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Abstract

In this Note, we present several results concerning vector potentials and scalar potentials in a bounded, not nec-
essarily simply-connected, three-dimensional domain. In particular, we consider singular potentials corresponding
to data in negative order Sobolev spaces. We also give some applications to Poincaré’s theorem and to Korn’s
inequality.

Résumé

Dans cette note, nous présentons plusieurs résultats concernant les potentiels vecteurs et les potentiels scalaires
dans des domaines bornés tridimensionnels, éventuellement multiplement connexes. En particulier, on considere

des potentiels singuliers correspondant & des données dans des espaces de Sobolev d’exposant négatif. On donne
également des applications au théoreme de Poincaré et a I'inégalité de Korn.

1. Weak versions of a classical theorem of Poincaré

In this work, we assume that 2 is a bounded open connected of R? with a Lipschitz-continuous boundary.
The notation x/ <,>x denotes a duality pairing between a topological space X and its dual X’. The
letter C' denotes a constant that is not necessarily the same at its various occurrences.
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Theorem 1 Let f € H-™(Q)3 for some integer m > 0. Then, the following assertions are equivalent:
() a-m) <f, ¢ >up@ =0 for any ¢ € Vy, = {p € HF"(Q)?; div ¢ = 0},
(i) g-m) <f, @ >mm@) =0 for any p €V = {p € 2(Q)%; div ¢ = 0},
(iii) There exists a distribution x € H="+1(Q), unique up to an additive constant, such that f = grad x
in €.

If Q) is in addition simply-connected, then the three previous statements are equivalent to:
(iv) curl f =0 in Q.
Proof. For the equivalence between (i), (ii) and (iii), we refer to [4]. The implication (iii) = (iv) clearly
holds. It thus remains to prove that (iv) = (iii). To begin with, let f € H~™()? be such that curl f = 0
in 2. We then use the same argument as in [6]. We know that there exist a unique u € HJ(Q2) and a
unique p € H=™T1(Q)/R (see [3]) such that

A"y +grad p=f and divu =0 in Q. (1)

Hence A™curl w = 0 in 2, so that the hypoellipticity of the polyharmonic operator A™ implies that
curl u € C*(Q)3. Since div u = 0, we deduce that Au = curl curl u € C>(2)3. This also implies that
A™uy belongs to C*°(2)® and is an irrotational vector field. By the classical Poincaré lemma, there exists
q € C*°(2)? such that A™u = grad ¢. Thus, we see that f = grad (p+ ¢) and thanks to [4] Proposition
2.10, the function p + ¢ belongs to the space H~™1(Q). O

We can give another proof of this implication (iv) = (iii) by using the following theorem:
Theorem 2 Assume that the sets Q and R3\ Q are simply-connected. Let w € HF*(Q)3, m > 0, be a
function that satisfies div w = 0 in Q. Then there exists a vector potential ¢ in HS”H(Q)?’ such that

u = curl ¥, div A"y =0 in Q, (2)
and the following estimate holds:

||1/J||Hm+1(§2)3 < C”UHHm(Q)S. (3)

Proof. Let u € H"(Q)* be such that div e = 0 in Q and let % denote the extension of w by 0 in
R3\ Q. Thus w € HJ*(R3)?, div 4 = 0 in R?, and there exist an open ball B containing Q and a vector
field w € Hy""(B)? such that @ = curl w in B, and

Hw||Hm+1(B)3 < CHU,HHm(B)S.

The open set Q' := B\ Q is bounded, has a Lipschitz-continuous boundary and is simply-connected.
Furthermore, the vector field w’ := w|q: belongs to H™+1(£)')3 and satisfies curl w’ = 0 in Q. Hence
there exists a function x’ € H'(Q') such that w’ = grad x’ in {'. Hence in fact Y’ € H™*2({)’) and the
estimate

