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Abstract : The purpose of this work is to solve exterior problems in the half-
space for the Laplace operator. We give existence and unicity results in weighted
LP’s theory with 1 < p < oo. This paper extends the studies done in [5] with
Dirichlet and Neumann conditions.
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1 Introduction and preliminaries

Many problems in fluid dynamics, such as flows past obstacles, around cor-
ners or through pipes or apertures, are first conceptualized by Stokes or Navier-
Stokes equations in unbounded domains. Our aim is to solve such systems in
a particular unbounded domain for which any result is known. This domain,
that we call exterior domain in the half-space, is the complement in the upper
half-space of a compact region wy. We can see this geometry as an extension of
the “classical” exterior domain, i.e the complement of wq in the whole space. In
a forthcoming paper, we study a Stokes system on such a domain but prior to
that, it can be interesting to give results for the Laplace’s equation. Thus, in
this work, we want to solve the exterior Laplace’s problem in the half-space.

First, let us recall some elements for the Laplace’s equation in a classical
exterior domain, domain which is the basis of ours. Several families of spaces
are used for this operator, like the completion of D(°wp) for the norm of the
gradient in LP(“wp) (where “wy is the complement of wy in R™), which has the
inconvenient that, when p > n, some very treacherous Cauchy sequences exist
in D(‘wp) that do not converge to distributions, a behaviour carefully described
in 1954 by Deny and Lions (cf. [9]). An other family of spaces is the subspace in

LY (‘wg) of functions whose gradients belong to L”(wy), subspace which have
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an imprecision at infinity inherent to the L}  norm.

An other approach is to set problems in weighted Sobolev spaces where the
growth or decay of functions at infinity are expressed by means of weights. These
spaces have several advantages : they satisfy an optimal weighted Poincaré-type
inequality ; they allow us to describe the behaviour of functions and not just of
their gradient, which is vital from the mathematical and the numerical point of
view.

Without being exhaustive, we can recall works of several authors who have
contributed to the solution of Laplace’s equation in a classical exterior domain
by means of weighted Sobolev spaces : see Cantor [8], Giroire [10], Giroire and
Nedelec [11], Nedelec [18], Nedelec and Planchard [19], Hsiao and Wendland
[13], Leroux [14] and [15], McOwen [16] and Amrouche, Girault and Giroire [5].

In this paper, we choose to set our problems in weighted Sobolev spaces and
we remind that here, our originality, with respect to results previously quoted, is
to extend the resolution of the exterior Laplace’s problem in the whole space to
the exterior problem in the half-space. From this extension, comes an additional
difficulty due to the nature of the boundary. Indeed, as it contains R*~!, it is
not bounded anymore. So, we have to introduce weights even in the spaces of
traces. We can cite Hanouzet [12] who has given the first results for such spaces
in 1971 and Amrouche, Necasova [6] who have extended these results in 2001
to weighted Sobolev spaces which possess logarithmic weights (we just remind
that logarithmic weights allow us to have a Poincaré-type inequality even in the
“critical” cases; see below for more details). Nevertheless, the half-space has a
useful symmetric property what we use many times in this work.

Moreover, we deal with problems which have Dirichlet or Neumann conditions
on the bounded boundary but also on the unbounded boundary, that is to say
on R"~ 1. So, we want to solve the four following problems :

(Pp) —Au=finQ, u=goonTy, u=g; on R"}
ou

. ou .
(PN) _Au:fan, a—nzgoonI‘o, a—n:glonR 17
0
(Pay) —Au=finQ, u=goon Iy, a—z =g, on R" 71,

Ou =goonTy, u=g;onR"",

on

with €2 the complement of wy in R”}, where wy is a compact and non-empty sub-
set of R", n > 2 and I'g the boundary of wy. We supposed that Iy is connected
so that € is connected too. We suppose that ) is of class C1'!, even if, for some
values of the exponent p, €2 can be less regular.

Each section of this paper is devoted to the study of one of the four problems.
We will call (Par,) and (Pag,) the first and the second mixed problem because
of the presence of both a Dirichlet condition and a Neumann one. The main
results of this work are Theorems 2.2, 3.3, 4.3 and 5.4.

(Pr,) — Au= fin Q,

We complete this introduction with a short review of the weighted Sobolev
spaces and their trace spaces. For any integer ¢ we denote by P, the space of
polynomials in n variables, of degree less than or equal to ¢, with the convention



that P, is reduced to {0} when ¢ is negative.
For any real number p € |1, 4+00[, we denote by p’ the dual exponent of p :

11
p oy
Let ¢ = (331,.. x,) be a typical point of R, &’ = (x1,...,2,-1) and let

r=|z|= (2% +- + x2)1/2 denote its distance to the origin. We shall use two
basic Weights
p=1+r)Y? and lg p=In(2+1?).

As usual, D((2) is the space of indefinitely differentiable functions with compact
support, D'(Q2) its dual space, called the space of distributions and D(2) the
space of restrictions to §2 of functions in D(R™).

