
0 (R3)×W 2,p′

0 (R3)
= 0 if p ≤ 3, (6.2)

g ∈ W−1,p
0 (R3) and a ∈ H3 satisfy (4.6). Then the Oseen problem (1.1) has a

unique very weak solution (u, π) ∈ Lp(R3)×W−1,p
0 (R3) such that

‖u‖Lp(R3) + ‖π‖W−1,p
0 (R3) ≤ C(1 + CK)(‖f ‖W−2,p

0 (R3) + ‖g‖W−1,p
0 (R3)). (6.3)

Proof. In accordance to Theorem 5.1 for p′ < 3, f ′ ∈ Lp′(R3) and g′ ∈
W 1,p′

0 (R3), there exists a unique solution (v, η) ∈ (W2,p′

0 (R3)/P[2−3/p′])×W 1,p′

0 (R3)
to the problem

−∆v− (a · ∇)v +∇η = f ′, div v = g′ in R3,
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satisfying the estimate

‖v‖
W2,p′

0 (R3)/P[2−3/p′]
+ ‖η‖

W 1,p′
0 (R3)

≤ C(1 + CK)(‖f ′‖Lp′ (R3) + ‖g′‖
W 1,p′

0 (R3)
).

Define the mapping

T : (f ′, g′) 7→ 〈f , v〉
W−2,p

0 (R3)×W2,p′
0 (R3)

− 〈g, η〉
W−1,p

0 (R3)×W 1,p′
0 (R3)

.

Then T is linear and using (6.2) T is continuous with

|T (f ′, g′)| ≤ ‖f ‖W−2,p
0 (R3)‖v‖W2,p′

0 (R3)/P[2−3/p′]
+ ‖g‖W−1,p

0 (R3)‖η‖W 1,p′
0 (R3)

≤ C(1 + CK)
(
‖f ‖W−2,p

0 (R3) + ‖g‖W−1,p
0 (R3)

) (
‖f ′‖Lp′ (R3) + ‖g′‖

W 1,p′
0 (R3)

)
.

Thanks to the Riesz representation Theorem, there exists a unique (u, π) ∈
Lp(R3)×W−1,p

0 (R3) such that

T (f ′, g′) = 〈u, f ′〉Lp(R3)×Lp′ (R3) − 〈π, g′〉
W−1,p

0 (R3)×W 1,p′
0 (R3)

,

and the estimate (6.3) is satisfied. By definition of T , it follows the very weak
variational formulation (6.1).

Remark 6.4. Using Theorem 5.4 with p′ 6= 3/2 and similar dual argument
we can conclude that for p > 3/2 such that p 6= 3, f ∈ W−2,p

−1 (R3), g ∈
W−1,p

−1 (R3) and a ∈ H3 satisfying (4.6) and (5.4), there exists a very weak
solution (u, π) ∈ W0,p

−1(R3)×W−1,p
−1 (R3) to the problem (1.1) in the following

sense

〈u,−∆v− div(a⊗ v) +∇η〉
W0,p

−1(R3)×W0,p′
1 (R3)

− 〈π, div v〉
W−1,p

−1 (R3)×W 1,p′
1 (R3)

= 〈f , v〉
W−2,p

−1 (R3)×W2,p′
1 (R3)

− 〈g, η〉
W−1,p

−1 (R3)×W 1,p′
1 (R3)

for all v ∈ W2,p′

1 (R3) and η ∈ W 1,p′

1 (R3). Indeed the above weak formu-
lation has meanful for p > 3/2, since a ∈ H3 and ∇v ∈ W1,p′

1 (R3) ↪→
W

0,3p/(2p−3)
1 (R3) we have then div(a⊗ v) = (a · ∇)v ∈ W0,p′

1 (R3).

7 The generalized Oseen problem (1.3)

In this section, we study the generalized Oseen problem (1.3):

−∆u + k
∂u
∂x1

+ (a · ∇)u +∇π = f , divu = g in R3.
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As in sections 3, 4 and 5 where we applied the Stokes theory, here we can
apply the theory concerning the Oseen system (1.2).

We introduce the following Banach space

Zp(R3) = {v ∈ Lp(R3);
∂v

∂x1

∈ W−2,p
0 (R3)}.

Next we prove some useful results.