X[ 2oy < Cllw'||gms s
holds. Since the function y’ € H™*2(Q)') can be extended to a function ¥ in H™T2(R3), with
XN 2 ey < ClX Nam+2(0ry < Cllw’||gm+ian)s,
the vector field @ := w — grad Y belongs to the space H™1(B)3 and satisfies @|o = 0. Then the
restriction ¢ := @|q is in the space Hy*t1(Q)3, satisfies the estimate (3), and curl @ = curl w = 4 in
B. Thus u = curl ¢ in Q, with ¢ € H""(Q)3. Let now p € HJ"**(Q) denote the unique solution of
A™F2p = div A™Hlyp, so that the estimate
[Pl zrm+2(0) < Cllpl rm+r(a)s

holds. Then the function 1 = ¢ — grad p satisfies (2)-(3). O
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We can now give another proof of the above implication (iv) = (iii): Consider again the solution
w € HP*(Q)? of (1) and let v € H"™(Q)? denote the vector potential of u as given by Theorem 2. We
then have A™curl v = 0. If m = 2k, with k > 1, then

H-m-1(0) < A™curl u, v >H6n+1(9)3 = g-1(0)3 < AFcurl u, AFy >Hé(Q)3
= /QAku -AFcurl v de = HAkuHQB(Q)g.

This implies that A*u = 0 in  and thus u = 0 since u € H*(Q). The case m = 2k + 1 follows by a
similar argument. O

2. Scalar Potentials

Let T';, 0 <4 < I, denote the connected components of the boundary I' of the domain €2, I'g being the
boundary of the only unbounded connected component of R3 \ . We do not assume that Q is simply-
connected, but we suppose that there exist J connected, oriented and open surfaces ¥;, 1 < j < J, called
“cuts”, contained in 2, such that each surface ¥; is an open subset of a smooth manifold, the boundary
of ¥; is contained in I' for 1 < j < J, the intersection X; N ¥, is empty for ¢ # j, and finally the open set
0° =0\ szl ¥; is simply-connected and pseudo-Lipschitz (see [1]). Finally, let [-]; denote the jump of
a function over ¥;, for 1 < j < J.

We then define the spaces

H(curl, Q) = {v € L*(Q)3; curl v € L*(Q)*}, H(div,Q) = {v € L*(Q)?; div v € L*(Q)},
which are provided with the graph norm, and their subspaces
Ho(curl,Q) = {v € H(curl,Q); v x n =0 onT}, Hy(div,Q)={v € H{div,Q); v-n =0 onT}.

For any function ¢ in H*(2°), grad ¢ is the gradient of ¢ in the sense of distributions in 2’(Q°). It
belongs to L?(Q°)3 and therefore can be extended to L?()3. In order to distinguish this extension from
the gradient of ¢ in 2'(2), we denote it by grad ¢. We finally observe that the space

Kr(Q) :={w € H(curl,Q) N Hy(div,Q); curl w =0 and div w =0 in 2}

is of dimension equal to J. As shown in [1] Prop. 3.14, it is spanned by the functions grad q;fp, 1<5<J,
where each qu € H'(9°) is unique up to an additive constant and satisfies Aq]T =0in Q°, Bnq;‘»r =0on
T, [qu]k = 5jk7 [8nqu]k =0 and H-1/2(3y,) < anqu, 1 >H1/2(Ek): 5jk for 1<k <J.

Theorem 3 For any function f € L?(Q)? that satisfies

curl f=0inQ and /f-v de =0 for all v € Kr(Q), 4)
Q

there exists a scalar potential x in H'(Q) such that f = grad x and the following estimate holds:
X[l @) < CllifllLz)s- (5)

Proof. It suffices to show that, given any v € Hy(div, ) such that div v = 0 in , there holds

(f,v)r2(0)s = 0. For such v € Hy(div,Q), let z = ijl 125y < von, 1 >pes grad q;‘-F

and w = v — z. According to [1], Theorem 3.17, there exists a vector potential ¥ € L?(Q)? satisfying
w =curl ¥, dive =01in Q and ¥ x n =0 on I'. Hence

/Qf-v dmz/ﬂf-curl@bdmzo.
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The result is then a consequence of Theorem 1: there exists a function y € H*(Q) satisfying f = grad y
and the estimate (5) holds. O

Remark 4 Any function f € L?(2)? that satisfies curl f = 0 in Q can be decomposed as:

f=grad y +grad p, with xe€ H (Q) and gradpec Kr(Q).