Then, we define the two following spaces :
WEP(Q) = {u e D'(Q), wﬁ € LP(Q), Vu € LP(Q)}
1
and

Wi(Q) = {u e D(Q), — € L'(Q), Vue L'(Q),
1

0%u
paxiaxj

e LP(Q), i,7=1,...,n},

where wy is defined by :
=4 P if n # p,
Y7 plgp ifn=p.
They are reflexive Banach spaces equipped, respectively, with natural norms :

lullyin iy = (lwi ullfp gy + IVulg 0 )"

and
||UHW?"(Q) = (Jlwy uHLp(Q + ||Vu||II),P(Q) + Z ||pax 0z Iip(Q))l/p-
1<4,j<n

We also define semi-norms :

luly1rq) = IVullLr o)
and

0u
|u|vaP(Q) = ( Z ”pax oz, HLP(Q)) /o,

1<i,j<n
We set the following spaces :

W (@) = D) e and W 3e(Q) = D) e,

and we easily check that

W SP() = {ue W§P(Q),u=0on o UR" 1}



and that

- B
W 2P(Q) = {u € WP(Q),u = a% =0 on Ty UR™ !}

where the sense of traces of these functions are given below. The weights defined
previously are chosen so that the space D(Q) is dense in W§(Q) and in WP (Q)
and so that the following Poincaré-type inequalities hold :

Yu € Wé#’(Q),k inf lu+kllyreg) < C lulyieg,

Pli—n/p]

noticing that Pj;_,/p = {0} si p < n, and
Vue W 5" (Q), [ullyrr gy < C lulyrq)-

We have similar inequalities for the space W?>?(Q). These results are proved, in
the general case, by Amrouche, Girault and Giroire [5] in an exterior domain
and by Amrouche and Necasova [6] in the half-space. They are extended to this
domain by an adequate partition of unity. We denote by W Lp (Q) (respectively
WZ22(Q)) the dual space of W (1),1/(9) (respectively of W f"/(Q)) It is spaces
of distributions.

Then, we define too, for ¢ € R, the space W?’p(Q) by :
WP (Q) = {u € D'(Q), p'u € LP(Q)}.
We have, if n # p, the continuous injections
WiP(Q) c WoP(Q) and WO (Q) c W5t (Q).

Now, we want to define the traces of functions of W?(Q) and W2P(Q).
These traces have a component on I'y and an other component on R*~!. For
the traces on I'y, we return to Adams [1] or Necas [17] for the definition of the
two spaces Wl_%”’(f‘g) and WQ_%’I’(FO) and for the usual trace theorems. For
the traces of functions on R"~!, we send back to Amrouche and Neasova [6]
for general definitions and here, we define the three following spaces :

1-4.p

Wa PR = {u e DR )0y Pu e PR,
/ lu(z) — u(y)|?
R

dedy <
no1ygn-1 | — y|rtP—2 xdy < oo},

where

o' if n # p,

UJQ = , , P/ 'f _
p'(lg p')P it n=np,
with p' = (14 [2/|?)Y/? and lg p’ = In(2 + |2/|?). Tt is a reflexive Banach space

equipped with its natural norm
—1+5 u(z) — u(y)|”
(o Falp oy + | ) — )l

y|ntr—2 dmdy)l/p.

n—1yRn—1 ‘:B -



We show that the mapping

1=2.P e
0 : WoP(R}) — Wy P (R

U = 'U/“Rn—l

is continuous, onto and such that

Ker Yo = Vi)/ évP(Ri) — 'DTQ)HHW%F(W‘;’)
Then, we define

_1 _1
Wy TR = {ue WHTRNT), plu e Wy TR,

and .
2—5p

_1
WP R = {ue WHPRMY), pfVu e W, TR}

where

1+

141
WIPR') = {u e D'(R"Y),w,  "ue LP(R™Y), (p))» Vu € LP(R" 1)}

P

Here again, we equip these spaces with their natural norm. As in [12], we can
prove that :

2-Lp 1-1p e
N WPPRE) — W, PR x W PP (R
we (u Ou
|Rn—1, 8n\Rn71

is a mapping continuous, onto and such that

Ker v = W PPRY) = WH.”W%D(M).

We define w(, the symmetric region of wy with respect to R"~!, I', the boun-
dary of w)), ' the symmetric region of Q, Q = QU UR" ! and 'y = Ty UTY,.

We define too the following functions ¢* and £.. For (z’,z,) € R" and ¢ any
function, we set :

’ T
e = { o R
and
(@ ) = { ﬁgii,f’ﬁﬁ i i: z gf
Finally, we denote, for p € ]1,00[, < .,. >r the duality pairing W*%’P(F)a
W' (D), with T = Ty or Tp and < .. >ga-1, the pairing W, *7(R*1),

1-L.p

Wy 77 (R™).
We remind that in all this article, we suppose that € is of class C1.

We will denote by C' a positive and real constant which may vary from line
to line.