Lemma 7.1. For every 1 < p < ∞ and g ∈ Zp(R3) verifying

∀λ ∈ P[2−3/p′], 〈 ∂g

∂x1

, λ〉
W−2,p

0 (R3)×W 2,p′
0 (R3)

= 0, (7.1)

there exists w ∈ X1,p
0 (R3) such that divw = g in R3 and satisfies the estimate

‖w‖X1,p
0 (R3) ≤ C‖g‖Zp(R3). (7.2)

Moreover w ∈ L4p/(4−p)(R3) ∩ L3p/(3−p)(R3) if 1 < p < 3, w ∈ L12(R3) ∩
BMO if p = 3, and w ∈ L4p/(4−p)(R3) ∩ L∞(R3) if 3 < p < 4 with estimates
corresponding to (2.10), (2.11) and (2.12).

Proof. Let g ∈ Zp(R3). From g ∈ Lp(R3) there exists v ∈ W 2,p
0 (R3) verifying

∆v = g in R3,

where v is unique up to a polynomial function of P[2−3/p] (see [3]). We can
choose v such that there exists a constant C1 > 0 satisfying

‖∇v‖W1,p
0 (R3) ≤ C1‖g‖Lp(R3). (7.3)

From ∂g
∂x1

∈ W−2,p
0 (R3) ⊥ P[2−3/p′] there exists a unique z ∈ Lp(R3) verifying

∆z =
∂g

∂x1

in R3

and it is such that the following estimate holds

‖∇z‖W−1,p
0 (R3) ≤ C2‖z‖Lp(R3) ≤ C3‖

∂g

∂x1

‖W−2,p
0 (R3). (7.4)

Then ∂v
∂x1

− z ∈ W 1,p
0 (R3) + Lp(R3) is harmonic and ∂v

∂x1
− z ∈ P[1−3/p], that

means, ∂v
∂x1

= z if p < 3 and ∂v
∂x1

− z = constant if p ≥ 3.
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Next let us take w = ∇v. Hence w ∈ W1,p
0 (R3), divw = g and ∂w

∂x1
= ∇( ∂v

∂x1
) =

∇z ∈ W−1,p
0 (R3).

Using (7.3) and (7.4) it follows

‖w‖X1,p
0 (R3) = ‖w‖W1,p

0 (R3) + ‖ ∂w
∂x1

‖W−1,p
0 (R3) ≤ max{C1, C3}‖g‖Zp(R3).

Consequently we get (7.2). Applying Proposition 2.5 we conclude the proof of
Lemma 7.1.

Remark 7.2. The condition (7.1) is equivalent to

〈 ∂g

∂x1

, x1〉W−2,p
0 (R3)×W 2,p′

0 (R3)
= 0, if p′ ≥ 3.

Indeed for all λ ∈ P[2−3/p′] such that ∂λ
∂x1

= 0, we have

〈 ∂g

∂x1

, λ〉
W−2,p

0 (R3)×W 2,p′
0 (R3)

= −〈g,
∂λ

∂x1

〉Lp(R3)×Lp′ (R3) = 0,

taking into account the density of D(R3) in X2,p′

0 (R3).

Lemma 7.3. Let g ∈ Zp(R3) verifying the compatibility condition (7.1). Then,
there exists a sequence gm ∈ D(R3) satisfying (7.1) and such that gm → g in
Zp(R3).

Proof. Let g ∈ Zp(R3). Applying Lemma 7.1 there exists w ∈ X1,p
0 (R3) ver-

ifying divw = g and (7.2). Since D(R3) is dense into X1,p
0 (R3), there ex-

ists a sequence {wm}m∈N ⊂ D(R3) such that wm → w in X1,p
0 (R3). Taking

gm = divwm ∈ D(R3) it follows gm → g in Zp(R3). Observe that gm satisfies
(7.1).

The first existence result to the problem (1.3) concerns the Hilbertian case
p = 2.

Proposition 7.4. Assume that f ∈ W−1,2
0 (R3), g ∈ Z2(R3) and a ∈ H3. Then

the problem (1.3) has a unique solution (u, π) ∈ (X1,2
0 (R3)∩L4(R3))×L2(R3).