Such a result is alluded to in [7] (page 959) ; however it is not proven there.

The second condition in (4) is trivially satisfied when Q is simply-connected since Kr(Q) = {0} in this
case.

Theorem 5 For any distribution f in the dual space of Ho(div,Q) that satisfies

curl f=0 inQ and Ho(div,)y <f 5 ¥ >my@iv,)=0 forall v e Kp(), (6)
there exists a scalar potential x in L?(Q) such that f = grad x and the following estimate holds:
IXllz20) < ClF Nl o (aiv,0 - (7)

Proof. Let f be in the dual space of Hy(div,Q) with curl f = 0 in Q. We know that there exists
¥ € L?(Q)? and xo € L?(Q) such that f = 1 + grad xo, with the estimate (see Proposition 1 of [5])

¥l L2 )2 + lIxollz2@) < ClFllmoaiv.0) -

Observe that, thanks to the density of 2(Q)3 in Hy(div, ), we have Ho(div,0)y < grad Xo, v >, (aiv,0)=
0, for all v € K7(Q). Therefore, the function 1 € L?(2)? satisfies the conditions (4). By Theorem 3,
there exists a function p € H(£2) such that 1 = grad p, with the estimate

ol @) < Cllvlie)z < Clfll Ho(div.0) -

Hence, the function xy = p + xo satisfies the announced properties. O

More generally, for any integer m > 1, let us introduce the space
H{'(div, Q) = {v € Hy(div,Q); dive € HJ* () }.

We can prove that 2(Q2)3 is dense in HJ"(div, Q). Moreover, we can characterize its dual space, denoted
by H~"(div, Q):

H~™(div,Q) = {4 + grad x; ¥ € Ho(div,Q)’, x € H ()}

As a consequence of Theorem 5, it is easy to prove that, for any distribution f € H~™(div,{?) that
satisfies (6), there exists a scalar potential x in H~™(f) such that f = grad x. We thus obtain an
extension of part (iv) in Theorem 1 in the case where 2 is multiply-connected.

3. "Weak” vector potentials

First, we note that the continuous embeddings Hy(curl, ) — H~1(Q)? and Hy(div, Q) — H~1(Q)3
hold. Besides, for any f € H~1(Q)3, we know that there exist a unique w € Hg(2)? such that div u =0
in 2, and y € L?(Q) such that f = Au + grad y and the estimate

lwllar s + Ixll2@)r < Clflla-1 )3

holds. Letting &€ = curl u, we obtain f = curl £ + grad y. Since & € L?(Q)3 and x € L?(), it follows
that curl & € Hy(curl, Q)" and grad x € Hy(div, ). Therefore

HYQ)? = Hy(curl, Q) + Hy(div, Q).
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Here, we consider the other kernel
Kn(9Q) = {w € Hy(curl,Q) N H(div,Q); curl w =0 and divw =0 in O}

which is of dimension equal to I. It is spanned (see Proposition 3.18 of [1] for a proof) by the functions
grad ¢, 1 <i < N, where each ¢" € H'((Q) is the unique solution to the problem Ag¢Y¥ = 0in Q, ¢~ =0
on I'y, H-1/2(Ty) < 8nqlN, 1 >H1/2(Fg): —1, and qu = const on I'y, H-1/2(T,) < aanv, 1 >H1/2(Fk): 5@’1@7
for1<k<I.

Theorem 6 For any distribution f in the dual space Ho(curl, Q)" that satisfies

divf=0 inQ and pgyecurroy <f, ¥ >Hycur,)=0 forall v e Ky(Q), (8)
there exists a vector potential &€ in L?(Q)? such that
f=curl & with divE=0 nQ and € n=0 onl, (9)
and such that the following estimate holds:

€l 22y < CllFll o (cur,0) - (10)

Proof. Let f be in the dual space Hy(curl, Q). According to Corollary 5 of [5], there exist ¥ € L?*(Q)3
and &, € L?(Q)? with div €&, =0 in Q and &,-n = 0 on I, such that f = 1 + curl £, and such that the
estimate