2 The problem of Dirichlet

In this section, we want to solve the following problem of Dirichlet :

—Au=f 1inQ,
(PD) U = go on FO7
U= g1 on R,

First, we characterize the following kernel :
D) ={z¢€ W(l)’p(Q), Az=0inQ, z=00nTy, z=0on R"'}.
Proposition 2.1. For any p > 1, D5(Q) = {0}.
Proof- Let z be in Df(§2), we define, for almost any (z’, z,,) € Q the function
2 eW SP(€2). For any ¢ € D(Q), we have :
<AZ, 0 >p@y p@y= < 2 AC >p@) @)

:/z(sc',xn)Acp(a:',xn) da}—/ 2z, —xn)Ap(x’, x,) de.
Q '

Moreover 9
z
/ 2(x', xn) Ap(x’, xy,) de = — < —,p >gn-1 .
Q on

Setting ¢ (2, 2,) = @(x’, —,), we have 1) € D(Q) and
/ (2!, —zn)Ap(2 ) de = / (', xn) AY(2’, x,) do
o Q

. 0z o
- 8n»90 Rr—1 .

Thus, we deduce that < Az* ¢ > (@), D)= 0, i.e Az* = 0 in Q. So, the
function z* is in the space Ag(ﬁ) defined by :

AP(Q) = {v e WEP(Q), Av=0inQ, v=0on I}

Now, we use the characterization of Af() (see [5]). For this, we set po the
function defined by :
1
o =U * (=0=
o= U= i)

1

where U = 2—ln(r) is the fundamental solution of the Laplace’s equation in R?
Y

and 51:0 is defined by :

Yo € D(R?), <51:0,<p>:/~ ¢ do.
o

i) Ifp<norp=n=2 then A5(Q) = {0} and z* = 0in Q, i.e z =0 in Q
and D} (Q) = {0}.



ii) If p > n > 3, then we have z* = ¢(A — 1), where c¢ is a real constant and
) is the unique solution in W *(€2) N W2 (Q) of the problem

AA=0inQ, A=1onTl,.

Thus, on R"71, 2* = 2 = ¢(\ — 1) = 0. This implies that ¢ = 0 because other-

wise, A will be equal to 1 on R"~!, that is not possible because 1 ¢ W§’2 (R~ 1),
Finally, we deduce that z = 0, i.e Df(Q2) = {0}.

iii) If p > n = 2, then we have z* = ¢(uu — o), where ¢ is a real constant

and the function g is the unique solution in WP (Q) N W ?(Q) of the problem
Au:Oinﬁ, W= o on Ig.

Thus, on R, z = ¢(p — o) = 0. This implies again that ¢ = 0 because otherwise

1
u will be equal to g on R, that is not possible because pg ¢ W@’Q(R). Indeed,
let € = (z’,0) be in R, like

pio() In(ly — ) doy,

- 27T|f0| To

then po(z’) > C in|a’| if |2’| > « with « enough big and

’ 0|2 ’
/ I|MO<;L'70)‘ . de' > C di,:_i'_oo
o' >a @] log?(2 + |a']) o> []

that is contradictory with p € Wé'z(R). Thus ¢ = 0 and we deduce that z =0,
i.e DN(Q) ={0}. O

Theorem 2.2. For each p > 1, there exists C = C(wo,p) > 0 depending only on
wo and p such that the following holds. For any f € Wal’p(Q), go € Wl_%’p(I‘o)

and g1 € Wéig’p(Rnfl), there exists a unique u € Wy"(Q) solution of (Pp).
Moreover, u satisfies
) (1)

ey < CCI gy + 19001 3o, + lonll

(

_1,
(1] ??(Rn-1)

Proof- i) We begin to show that solving (Pp) amounts to solve a problem
with homogeneous boundary conditions. We know there exists u,, € Wy (R%)
such that u,, = g; on R"~! and

||ug1||W(1JvP(R1) <C Hgl”Wé_%’p(Rnfl) (2)

We set u; = ug, |- Then u; € Wép(Q) and the trace n of u; on Iy is in
Wlfi’p(l“o). Setting z = u — uy, the problem (P) is equivalent to the problem :
(P)) —Az=f+Au;inQ, z=gp—nonly, z=0onR"

We set g = go — 7, and let R > 0 be such that wy C Bg C R?}. The function hg
defined by :
ho=gonTy, hyg=0ondBg,



is in Wlfi’p(ljo U dBRr). We know there exists uy, € WHP(Qg), where Qp =
QN Bg, such that up, = hg on I'g U dBg and checking the estimate :

HuhOHWl’p(QR) <C HhOHWl’%’p(FOU(')BR).

We set
Ug = Up, I O, up=01in Q\ Qp.

We have ug € WHP(), ug = g on Ty, ug = 0 on R*~! and ug checks

ol ) = CClgolly -2 )+ gl s )- 3)

0

1,
( p’ (Rn—1)

Finally, setting v = z — ug, the problem (P;) is equivalent to the following
problem (P’) :

(PY —Av=hinQ, v=00nTy v=0onR"!

where h = f + Au; + Aug € Wal’p(ﬂ)~

ii) Now, we want to come back to a problem setted in the open region ﬁ,

problem that we know solving. Let ¢ be in I/?/ é’p /(ﬁ), we set for almost any
(z',zn) € €,

’

W(p(.’B',I’n) = @(mlvxn) - (p(m 775671)'
It is obvious that mp € W é”’/(Q) and, for any ¢ € W é’p,(ﬁ), we define the
operator h, by

< hpyp>= < h,mp >ng>p((2)><ﬁ/},""(ﬂ) .