Moreover, the following estimate holds

‖u‖X1,2
0

+‖u‖L4 +‖π‖L2 ≤ C
(
‖f ‖W−1,2

0 (R3) + (1 + ‖a‖L3(R3))‖g‖Z2(R3)

)
. (7.5)

Proof. Let g ∈ Z2(R3). Applying Lemma 7.1 and Remark 7.2, there exists
w ∈ X1,2

0 (R3) satisfying divw = g and (7.2) with p = 2. Next let us take the
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unique solution (v, π) ∈ (X1,2
0 (R3) ∩ L4(R3)) × L2(R3) to the Oseen problem

(cf. [4, Lemma 4.1])

−∆v+ k
∂v
∂x1

+ (a ·∇)v+∇π = f + ∆w− k
∂w
∂x1

− (a ·∇)w, div v = 0 in R3,

satisfying the estimate

‖v‖X1,2
0 (R3) +‖π‖L2(R3) ≤ C(‖f ‖W−1,2

0 (R3) +‖w‖X1,2
0 (R3) +‖a‖L3(R3)‖w‖W1,2

0 (R3)).

Letting u = v + w, we obtain u ∈ X1,2
0 (R3) that satisfies (1.3) and (7.5).

Proposition 7.5. Assume that 1 < p < ∞, f ∈ W−1,2
0 (R3) ∩ W−1,p

0 (R3),
g ∈ Z2(R3) ∩ Zp(R3) satisfy the compatibility conditions (4.1) and (7.1), re-
spectively, and a ∈ H3. If a ∈ L4p/(4−p)(R3) for 1 < p < 4 and a ∈ Lp(R3)
for p ≥ 4, then the pair (u, π) ∈ X1,2

0 (R3) × L2(R3) given by Proposition 7.4
belongs also to X1,p

0 (R3)× Lp(R3). Moreover

u ∈ L4p/(4−p)(R3) ∩ L6(R3) if p < 2; (7.6)
u ∈ L4(R3) ∩ L3p/(3−p)(R3) if 2 ≤ p < 3; (7.7)
u ∈ Lr(R3), ∀r ≥ 4, if p = 3; (7.8)
u ∈ L4(R3) ∩ L∞(R3), if p > 3. (7.9)

Proof. Under the assumptions on f , g and a, Proposition 7.4 yields the exis-
tence of a unique (u, π) ∈ X1,2

0 (R3)× L2(R3) verifying

−∆u + k
∂u
∂x1

+∇π = f − div(a⊗ u) in R3.

From Proposition 2.5, we have u ∈ L4(R3) ∩ L6(R3).

Case 1: 1 < p < 4. Considering that a ∈ L4p/(4−p)(R3), we get a⊗u ∈ Lp(R3)
and then div(a ⊗ u) ∈ W−1,p

0 (R3) ⊥ P[1−3/p′]. From the Oseen theory [6,
Theorem 2.2] there exists a unique solution (v, η) ∈ X1,p

0 (R3)× Lp(R3) to the
problem

−∆v + k
∂v
∂x1

+∇η = f − div(a⊗ u) ∈ W−1,p
0 (R3), div v = g in R3. (7.10)

Moreover v ∈ L4p/(4−p)(R3). Then a uniqueness argument implies that π = η
and next u = v. Thanks to Proposition 2.5 it follows (7.6)-(7.9).

Case 2: p ≥ 4. As f ∈ W−1,2
0 (R3) ∩ W−1,q

0 (R3) and g ∈ Z2(R3) ∩ Zq(R3),
for any 2 ≤ q < 4, thanks to the case 1 we get u ∈ X1,2

0 (R3) ∩X1,q
0 (R3) and

π ∈ L2(R3) ∩ Lq(R3) for any 2 ≤ q < 4. In particular, choosing 3 < q < 4
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we obtain u ∈ L∞(R3) and then ∇ · (a ⊗ u) ∈ W−1,p
0 (R3) and also (7.9)

holds. From the Oseen theory [6, Theorem 2.2] there exists a solution (v, η) ∈
X1,p

0 (R3) × Lp(R3) to the problem (7.10), where η is unique and v is unique
up to an element of R3. By a similar argument to the case 1, we show that
(∇u, π) = (∇v, η) and (u, π) ∈ X1,p

0 (R3)× Lp(R3) verifying (7.9).

Now we are able to prove the existence result in the non-Hilbertian case p 6= 2.

