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Abstract

In this Note, we present several results concerning vector potentials and scalar potentials in a bounded, not nec-

essarily simply-connected, three-dimensional domain. In particular, we consider singular potentials corresponding

to data in negative order Sobolev spaces. We also give some applications to Poincaré’s theorem and to Korn’s

inequality.

Résumé

Dans cette note, nous présentons plusieurs résultats concernant les potentiels vecteurs et les potentiels scalaires

dans des domaines bornés tridimensionnels, éventuellement multiplement connexes. En particulier, on considère

des potentiels singuliers correspondant à des données dans des espaces de Sobolev d’exposant négatif. On donne

également des applications au théorème de Poincaré et à l’inégalité de Korn.

1. Weak versions of a classical theorem of Poincaré

In this work, we assume that Ω is a bounded open connected of R3 with a Lipschitz-continuous boundary.
The notation X′ <, >X denotes a duality pairing between a topological space X and its dual X ′. The
letter C denotes a constant that is not necessarily the same at its various occurrences.
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Theorem 1 Let f ∈ H−m(Ω)3 for some integer m ≥ 0. Then, the following assertions are equivalent:
(i) H−m(Ω) < f , ϕ >Hm

0
(Ω) = 0 for any ϕ ∈ Vm = {ϕ ∈ Hm

0 (Ω)3; div ϕ = 0},

(ii) H−m(Ω) < f , ϕ >Hm
0

(Ω) = 0 for any ϕ ∈ V = {ϕ ∈ D(Ω)3; div ϕ = 0},

(iii) There exists a distribution χ ∈ H−m+1(Ω), unique up to an additive constant, such that f = grad χ
in Ω.

If Ω is in addition simply-connected, then the three previous statements are equivalent to:
(iv) curl f = 0 in Ω.
Proof. For the equivalence between (i), (ii) and (iii), we refer to [4]. The implication (iii) =⇒ (iv) clearly
holds. It thus remains to prove that (iv) =⇒ (iii). To begin with, let f ∈ H−m(Ω)3 be such that curl f = 0
in Ω. We then use the same argument as in [6]. We know that there exist a unique u ∈ Hm

0 (Ω)3 and a
unique p ∈ H−m+1(Ω)/R (see [3]) such that

∆mu + grad p = f and div u = 0 in Ω. (1)

Hence ∆mcurl u = 0 in Ω, so that the hypoellipticity of the polyharmonic operator ∆m implies that
curl u ∈ C∞(Ω)3. Since div u = 0, we deduce that ∆u = curl curl u ∈ C∞(Ω)3. This also implies that
∆mu belongs to C∞(Ω)3 and is an irrotational vector field. By the classical Poincaré lemma, there exists
q ∈ C∞(Ω)3 such that ∆mu = grad q. Thus, we see that f = grad (p + q) and thanks to [4] Proposition
2.10, the function p + q belongs to the space H−m+1(Ω). �

We can give another proof of this implication (iv) =⇒ (iii) by using the following theorem:
Theorem 2 Assume that the sets Ω and R3 \ Ω are simply-connected. Let u ∈ Hm

0 (Ω)3, m ≥ 0, be a
function that satisfies div u = 0 in Ω. Then there exists a vector potential ψ in Hm+1

0 (Ω)3 such that

u = curl ψ, div ∆m+1ψ = 0 in Ω, (2)

and the following estimate holds:

‖ψ‖Hm+1(Ω)3 ≤ C‖u ‖Hm(Ω)3 . (3)

Proof. Let u ∈ Hm
0 (Ω)3 be such that div u = 0 in Ω and let ũ denote the extension of u by 0 in

R3 \ Ω. Thus ũ ∈ Hm
0 (R3)3, div ũ = 0 in R3, and there exist an open ball B containing Ω and a vector

field w ∈ Hm+1
0 (B)3 such that ũ = curl w in B, and

‖w ‖Hm+1(B)3 ≤ C‖u ‖Hm(B)3 .