We notice that hy is in W "?(€) and satisfies
||hﬂ||W[;1’P(ﬁ) < 2||hHW51>P(Q)- (4)

Now, we suppose that p > 2. Thanks to [5], we know there exists w € Wé’p(ﬁ)
solution of B B
—Aw="h,;inQ, w=0on Iy,

checking the estimate
||wHW},”’(§) <C thuwgm(ﬁ)' (5)
1 o
The function v = 5w belongs to T 47 () and we have :

HUHWé'p(Q) =< 2||w\|wém(ﬁ)~ (6)

Now, let us show that —Av = h in Q 4.e v solution of (P’). Let ¢ be in D(Q),
then :

2 < Av, ® >prQ),D(Q) = 2 <w, A(p >Dpr(),D(Q)

= / [w(x’, z,) — w(x’', —2,)]Ap dz.
Q



Moreover, setting ¥ (x’,x,) = ¢(a’, —x,), then ¢ € D(Q') and we have the
relations

/ ’LU(:I:I, QZ‘H)A()O de =< AU)7 (2] >D’(Q),D(Q)
Q

and
/ w(x', —x,)Ap dx = / w(x’, z,)AY de = < Aw, Y >prar) Do) -
Q ’

Setting ¢ and ’(Z the extensions by 0 in Q of o and 1 respectively, we deduce
that :

2 < Av,p >pra)p) = < Aw, ¢ =9 >D/(@),D(®)
== <hn¢—%>p@ @)

= — < h, 7@ — 1 >pr()D(O)
= =2 < h,9 >pra)p©)

i.e —Av = h in Q. So, we have checked that, if p > 2, the operator
AW AP (Q) - WP (Q)

is a isomorphism, and, by duality, the operator
AT ET Q) - W ()

is an isomorphism too. So, if p < 2, the problem (P’) has also a unique solution
v € WyP(Q). Thus, the problem (Pp) has a unique solution for 1 < p < oc.
Finally, thanks to (2), (3), (4), (5) and (6), we have the estimate (1). O

3 The problem of Neumann

We remind that in this section and in the following ones, ) is supposed to
be of class C11. In this section, we want to solve the following problem :

—Au=f inQ,
ou

(PN)S an go on T,
gl — on Rnfl
on 9 '

n
Here, we suppose that o # 1.

First, we characterize the following kernel :

NP(Q) = {z € W§P(Q), Az=01in Q, %Zt =0 on Iy, g—; =0on R" 1}

Proposition 3.1. For any p > 1 such that ﬁ, #1, No(Q) = Pr_nyp)-
p



Proof- First, we notice that P;_,,/,) € N{(Q). Let us show the other in-
clusion. Let z be in AV%(2) and its associated function z, which is in W§?(Q).
Like g—; =0 on I'y, we have % =0on Iy and we check, like done in the proof
of Proposition 2.1, that Az, = 0 in . So, the function z, belongs to the space
{v e WiP(Q), Av=0in Q, gn
[5]). Thus, if p<n, 2z, =0in Q and z =01in Q. If p > n, z, is constant in Q,
so z is constant in . In other words, we have N¢(2) = Ppy_p,/p)- O

2~ 0on fo} which is equal to Pj_,/p (see

The following theorem allows us to obtain strong solutions of the problem

(Pw)-
Theorem 3.2. For each p > 1 checking ﬁ/ # 1, there exists C = C(wp,p) > 0
p

depending only on wy and p such that the following holds. For any f € W?”’(Q),
_1
go € Wlfi’p(l“o) and g1 € Wi ’“p(]R"_l) satisfying, if p < %, the following

compatibility condition :

/fdw+/ god0+/ g1 dz’ =0, (7)
Q To Rr—1

the problem (Pn) has a unique solution u € W?’p(Q)/P[l,n/p]. Moreover, u
satisfies

)- (8)

||u‘|wfﬁp(9)/7>[17"/p] < C( Hf”w‘l)vp(g)+||90HW1—%,1>(F0)+H91||W1—%‘p(Rn_l)

Proof- First, we notice that, thanks to the hypothesis on the data, any
integral of (7) has a meaning when p < Ll’ the last one being finished
n—

_1
because Wi p’p(Rn—l) c WOP(R*1) ¢ LY(R™'). Moreover, like E/ # 1,
D p

1
we have the injection WP(R"=1) ¢ W, ”"(R""!). We know there exists a
p

augl

function ug, € W?’p(Ri) such that = g1 and ugy, = 0 on R"~! checking :

(9)

||U91||W§*P(R1) < C ||91||W1—%,p(R"71)~
We set u; the restriction of uy, to © and n the normal derivative of u; on I'y.
Finally, we set g = go — 1 € Wl_%’p(Fo) and b = f 4 Auy € W9P(Q). Then,
setting v = u — uy € W2P(9Q), the problem (Py) is equivalent to the following
problem (P’) :