Theorem 7.6. Assume that 1 < p < ∞, f ∈ W−1,p
0 (R3), g ∈ Zp(R3) and

a ∈ H3 satisfy (4.1), (7.1) and (4.6), respectively. Then the problem (1.3)
has a solution (u, π) ∈ X1,p

0 (R3)× Lp(R3), where π is unique and u is unique
if 1 < p < 4 and up to an element of R3 otherwise. Moreover, we have the
estimate

‖u‖W1,p
0 (R3)/P[1−4/p]

+‖ ∂u
∂x1

‖W−1,p
0 (R3)+‖π‖Lp(R3) ≤ CK(‖f ‖W−1,p

0 (R3)+‖g‖Zp(R3))

and also that u ∈ L4p/(4−p)(R3) ∩ L3p/(3−p)(R3) if 1 < p < 3, u ∈ Lr(R3) for
all r ≥ 12 if p = 3, and u ∈ L4p/(4−p)(R3) ∩ L∞(R3) if 3 < p < 4.

Proof. By (4.1), we have f = div F with F ∈ Lp(R3)3×3. Thus, there exists a
sequence {Fm} ⊂ D(R3)3×3 such that Fm → F in Lp(R3). Set f m = divFm.
Then f m satisfying the condition (4.1) and f m converges to f in W−1,p

0 (R3).
Using the density properties of D(R3) into Zp(R3) (cf. Lemma 7.3) and of V
into H3 (cf. Lemma 4.2), there exist {gm} ⊂ D(R3) and {am} ⊂ V such that

gm → g in Zp(R3) and am → a in H3.

Applying Proposition 7.5, there exists (um, πm) ∈ X1,p
0 (R3)× Lp(R3) solution

of the problem

−∆um + k
∂um

∂x1

+ div(am ⊗ um) +∇πm = f m, divum = gm in R3,

where f m, gm and am converge to f , g and a in W−1,p
0 (R3), Zp(R3) and L3(R3),

respectively. Now applying the Oseen theory [6, Theorem 2.2], there exists a
unique solution (vm, ηm) ∈ X1,p

0 (R3)× Lp(R3) satisfying

−∆vm + k
∂vm

∂x1

+∇ηm = f m − div(am ⊗ um), div vm = gm in R3.

Moreover, the estimate holds

‖vm‖W1,p
0 (R3)/P[1−4/p]

+ ‖∂vm

∂x1

‖W−1,p
0 (R3) + ‖ηm‖Lp(R3) ≤

≤ C(‖f m − div(am ⊗ um)‖W−1,p
0 (R3) + ‖gm‖Lp(R3) + ‖∂gm

∂x1

‖W−2,p
0 (R3)).
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By the uniqueness argument, it is clear that (∇vm, ηm) = (∇um, πm). In order
to obtain an estimate independent on m we split into two cases.

Case 1: p < 3. Observing that um ∈ W1,p
0 (R3) ↪→ Lp∗(R3), we have

‖div(am ⊗ um)‖W−1,p
0 (R3) ≤ ‖am ⊗ um‖Lp(R3) ≤ C‖am‖L3(R3)‖um‖W1,p

0 (R3).

Case 2: p ≥ 3. Observing that (am · ∇)um ∈ L3p/(3+p)(R3) ↪→ W−1,p
0 (R3), we

have

‖(am·∇)um‖W−1,p
0 (R3) ≤ C‖(am·∇)um‖L3p/(3+p)(R3) ≤ C‖am‖L3(R3)‖um‖W1,p

0 (R3).

Hence in both cases it follows

‖um‖W1,p
0 (R3)/P[1−4/p]

+ ‖∂um

∂x1

‖W−1,p
0 (R3) + ‖πm‖Lp(R3) ≤

≤ C(‖f m‖W−1,p
0 (R3) + ‖am‖L3(R3)‖um‖W1,p

0 (R3) + ‖gm‖Zp(R3))

≤ C(‖f ‖W−1,p
0 (R3) + ‖a‖L3(R3)‖um‖W1,p

0 (R3) + ‖g‖Zp(R3)).

Then, proceeding as in the proof of Theorem 4.3 and also using Proposition
2.5, we conclude Theorem 7.6.