The open set Ω′ := B \ Ω is bounded, has a Lipschitz-continuous boundary and is simply-connected.
Furthermore, the vector field w ′ := w |Ω′ belongs to Hm+1(Ω′)3 and satisfies curl w ′ = 0 in Ω′. Hence
there exists a function χ′ ∈ H1(Ω′) such that w ′ = grad χ′ in Ω′. Hence in fact χ′ ∈ Hm+2(Ω′) and the
estimate

‖χ′‖Hm+2(Ω′) ≤ C‖w ′‖Hm+1(Ω′)3

holds. Since the function χ′ ∈ Hm+2(Ω′) can be extended to a function χ̃ in Hm+2(R3), with

‖χ̃‖Hm+2(R3) ≤ C‖χ′‖Hm+2(Ω′) ≤ C‖w ′‖Hm+1(Ω′)3 ,

the vector field ϕ̃ := w − grad χ̃ belongs to the space Hm+1(B)3 and satisfies ϕ̃|Ω′ = 0. Then the
restriction ϕ := ϕ̃|Ω is in the space Hm+1

0 (Ω)3, satisfies the estimate (3), and curl ϕ̃ = curl w = ũ in
B. Thus u = curl ϕ in Ω, with ϕ ∈ Hm+1

0 (Ω)3. Let now p ∈ Hm+2
0 (Ω) denote the unique solution of

∆m+2p = div ∆m+1ϕ, so that the estimate

‖p‖Hm+2(Ω) ≤ C‖ϕ‖Hm+1(Ω)3

holds. Then the function ψ = ϕ− grad p satisfies (2)-(3). �
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We can now give another proof of the above implication (iv) =⇒ (iii): Consider again the solution
u ∈ Hm

0 (Ω)3 of (1) and let v ∈ Hm+1
0 (Ω)3 denote the vector potential of u as given by Theorem 2. We

then have ∆mcurl u = 0. If m = 2k, with k ≥ 1, then

H−m−1(Ω)3 < ∆mcurl u , v >Hm+1

0
(Ω)3 = H−1(Ω)3 < ∆kcurl u , ∆kv >H1

0
(Ω)3

=

∫

Ω

∆ku · ∆kcurl v dx = ‖∆ku ‖2
L2(Ω)3 .

This implies that ∆ku = 0 in Ω and thus u = 0 since u ∈ Hm
0 (Ω)3. The case m = 2k + 1 follows by a

similar argument. �

2. Scalar Potentials

Let Γi, 0 ≤ i ≤ I, denote the connected components of the boundary Γ of the domain Ω, Γ0 being the
boundary of the only unbounded connected component of R3 \ Ω. We do not assume that Ω is simply-
connected, but we suppose that there exist J connected, oriented and open surfaces Σj , 1 ≤ j ≤ J , called
“cuts”, contained in Ω, such that each surface Σj is an open subset of a smooth manifold, the boundary
of Σj is contained in Γ for 1 ≤ j ≤ J , the intersection Σi ∩Σj is empty for i 6= j, and finally the open set

Ω◦ = Ω \
⋃J

j=1 Σj is simply-connected and pseudo-Lipschitz (see [1]). Finally, let [·]j denote the jump of
a function over Σj , for 1 ≤ j ≤ J .

We then define the spaces

H(curl, Ω) = {v ∈ L2(Ω)3; curl v ∈ L2(Ω)3}, H(div, Ω) = {v ∈ L2(Ω)3; div v ∈ L2(Ω)},

which are provided with the graph norm, and their subspaces

H0(curl, Ω) = {v ∈ H(curl, Ω); v × n = 0 on Γ}, H0(div, Ω) = {v ∈ H(div, Ω); v ·n = 0 on Γ}.

For any function q in H1(Ω◦), grad q is the gradient of q in the sense of distributions in D ′(Ω◦). It
belongs to L2(Ω◦)3 and therefore can be extended to L2(Ω)3. In order to distinguish this extension from

the gradient of q in D ′(Ω), we denote it by g̃rad q. We finally observe that the space

KT (Ω) := {w ∈ H(curl, Ω) ∩ H0(div, Ω); curl w = 0 and div w = 0 in Ω}

is of dimension equal to J . As shown in [1] Prop. 3.14, it is spanned by the functions g̃rad qT
j , 1 ≤ j ≤ J ,

where each qT
j ∈ H1(Ω◦) is unique up to an additive constant and satisfies ∆qT

j = 0 in Ω◦, ∂nqT
j = 0 on

Γ, [qT
j ]k = δjk, [∂nqT

j ]k = 0 and H−1/2(Σk) < ∂nqT
j , 1 >H1/2(Σk)= δjk for 1 ≤ k ≤ J .