—Av=n~h in Q,
ov
(P") %7 =g only,
a—v =0 onR* 1L
n

We build the two functions h, € W?’p(ﬁ) and ¢g. € Wl_%’p(fo) which check, if

- r . and thanks to (7), the equality /~ hy dx +/~ g« do = 0. Thanks to
- Q To

p <

10



[5], there exists a function w € W?’p((l), unique up to an element of Pp_, /p,
solution of

~ 0 ~
—Aw = h, in Q, aw =g, on [y,
on
checking :

lwllwsr@/my_, < CCIRIwo @) 11901205 )

Now, let wy € W2P(2) be a solution of the above problem. For almost any
(x',x,) € Q, we set vo(x', x,,) = wo(x’, —xy,). As h, is even with respect to x,,,

we easily check that we have —Awvg = h, in 2. Moreover, by the definition of the
normal derivative on Ty, we notice that we have, for almost any («’,x,) € Ty :

87]0 ’ o 57110 ’
a—n(a: X)) = B (', —xy).

. . . . v
As g, is even with respect to x,, we again easily check that we have =0 = Jx

. _ on
on I'g. So vy € W%’p(Q) is solution of the same problem that wg satisfies.
Thus, the difference vy — wyg is equal to a constant ¢ which is necessary nil. So

w .
wo (2, x,) = wo(x', —x,) and thus Z% _ 0 on R*!. The restriction v of wo

on
to 2 being in W¥?(€), is solution of (P') and checks :

||UHW§’P(Q)/7>[1,WP] < C(llhllworq) + ”gHW“%'P(Fo))'

Finally, from this inequality and (9), comes the estimate (8). O

Now, we search weak solutions of the problem (Py) :

Theorem 3.3. For each p > 1 checking 2% # 1, there exists C = C(wp,p) > 0
depending only on wy and p such that the following holds. For any f € W?’p(Q),
_1
go € W_%’p(l"o) and g1 € W "”p(Rn_l) satisfying, if p < Ll’ the following
n—

condition of compatibility :
/ fdx+ <go,1>p, + <gi1,1 >rn-1=0, (10)
Q

the problem (Px) has a unique solution u € W(l)’p(Q)/P[l,n/p]. Moreover, u
satisfies

||UHW(1JJ'(Q)/7>[1,WP] < C( ||f||w‘1’vp(9)+||90||W7%m(r0)+||91||w— P n_l))' (11)

1
o’ (R
- n
Proof- i) First, we suppose ]? > 1.

Theorem 3.2 assures the existence of a function s € W>P(Q) ¢ W P(Q)
solution of the problem

ﬁ =0onR" 1,

Js
= —0onT
on 1o, an

—As= fin Q
Sfm’@n

11



and checking
HSHW‘gvP(Q)/P[l,MP] < HSHW?"(Q)/PUW/M <C ||fHW‘1’~P(Q)- (12)

Then, thanks to [2], there exists a function z € W (R") solution of
) . 0z ne1
Az =0in RY} a—n:glonR” ,

checking the estimate

z 21 n < C 1 . ].3
el < € lorll o (13)

We denote again by z the restriction of z to €. It is obvious that the normal
1 1

derivative n of z on Ty is in W™ »P(T'y). We set g = go —n € W~ »P(Ty) and

we want to solve the following problem :

Y =g on Iy, @:Ooanfl.

5,
i o .
(P Av=0in Q, n B

Let p be in Wl_ﬁ’p/(fo). For almost any (2, x,) € Ty, we set
(@', wn) = p(@', zn) + p(@’, —zn).
We notice that € W'~ 7% (To) and we define
< Gr b >:= < g, T >1, -

It is obvious that g, € W_%’p(fo) and that g is the restriction of g, to I'y.
Moreover, we easily check that g, is even with respect to x,, i.e

< gm & >f0: < Gm M >f07

where (2, x,) = p(x’, —x,) with (', x,) € [o. Thanks to [5], there exists
a function w € W(l)’p (), unique up to an element of Pp_,,/, solution of the
following problem :

Aw =0in §~2, = gr On foy

9w
on
and checking :

N < <
Il o py < C 195l 3o < € ol 3o

Let wg be a solution of the problem and we set for almost any (x’,z,) € Q :

vo(x’, 2y) = wo(x’, —x4).

The function vy is in W4 (Q) and like Awg = 0 on €2, we easily check that Avg
81}0

on

is nil too. Thus, has a meaning in Wfi’p(fo). Now, we want to show that

12



0 ;o
g _ gr on I'g. Let p be in W'~ s (T'o). We know there exists ¢ € WP (Q)

on
such that ¢ = o on Ty and ||¢| < Clpll -2, - . Wehave:
w7 (To)

wir'(@)

0

< ;0 >F,= / Vg - Vo dx.