Remark 7.7. If 3 < p < 4, Lemma 2.4 yields that the solution u given at
Theorem 7.6 is a continuous function satisfying (2.9). If p < 3, the unique
solution to (1.1) in accordance to Theorem 7.6 tends weakly to zero at infinity
(cf. Lemma 2.1 and Definition 2.2).

Next, let us state the existence of strong solutions to (1.3).

Theorem 7.8. Assume that 1 < p < 3, f ∈ Lp(R3), g ∈ X1,p
0 (R3) and a ∈

H3 such that (4.6) is satisfied. Then the problem (1.3) has a unique solution
(u, π) ∈ X2,p

0 (R3)×W 1,p
0 (R3) satisfying

∇u ∈ L4p/(4−p)(R3) ∩ L3p/(3−p)(R3); (7.11)
u ∈ L3p/(3−2p)(R3) ∩ L2p/(2−p)(R3) if p < 3/2; (7.12)

u ∈ Lq(R3), ∀q ≥ 2p/(2− p) if 3/2 ≤ p < 2. (7.13)

Proof. As 1 < p < 3, note that Lp(R3) ↪→ W
−1,3p/(3−p)
0 (R3), see (5.2). Un-

der the assumption on g we get g ∈ W 1,p
0 (R3) ↪→ L3p/(3−p)(R3) and the

embedding W
2,3p/(4p−3)
0 (R3) ↪→ W 1,p′

0 (R3) implies that ∂g
∂x1

∈ W−1,p
0 (R3) ↪→

W
−2,3p/(3−p)
0 (R3). Moreover for 1 < p < 3 we get 3/2 < p∗ = 3p/(3− p) < ∞.

Thus Theorem 7.6 guarantees the existence of a solution (u, π) ∈ X1,p∗
0 (R3)×
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Lp∗(R3) to the problem (1.3). Then (a · ∇)u ∈ Lp(R3) and we can ap-
ply the Oseen regularity theory [6, Theorem 2.6] to conclude that (u, π) ∈
X2,p

0 (R3)×W 1,p
0 (R3). Moreover, by Proposition 2.6 we have (7.11)-(7.13).

Theorem 7.9. For p ≥ 3, let f ∈ Lp(R3), g ∈ W 1,p
0 (R3) and a ∈ H3 sat-

isfy (4.6). If we additionally assume f ∈ Lq(R3), g ∈ W 1,q
0 (R3) and a ∈

L3pq/(q(3+p)−3p)(R3) for some 3p/(3 + p) ≤ q < 3, then the solution (u, π) ∈
X2,q

0 (R3)×W 1,q
0 (R3) given by Theorem 7.8 belongs also to X2,p

0 (R3)×W 1,p
0 (R3)

and it satisfies
∇u ∈ L4q/(4−q)(R3) ∩ L3q/(3−q)(R3). (7.14)

Proof. Since f ∈ Lq(R3) and g ∈ W 1,q
0 (R3), with 3/2 ≤ q < 3, we can apply

Theorem 7.8. Then there exists a unique solution (u, π) ∈ X2,q
0 (R3)×W 1,q

0 (R3)
satisfying the generalized Oseen problem (1.3). As in the proof of Theorem
5.3 it results (a · ∇)u ∈ Lp(R3). Analogously to the proof of Theorem 7.8,
applying the Oseen regularity theory [6, Theorem 2.6] we can conclude that
(u, π) ∈ X2,p

0 (R3)×W 1,p
0 (R3), and it verifies (7.14).

In order to prove the existence of stronger solutions of the generalized Oseen
problem (1.3) under smoother data, let us state the following result.

Lemma 7.10. i) For every p 6= 3/2 and g ∈ X1,p
1 (R3) verifying

∀λ ∈ P[2−3/p′], 〈 ∂g

∂x1

, λ〉
W−1,p

1 (R3)×W 1,p′
−1 (R3)

= 0, (7.15)

there exists w ∈ X2,p
1 (R3) such that divw = g in R3 and satisfies the estimate

‖w‖X2,p
1 (R3) ≤ C‖g‖X1,p

1 (R3).

ii) If moreover g ∈ Zq(R3) verifying (7.1), with p changed in q, then we can
choose w ∈ X2,p

1 (R3) ∩X1,q
0 (R3) with the corresponding estimate.