Theorem 3 For any function f ∈ L2(Ω)3 that satisfies

curl f = 0 in Ω and

∫

Ω

f · v dx = 0 for all v ∈ KT (Ω), (4)

there exists a scalar potential χ in H1(Ω) such that f = grad χ and the following estimate holds:

‖χ‖H1(Ω) ≤ C‖f ‖L2(Ω)3 . (5)

Proof. It suffices to show that, given any v ∈ H0(div, Ω) such that div v = 0 in Ω, there holds

(f , v )L2(Ω)3 = 0. For such v ∈ H0(div, Ω), let z =
∑J

j=1 H−1/2(Σj) < v · n , 1 >H1/2(Σj) g̃rad qT
j

and w = v − z . According to [1], Theorem 3.17, there exists a vector potential ψ ∈ L2(Ω)3 satisfying
w = curl ψ, div ψ = 0 in Ω and ψ × n = 0 on Γ. Hence

∫

Ω

f · v dx =

∫

Ω

f · curl ψ dx = 0.
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The result is then a consequence of Theorem 1: there exists a function χ ∈ H1(Ω) satisfying f = grad χ
and the estimate (5) holds. �

Remark 4 Any function f ∈ L2(Ω)3 that satisfies curl f = 0 in Ω can be decomposed as:

f = grad χ + g̃rad p, with χ ∈ H1(Ω) and g̃rad p ∈ KT (Ω).

Such a result is alluded to in [7] (page 959) ; however it is not proven there.
The second condition in (4) is trivially satisfied when Ω is simply-connected since KT (Ω) = {0} in this
case.
Theorem 5 For any distribution f in the dual space of H0(div, Ω) that satisfies

curl f = 0 in Ω and H0(div,Ω)′ < f , v >H0(div,Ω)= 0 for all v ∈ KT (Ω), (6)

there exists a scalar potential χ in L2(Ω) such that f = grad χ and the following estimate holds:

‖χ‖L2(Ω) ≤ C‖f ‖H0(div,Ω)′ . (7)

Proof. Let f be in the dual space of H0(div, Ω) with curl f = 0 in Ω. We know that there exists
ψ ∈ L2(Ω)3 and χ0 ∈ L2(Ω) such that f = ψ + grad χ0, with the estimate (see Proposition 1 of [5])

‖ψ‖L2(Ω)3 + ‖χ0‖L2(Ω) ≤ C‖f ‖H0(div,Ω)′ .

Observe that, thanks to the density of D(Ω)3 in H0(div, Ω), we have H0(div,Ω)′ < grad χ0, v >H0(div,Ω)=
0, for all v ∈ KT (Ω). Therefore, the function ψ ∈ L2(Ω)3 satisfies the conditions (4). By Theorem 3,
there exists a function p ∈ H1(Ω) such that ψ = grad p, with the estimate

‖p‖H1(Ω) ≤ C‖ψ‖L2(Ω)3 ≤ C‖f ‖H0(div,Ω)′ .

Hence, the function χ = p + χ0 satisfies the announced properties. �

More generally, for any integer m ≥ 1, let us introduce the space

Hm
0 (div, Ω) = {v ∈ H0(div, Ω); divv ∈ Hm

0 (Ω)}.

We can prove that D(Ω)3 is dense in Hm
0 (div, Ω). Moreover, we can characterize its dual space, denoted

by H−m(div, Ω):

H−m(div, Ω) = {ψ + grad χ; ψ ∈ H0(div, Ω)′, χ ∈ H−m(Ω)}.

As a consequence of Theorem 5, it is easy to prove that, for any distribution f ∈ H−m(div, Ω) that
satisfies (6), there exists a scalar potential χ in H−m(Ω) such that f = grad χ. We thus obtain an
extension of part (iv) in Theorem 1 in the case where Ω is multiply-connected.