For almost any (x/,x,) € Q, we set (@', x,) = (&', —x,). The function ¢ is
/o~ 1,7 ~ ~

in Wé’p (Q) and we set £ € W' ¥ P (T'o) the trace of ¢ on T'y. We notice that

(@', xy,) = p(x’, —x,). Moreover, we show that

/~V00'chdw:/~Vw0~dew.
Q Q

Thus,
81}0 8w0
< o M PTT < g, 8 P T < Ym& >R = < Ym i >R,
Ovg
So — = g, on I‘O and vg is solution of the same problem that wq satisfies,

n,
which implies that vy — wq is a constant, constant which is necessary nil. The
restriction of wy to 2, that we note v, being in Wé’p(Q), is solution of the
problem (P’) and we have the estimate

olwyr@ypunm < C ol -3 (14)
Finally, the function u = z + s + v € W§?(Q) is solution of the problem (Py)
and thanks to (12), (13) and (14), we have (11).

. n
ii) Now, we suppose that — < 1.
p

1 _1
Let a be in W9P(Q), §in W'™»P(Iy) and 7 in Wi »P(R"=1) such that :

/adw: Bdaz/ v dz' = 1.
Q I Rn—1

Here, we notice that we have Wl_%’p(Fo) C W_%’p(Fo) and W1_57P(R"’1) C
W, ”’p(R” 1). We set

/deC a, Go= <g0,1>r0ﬁ and G; = < ¢g1,1 >gpn-1 7.

Thanks to Theorem 3.2, we know there exists r € W7 () ¢ WP (Q) solution
of the problem

Ar=f—Fin Q, ﬁ:OonFo, ﬁ:Oon]R"fl,
on on
checking :

||r||W[1)'p(Q) < HT||Wf=P(Q) < Clf —F||W¢1),p(9) < Hf”w‘l’m(g)- (15)

13



Thanks to [2], like < G1 —g1,1 >gn-1= 0, there exists a function z € W(l)’p(R’}r)

solution of
0z

Az =01in RY, n

=91 — Gl on Rn_l?
checking :

< C gl (16)

_1
R

||Z||W}JvP(JR1) < Clg— GlHWO

1 .
p(Rnfl) w, P'p(Rnfl)

We denote again by z the restriction of z to €. It is obvious that the normal
1
derivative n of z on T'g is in W™ »P(Ty) and satisfy the following equality :

<n,1>p,=0.

Weset g=go— Gop—n € Wfi’p(Fo), and we do the same reasonning as in the
point i) to show there exists v € WP (Q) solution of the problem

@ =0onR" !,

on

Av=01in Q, @:gonl"m
on

checking :
). (17)

ooy < € lllly- gy € OO0l -, + lanll, -

—= 1 P
(To) o P (R

We notice that the compatibility condition on g, is satisfied because < g, 1 >F,
=2 < g,1 >r,= 0. Finally, noticing that F € W?’p(Q), Gy € Wlfi’p(l"o),

_1
G, € Wi ’ ’p(R"_l) and that the condition (10) is satisfied, thanks to Theorem
3.2, there exists a function s € WP (Q) ¢ WP(Q) solution of the problem

0
g5 =(G1 on Rnil,

Os
_— = F
GO on 1o, on

As=Fin Q
S 1n,an

and checking the following estimate :

HSHWé'p(Q) < C( ||F||W(1J=p(Q) + ||GO||W1—%,;~

G 1 . 18
o T 1||W1_;,p ). (18)

(me-1)
Finally, the function u = r+z+v+s € W(l)’p(Q) is solution of the problem
(Pn) and the estimate (11) is given by (15), (16) (17) and (18). O

Remark : We notice that, when the data are more regular, the weak solution
is also more regular; in fact, it is the solution of Theorem 3.2.

4 The first mixed problem

In this section, we want to solve the following problem :

—Au=f inQ,
(Par,) u8= 90 on I'o,
a% =g1 on R 1L,

14



Here, we suppose too that # 1 and first, we characterize the following kernel :
4

, 0
Eh(QY) ={z € W(l)’p(Q)7 Az=0inQ, z=0o0n T, a—:l =0 on R" '},

We have the following result (we send back to the proof of Proposition 2.1 for
the definition of pg) :

Proposition 4.1. i) If p <n or p=n =2, then () = {0}.
i) If p>n >3, then EH(Q) = {c(A — 1), ¢ € R} where X is the unique solution
in Wy 2(Q) N Wé P(Q) of the following problem (P,) :

(Py) AX=0inQ, A=1on Ty, g—/\:Ooanfl.
n

i) If p > n = 2, then 5”( ) = {c(p — o), ¢ € R} where p is the unique
solution in WO (Q) N Wo’p( ) of the following problem (P,) :

0
(Py) Ap=0in$Q, p=po on Iy, M — 0 onR.
on
Proof- Let z be in £5(9). We define, for almost any (2, z,,) € Q the function
Zx € W(lJ’p(Q), 2z = 0 on 'y and we check, like done in the proof of Proposition
2.1 that Az, = 0 in €. So the function z, is in the space

AP(Q) = {ze WEP(Q), Az=0in Q, z=0on I}
Now, we use the characterization of A} () (see [5]).

i) If p<norif p=n=2, then A2(Q) = {0} which implies that z, = 0 in
Qandso z=01in Q, i.e EH(Q) = {0}.

i) If p > n > 3, then 2, = ¢(X — 1), where ¢ is a real constant and X is the
unique solution in W’ P(Q) N Wy %(Q) of the problem

AXzoinﬁ, leonfo.