[Yll2)2 + €ollz2)2 < ClFll Ho(curr,0)

holds. Thanks to the density of 2(2)3 in Hy(curl,(2), we deduce that for all v € Ky(Q), we have
Ho(curL,y < curl &, v >p (curt,0)= 0. Since div f = 0, it follows that div ¢ = 0. Then, thanks to
the orthogonality condition, g, (cur,0)y < f , grad v > Hy(cur,o)= 0 for all i = 1,..., I, the condition
a2y < ®-n, 1 >gysp,)= 0 is satisfied for all ¢ = 0,...,I. There thus exists a vector potential
p € L*(Q)3 (see Theorem 3.12 of [1]) such that 1 = curl ¢, with div =0in Q and p-n =0 on T,
and such that the estimate

lellzz@yps < Cllpll2a)s-

holds. Hence, the vector function & = &, + ¢ possesses the announced properties. g

Remark 7 Theorem 6 has been established in [5] when I is connected, in which case Ky = {0}.
For any integer m > 1, let us now introduce the space

H"(curl, Q) := {v € Hy(curl,Q); curl v € H*(Q)}.
We can prove that 2(2)? is dense in HJ*(curl, Q). Moreover, we can characterize its dual space as
H~™(curl, Q) = {¢ + curl &; ¥ € Hy(curl,Q), € € H™(Q)3}.

Like in Section 3, given any distribution f € H ™™ (curl,Q), with m > 1, that satisfies (8), there exists
a vector potential & € H~™(Q)3 such that f = curl £. Finally, using the decomposition (1) with m
replaced by m + 1, it is easy to prove, as in Section 3 , that

H™™1Q)* = H ™ (curl,Q) + H " (div,Q), for m >1.

4. Generalized Korn’s Inequality

Finally, we consider tensor fields.



Theorem 8 Assume that ) is simply-connected. Given any integer m > 0, let e = (e;;) € H~™(2)3*3
be a symmetric matriz field that satisfies the following compatibility conditions for all 4, j,k,1 € {1,2,3}:
82e¢k (926jl 82€jk 82611

ikl = - - =0 in H ™). 11
Rijki oo, +8xk8xi Dm0z, Dwrdz, 0 in (Q) (11)

Then there exists a vector field v € H="11(Q)3 such that e;; = —( ‘%1 + a”]) and v is unique up to vector
fields in the space R(Q) = {a + b Aidg; a,b € R3}.

Proof. Let e = (e;;) € H;™(£2)**3 (the subscript s denotes a symmetric matrix field), and let f;;; =
%e—gg]’? — %‘J’;’“ Then fijx € H~™ Q) and, thanks to the compatibility conditions (11), we have 8%1 fijk =

B%k fiji. Hence the implication (iii) = (iv) in Theorem 1 shows that there exist distributions p;; €

H~™(Q), unique up to additive constants, such that %pij = fiji. Besides, since %pij = —a%kpji,
we can choose the distributions p;; in such a way that p;; + p;; = 0. Noting that the distributions
¢ij := €;; + pij belong to H~™(Q) and satisty %qij = 3a; dik> W again resort to Theorem 1 to assert

the existence of distributions v; € H~™%1(Q), unique up to additive constants, such that ‘%1 =gq; . O

Define, for any integer m > 0, the following spaces:
E(Q) :={e € H;™(Q)**3, Zijr(e) =0} and H"HHQ)% .= HHH(Q)?/R(Q)

By the previous theorem, for any e = (e;;) € E(f), there exists a unique ¥ = (9;) € H~-"1(Q)? such
that e;; = %(3?;] + av]) We may thus define a linear mapping F : E(Q) — H~"t1(Q)3 by F(e) = v.
Using the same method as in [6], we can then prove the following result:

Theorem 9 The linear mapping F : E(Q) — H-™tY(Q)3 is an isomorphism. Besides, there exists a
constant C' > 0 such that

. —m—+1 3
Telgfﬂ v + 7| g-m+1 () < CZH% Wer-m(oy forall v € H-™(Q)?,

3,J

and
vl g-mirs < CUlvl|a-m@)ps + Z lleij(v)||g-—m)) forallve H-m+1(Q)3

a’Uj )

where e;;(v) = $(2% + 7as)-

Bwj
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