Proof. i) On one hand (cf. [3]), from g ∈ W 1,p
1 (R3) there exists v ∈ W 3,p

1 (R3)
verifying

∆v = g in R3, with ‖∇v‖W2,p
1 (R3) ≤ C‖g‖W 1,p

1 (R3).

On the other hand (cf. [3]), from ∂g
∂x1

∈ W−1,p
1 (R3) ⊥ P[2−3/p′] there exists a

unique z ∈ W 1,p
1 (R3) verifying

∆z =
∂g

∂x1

in R3, with ‖∇z‖W0,p
1 (R3) ≤ C‖ ∂g

∂x1

‖W−1,p
1 (R3).
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Then ∂v
∂x1

− z ∈ W 2,p
1 (R3) + W 1,p

1 (R3) is harmonic and ∂v
∂x1

− z ∈ P[1−3/p], that
means, ∂v

∂x1
= z if p < 3 and ∂v

∂x1
− z = constant if p ≥ 3.

Next let us take w = ∇v. Hence w ∈ W2,p
1 (R3), divw = g and ∂w

∂x1
= ∇( ∂v

∂x1
) =

∇z ∈ W0,p
1 (R3). Thus we can proceed as in the proof of Lemma 7.1 to conclude

i).

ii) Using a similar argument as in i), we can choose w also belonging to
X1,q

0 (R3).

In accordance with Oseen theory, we can prove the following regularity result.

Theorem 7.11. Let p > 3/2, q = 3p/(3 + p), f ∈ W0,p
1 (R3) ∩ W−1,q

0 (R3)
satisfy, for all i = 1, 2, 3,

〈fi, 1〉W−1,q
0 (R3)×W 1,q′

0 (R3)
= 0, if 3/2 < p ≤ 3, (7.16)

g ∈ X1,p
1 (R3) ∩ Zq(R3) satisfy (7.15) and

〈 ∂g

∂x1

, x1〉W−2,q
0 (R3)×W 2,q′

0 (R3)
= 0, if q ≤ 3/2, (7.17)

and a ∈ H3 satisfy (4.6) and (5.4). Then the Oseen problem (1.3) has a unique
solution (u, π) satisfying

u ∈ X2,p
1 (R3) ∩X1,p

0 (R3) ∩X1,q
0 (R3); π ∈ W 1,p

1 (R3) ∩ Lq(R3). (7.18)

Proof. In order to apply Theorem 7.6, we consider the embedding W0,p
1 (R3) ↪→

W−1,p
0 (R3), for p 6= 3/2. Then there exists a solution (u, π) ∈ X1,p

0 (R3)×Lp(R3)
to the Oseen problem (1.3). Thus the assumption (5.4) implies that (a ·∇)u ∈
W0,p

1 (R3).

We can also apply Theorem 7.6 for the existence of a solution (z , η) ∈ X1,q
0 (R3)×

Lq(R3) to the Oseen problem (1.3). Since q = 3p/(3 + p) < 3, we get z = u
and η = π. Thus we have (a · ∇)u ∈ L3q/(3+q)(R3) ↪→ W−1,q

0 (R3).

Since g ∈ X1,p
1 (R3) ∩ Zq(R3) satisfies (7.15) and (7.17), considering Lemma

7.10 there exists w ∈ X2,p
1 (R3) ∩X1,q

0 (R3) such that divw = g in R3. Set now
v = u−w, then v ∈ X1,p

0 (R3) ∩X1,q
0 (R3) and

−∆v + k
∂v
∂x1

+∇π = f − (a · ∇)u + ∆w− k
∂w
∂x1

, divv = 0 in R3. (7.19)

Since the function F := f − (a · ∇)u + ∆w − k ∂w
∂x1

∈ W 0,p
1 (R3) ∩ W−1,q

0 (R3)
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satisfies the compatibility conditions, for 3/2 < p ≤ 3,

〈Fi, 1〉W 0,p
1 (R3)×W 0,p′

−1 (R3)
= 〈Fi, 1〉W−1,q

0 (R3)×W 1,q′
0 (R3)

= 0,

then applying the Oseen regularity theory [6, Theorem 2.12] we deduce that
v ∈ X2,p

1 (R3) and π ∈ W 1,p
1 (R3). Then we conclude that π and u = v + w

satisfy (7.18).