Now, we set, for almost any (x’,x,) € (NZ, Bz, zy,) = X(:I:',fxn). We easily
check that 3, belonging to W™ () N Wy*(), is solution of the same problem

that A satisfies, but this solution is unique, so we deduce that § = X and so on
8/\

n—l

— 0. Thus, setting A the restriction of A to Q, A € WAP(Q)NWE2(Q)

n
is solutlon of the problem (71). Moreover, this solution is unique. Indeed, if ¢

is an other solution, . is solution of the same problem that X satisfies in Q SO
0. —)\mQandQ—)\mQ

iii) If p > n = 2, so, we have z, = ¢(t — po), where ¢ is a real constant and
fi the unique solution in W " @n Wy %(Q) of the problem

Aﬁ:Oinﬁ, ﬁ:,uoonfo.

15



But, we notice that py can also be written

po(x) In(ly — x|) doy.

 2r|To| Jro
As fo is symmetric with respect to R” ™', we deduce that p is symmetric too,

and so o _ 0 on R™L. Now, for (@, z,) € €, we set &(x/,2,) = fix’, —2y,).-

on _ ~
We checks that &, belonging to Wy () N W (), is solution of the same pro-
blem that p satisfies, but this solution being unique, we deduce that { =

0 ~
and so, on R"71, a—u = 0. Thus, setting p the restriction of u to Q, pu €
n

WP () NW () is solution of the problem (P,) and we show that this solu-
tion is unique like in the point ii). Noticing that we have also Apg = 0 in €,
the other inclusion becomes obvious. [l

_1
Let f be in W9P(Q), go in Wlfi"p(l"o) and gy in W, ” *(R"=1). We remind
that we search u € W?(€) solution of the problem (Pyy,). We suppose that
such a solution u € WP (Q) exists. Then, for any v € W™ (), we have :

ou

/ —vAu dx = / Vu-Vuvde — < 8—,1} >PoURR-1 -
Q Q n

In particular, for any ¢ € €5 (Q) :

/ fodx = / Vu-Vpdr — < g1,p >gn-1 .
Q Q
We have too :

0:/—uAgodw:/V<p-Vudw—<a—<p,go>po.
Q Q on

We deduce from this that if u € W{P(Q) is solution of the problem (Pyy, ), the

data must check the following compatibility condition :

0

Now, we are going to search strong solutions for the problem (Pay, ).

/ 8
Vo € £F (), /Qfsﬂ d$=<%,90 >ro — < g1, >rn-1 . (19)

Theorem 4.2. For each p > Ll’ there exists C = C(wo,p) > 0 depending
n—

only on wo and p such that the following holds. For any f € W?’p(Q), go €
1

W27%’p(1"0) and g1 € Wi »P(Rn=1Y, there exists a unique u € W2P(Q)/E8(Q)

solution of (P, ). Moreover, u satisfies

. )- (20)

||UHW?P(Q)/5§(Q) < O Hf||W(1)’p(Q)+HQOHWQ—%‘P(FO)_F||gl||W1—%, (&n-1)

Proof- We know there exists a function u,, € whr (R} ) such that ug, =0

8ug1

and = g1 on R"! checking the estimate :

(21)

||“g1||W§=P(R1) < ||91||W1—%,p(Rn71)~
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We set u; the restriction of ug, to € and 75 the trace of u; on I'g. Then, we
set g=go—1n € WQ_%’I’(I‘O) and h = f + Au; € W9P(Q). Now, we must find
v € W¥P() solution of the following problem (P’) :

(P') —Av=hinQ, v=gon Dy, @:Ooan_l.
on
For this, we define the functions h, € W?’p(ﬁ) and g. € WQ*%”’(IN“O). Thanks

to [5], there exists a function w € W2?(Q), unique up to an element of AL(Q),
solution of B B
—Aw =h, in Q, w =g, on Iy,

and checking the estimate :
Hw”W%P@)/Ag(ﬁ) < O ”hHW?"’(Q) + HQHW%%,IJ(FD))-

Let wg be a solution of this problem and for almost any (x’,x,) € Q, we set :
vo(x’, 2y) = wo(x’, —x4).

Thanks to the symmetry of h., g., Q and Ty with respect to R"~ !, we easily
show that vg is solution of the same problem that wy. Thus vg = wg + k where

~ ok
k € AB(Q). Moreover, we show that e 0 on R"! and we deduce that

ow . - . .
=%~ 0on R"~!, so, the function v, restriction of wy to €, is in W%’p(Q), is

n
solution of (P’) and checks :

ol < COlwgr@) + g0l g + ol

(To

Cia ) (22)
Wy

(®n-1)
Finally, u = v 4+ u; € W7?(Q) is solution of (Py,) and (20) comes from (21)
and (22). O

Now we search weak solutions of the problem (P, ). For this, in the following
theorem, we shall introduce a lemma between points i) and ii). This lemma,
whose the proof shall use the result of the point i), allows us to obtain an
“inf-sup” condition, fundamental condition for the resolution of the point ii).