3. ”Weak” vector potentials

First, we note that the continuous embeddings H0(curl, Ω)′ ↪→ H−1(Ω)3 and H0(div, Ω)′ ↪→ H−1(Ω)3

hold. Besides, for any f ∈ H−1(Ω)3, we know that there exist a unique u ∈ H1
0 (Ω)3 such that div u = 0

in Ω, and χ ∈ L2(Ω) such that f = ∆u + grad χ and the estimate

‖u ‖H1(Ω)3 + ‖χ‖L2(Ω)/R ≤ C‖f ‖H−1(Ω)3

holds. Letting ξ = curl u , we obtain f = curl ξ + grad χ. Since ξ ∈ L2(Ω)3 and χ ∈ L2(Ω), it follows
that curl ξ ∈ H0(curl, Ω)′ and grad χ ∈ H0(div, Ω)′. Therefore

H−1(Ω)3 = H0(curl, Ω)′ + H0(div, Ω)′.
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Here, we consider the other kernel

KN (Ω) = {w ∈ H0(curl, Ω) ∩ H(div, Ω); curl w = 0 and div w = 0 in Ω}

which is of dimension equal to I. It is spanned (see Proposition 3.18 of [1] for a proof) by the functions
grad qN

i , 1 ≤ i ≤ N , where each qN
i ∈ H1(Ω) is the unique solution to the problem ∆qN

i = 0 in Ω, qN
i = 0

on Γ0, H−1/2(Γ0) < ∂nqN
i , 1 >H1/2(Γ0)= −1, and qN

i = const on Γk, H−1/2(Γk) < ∂nqN
i , 1 >H1/2(Γk)= δik,

for 1 ≤ k ≤ I.
Theorem 6 For any distribution f in the dual space H0(curl, Ω)′ that satisfies

div f = 0 in Ω and H0(curl,Ω)′ < f , v >H0(curl,Ω)= 0 for all v ∈ KN (Ω), (8)

there exists a vector potential ξ in L2(Ω)3 such that

f = curl ξ, with div ξ = 0 in Ω and ξ · n = 0 on Γ, (9)

and such that the following estimate holds:

‖ξ‖L2(Ω)3 ≤ C‖f ‖H0(curl,Ω)′ . (10)

Proof. Let f be in the dual space H0(curl, Ω)′. According to Corollary 5 of [5], there exist ψ ∈ L2(Ω)3

and ξ0 ∈ L2(Ω)3 with div ξ0 = 0 in Ω and ξ0 ·n = 0 on Γ, such that f = ψ + curl ξ0 and such that the
estimate

‖ψ‖L2(Ω)3 + ‖ξ0‖L2(Ω)3 ≤ C‖f ‖H0(curl,Ω)′

holds. Thanks to the density of D(Ω)3 in H0(curl, Ω), we deduce that for all v ∈ KN(Ω), we have

H0(curl,Ω)′ < curl ξ0 , v >H0(curl,Ω)= 0. Since div f = 0, it follows that div ψ = 0. Then, thanks to
the orthogonality condition, H0(curl,Ω)′ < f , grad qN

i >H0(curl,Ω)= 0 for all i = 1, . . . , I, the condition

H−1/2(Γi) < ψ · n , 1 >H1/2(Γi)= 0 is satisfied for all i = 0, . . . , I. There thus exists a vector potential

ϕ ∈ L2(Ω)3 (see Theorem 3.12 of [1]) such that ψ = curl ϕ, with div ϕ = 0 in Ω and ϕ · n = 0 on Γ,
and such that the estimate

‖ϕ‖L2(Ω)3 ≤ C‖ψ‖L2(Ω)3 .

holds. Hence, the vector function ξ = ξ0 +ϕ possesses the announced properties. �

Remark 7 Theorem 6 has been established in [5] when Γ is connected, in which case KN = {0}.
For any integer m ≥ 1, let us now introduce the space

Hm
0 (curl, Ω) := {v ∈ H0(curl, Ω); curl v ∈ Hm

0 (Ω)3}.

We can prove that D(Ω)3 is dense in Hm
0 (curl, Ω). Moreover, we can characterize its dual space as

H−m(curl, Ω) = {ψ + curl ξ; ψ ∈ H0(curl, Ω)′, ξ ∈ H−m(Ω)3}.