Remark 7.12. The solution u found in Theorem 7.11 also belongs to Lp(R3)∩
L12p/(12+p)(R3). Additionally, if p < 4 then u ∈ L4p/(4−p)(R3), and if p < 3 then
u ∈ L3p/(3−p)(R3).

8 The Oseen problem (1.1) with a not in L3(R3)

In this section we study the Oseen model (1.1) case ii). For the sake of sim-
plicity, let us set k = 1, which means that a ∈ L3

loc(R3) is such that diva = 0
and

∃R0 > 0 : a(x ) = e1, |x | ≥ R0, (8.1)
are satisfied.

Theorem 8.1. Let a ∈ L3
loc(R3) satisfy diva = 0 and (8.1). For f ∈ W−1,2

0 (R3)
and g ∈ Z2(R3), there exists a unique pair (u, π) ∈ (X1,2

0 (R3) ∩ L4(R3)) ×
L2(R3) solving (1.1) such that

‖u‖W1,2
0

+ ‖ ∂u
∂x1

‖W−1,2
0

+ ‖π‖L2 ≤ C
(
‖f ‖W−1,2

0
+ (1 + ‖a− e1‖L3)‖g‖Z2

)
.

Moreover such solution verifies the energy equality (3.11).

Proof. First note that div(a − e1) = 0 in R3 and supp(a − e1) is a compact
set into the ball BR0 . Then we obtain a− e1 ∈ H3. We can apply Proposition
7.4 with k = 1 to the problem

−∆u +
∂u
∂x1

+ ((a− e1) · ∇)u +∇π = f , divu = g in R3,

concluding the existence and uniqueness of the required solution to (1.1).
Moreover such solution verifies the energy equality (3.11), taking into account
that

〈 ∂u
∂x1

,u〉W−1,2
0 (R3)×W1,2

0 (R3) = 0 and
∫

R3
∇u : (a− e1)⊗ u dx = 0.
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Remark 8.2. The condition a ∈ L3(R3) is then not necessary to the existence
of a solution (u, π) ∈ X1,2

0 (R3)× L2(R3) of the problem (1.1).

Theorem 8.3. For 1 < p < ∞, let f ∈ W−1,p
0 (R3) and g ∈ Zp(R3) verify

(4.1) and (7.1), respectively. Let a be as in Theorem 8.1 such that

‖a− e1‖L3(BR0
) ≤ K, (8.2)

where K is the constant introduced in (4.6). Then the Oseen problem (1.1)
has a solution (u, π) ∈ X1,p

0 (R3)× Lp(R3) such that

‖u‖W1,p
0 (R3)/P[1−4/p]

+‖ ∂u
∂x1

‖W−1,p
0 (R3)+‖π‖Lp(R3) ≤ CK(‖f ‖W−1,p

0 (R3)+‖g‖Zp(R3))

and also that u ∈ L4p/(4−p)(R3) ∩ L3p/(3−p)(R3) if 1 < p < 3, u ∈ Lr(R3) for
all r ≥ 12 if p = 3, and u ∈ L4p/(4−p)(R3) ∩ L∞(R3) if 3 < p < 4.

Proof. We proceed as in the proof of Theorem 8.1, taking

c = a− e1 ∈ H3.

Next we observe that ‖c‖L3(R3) ≤ K. Then according to Theorem 7.6 there
exists a solution (u, π) ∈ X1,p

0 (R3) × Lp(R3) to (1.1) which concludes the
desired existence result.

Remark 8.4. Similarly to Theorem 7.8, for 1 < p < 3, if f ∈ Lp(R3), g ∈
X1,p

0 (R3) and a as given at Theorem 8.3, then the Oseen problem (1.1) has a
unique solution (u, π) ∈ X2,p

0 (R3)×W 1,p
0 (R3) as in Theorem 7.8. Analogously

to Theorem 7.9.

Remark 8.5. Analogously to Theorem 7.11, for p > 3/2, f and g under the
conditions of Theorem 7.11 and a as given at Theorem 8.3 and satisfy

∃L > 0 :
√

(a1(x )− 1)2 + a2
2(x ) + a2

3(x ) ≤ L

|x |
, a.e. x ∈ R3,

then the Oseen problem (1.1) has a unique solution (u, π) ∈ (X2,p
1 (R3)/P[1−4/p])×

W 1,p
1 (R3) as in Theorem 7.11.
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