Like in Section 3, given any distribution f ∈ H−m(curl, Ω), with m ≥ 1, that satisfies (8), there exists
a vector potential ξ ∈ H−m(Ω)3 such that f = curl ξ. Finally, using the decomposition (1) with m
replaced by m + 1, it is easy to prove, as in Section 3 , that

H−m−1(Ω)3 = H−m(curl, Ω) + H−m(div, Ω), for m ≥ 1.

4. Generalized Korn’s Inequality

Finally, we consider tensor fields.
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Theorem 8 Assume that Ω is simply-connected. Given any integer m ≥ 0, let e = (eij) ∈ H−m(Ω)3×3

be a symmetric matrix field that satisfies the following compatibility conditions for all i, j, k, l ∈ {1, 2, 3}:

Rijkl :=
∂2eik

∂xl∂xj
+

∂2ejl

∂xk∂xi
−

∂2ejk

∂xl∂xi
−

∂2eil

∂xk∂xj
= 0 in H−m−2(Ω). (11)

Then there exists a vector field v ∈ H−m+1(Ω)3 such that eij = 1
2 ( ∂vi

∂xj
+

∂vj

∂xi
) and v is unique up to vector

fields in the space R(Ω) = {a + b ∧ idΩ; a , b ∈ R3}.
Proof. Let e = (eij) ∈ H−m

s (Ω)3×3 (the subscript s denotes a symmetric matrix field), and let fijk :=
∂eik

∂xj
−

∂ejk

∂xi
. Then fijk ∈ H−m−1(Ω) and, thanks to the compatibility conditions (11), we have ∂

∂xl
fijk =

∂
∂xk

fijl. Hence the implication (iii) =⇒ (iv) in Theorem 1 shows that there exist distributions pij ∈

H−m(Ω), unique up to additive constants, such that ∂
∂xk

pij = fijk. Besides, since ∂
∂xk

pij = − ∂
∂xk

pji,
we can choose the distributions pij in such a way that pij + pji = 0. Noting that the distributions
qij := eij + pij belong to H−m(Ω) and satisfy ∂

∂xk
qij = ∂

∂xj
qik, we again resort to Theorem 1 to assert

the existence of distributions vi ∈ H−m+1(Ω), unique up to additive constants, such that ∂vi

∂xj
= qij . �

Define, for any integer m ≥ 0, the following spaces:

E(Ω) := {e ∈ H−m
s (Ω)3×3, Rijkl(e ) = 0} and Ḣ−m+1(Ω)3 := H−m+1(Ω)3/R(Ω)

By the previous theorem, for any e = (eij) ∈ E(Ω), there exists a unique v̇ = (v̇i) ∈ Ḣ−m+1(Ω)3 such

that eij = 1
2 ( ∂v̇i

∂xj
+

∂v̇j

∂xi
). We may thus define a linear mapping F : E(Ω) → Ḣ−m+1(Ω)3 by F(e ) = v̇ .

Using the same method as in [6], we can then prove the following result:
Theorem 9 The linear mapping F : E(Ω) → Ḣ−m+1(Ω)3 is an isomorphism. Besides, there exists a
constant C ≥ 0 such that

inf
r∈R(Ω)

‖v + r‖H−m+1(Ω)3 ≤ C
∑

i,j

‖e ij(v )‖H−m(Ω) for all v ∈ H−m+1(Ω)3,

and
‖v ‖H−m+1(Ω)3 ≤ C(‖v ‖H−m(Ω)3 +

∑

i,j

‖e ij(v )‖H−m(Ω)) for all v ∈ H−m+1(Ω)3

where eij(v ) = 1
2 ( ∂vi

∂xj
+

∂vj

∂xi
).
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[3] C. Amrouche, V. Girault, Problèmes généralisés de Stokes, Portug. Math. 49 (1992), pp. 464-503.

[4] C. Amrouche, V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension,
Czech. Math. Jour. 44, (1994), pp. 109–140.

6



[5] C. Bernardi, V. Girault, Espaces duaux des domaines des opérateurs divergence et rotationnel avec trace nulle,
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