Theorem 4.3. For each p > 1 checking 1% # 1, there exists C = C(wp,p) > 0
depending only on wy and p such that the following holds. For any f € W?’p(Q),
_1
go € Wlf%’p(lﬂo) and g1 € W, ”’p(R”_l), checking, if p < Ll’ the com-
n_

patibility condition (19), there exists a unique u € Wy*(Q)/E8(Q) solution of
(Pum,). Moreover, u satisfies

lullyrryery < COIwor @) + ||90||W17%,p(m) + ||91||W7

0

b (3)
n 1)

1
P (R

o o n ) n
Proof- i) First, we suppose — > 1, i.e p > ——.
p n

17



Thanks to the previous theorem, we begin to show that there exists a func-
tion s € W2P(2) € WP(Q) solution of the problem

—As=finQ, s=0onTy, S—S:OOHR"*.
n

and checking the estimate :
HSHWé"’(Q) < ||5wav1’(9) < ||f||W‘13P(Q) (24)

Moreover, thanks to [2], there exists a function z € W3 (R ) solution of

Az =01in RY, %i =g on R" 1,
and checking :

el < Cllaul - (25)

0 %yp(Rnfl).
We denote again by z the restriction of z to €, so z € Wé’p(ﬂ) and Az =0 in
Q. Now, let 7 be the trace of z on I'g. The function 7 is in Wl_%’p(Fo). We set

g=go—mé€E Wlfi’p(Fo). Like done in the proof of Theorem 4.2 and thanks to
[5], we show there exists v € WP () solution of :

Av=0in 2, v=gon Iy, g—z:Ooanfl,

and ckecking the estimate :

lellwiry < C lall s (26)

(To)’

Finally, the function v = s + z + v € W§?(Q) is solution of the problem (P, )
and the estimate (23) comes from (24), (25) and (26).

Now, we set
V, ={ve WyP(), v=0on Ty},

and we introduce the following lemma to solve the point ii) of the theorem :

Lemma 4.4. Let p be such that p > Ll There exists a real constant 8 > 0
n—
such that

Vv - Vw dzx
inf sup > p
ey S8 Vol @ Vol —
w#0  v#£0

and the operators B from V,,/Ker B to (V,y)' and B’ from V,, to (V) L Ker B
defined by :

Yo € V,, Yw €V, <Bv,w>=<v,B’w>=/Vu-deac
Q

are isomorphisms.

18



Proof- We must firstly show an equivalent proposition to Proposition 3.2
o

of [3], i.e for any g € LP(2), there exists z € H, () and ¢ € V,, such that :
g=Vy+z,
IVellzr) < Cligllize e

where C' > 0 is a real constant which depends only on € and p and

(e}

H,(Q)={z€LP(Q),divz=0inQ, z-n=0o0nR"'}.

The proof takes one’s inspiration from the proof of [3], using the fact that thanks
to [4], setting
g=gin, g=0inwy, g=0in R?,

there exists v € WP (R") solution of
Av =div g in R,

such that ||[Vov||gr@ny) < C |gllLr(o). We denote again by v the restriction of v

_1
to Q. We notice that, thanks to [7], (g — Vv) - n € W, »P(R"=1) because div
(g—Vv)=0¢ W(l)’p(Q). Moreover, thanks to the point i), there exists a unique
w € WP () solution of :

Aw=0in Q, w=—von Iy, g%:(ng’u)wzonR"*l,

such that [|[Vw||pr) < C ||g|lLr(q). Then, setting ¢ = v+w and z = g — Vo,
we have the searched result, and, like done in [3], the “inf-sup” condition. The
second part, of the lemma comes from the Babugka-Brezzi’s theorem (see [3] for
example). O

n n
ii) We suppose — <1, di.e p < ——.

p n—1
Thanks to Section 2, we know there exists a unique z € Wy (Q) solution of

the problem
Az=0inQ, z=goonTy, z=0onR"1

and checking the estimate :

L < - ,
Izllwie) < Cllgoll, L) (27)

Like Az = 0 € WYP(Q), n = %ZL has a meaning in W, »"(R""!). We set

_1
g=qn—new, ‘“’p(R”_l) and we want to solve the following problem (P’) :

(P'Yy —Av=finQ, v=0on Iy, g—Z:goan_l.

For this, for any w € V}y we define the operator :

Tw:/fwd$+<g,w>Rn71.
Q
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We easily check that 7' € (V). We define the following problem (FV) : find
v € V, such that for any w € V,,, we have :

Vv - Vw de = Tw.
Q

We notice that if v € WP (Q) is solution of (P'), it is also solution of (FV).
Conversely, let v € V, be a solution of (FV) and let ¢ be in D(Q?) C V. So

< Av, ¢ >pr),p)= —/ Vo-Veode=-Tp=—<[,¢>p@)p9),
Q

0
i.e —Av = f in Q. The function Av € WP(Q), so 8—1} has a meaning in
1
1 B
W, »?(R"1). Now, we want to show that we have TY — g on R*'. We know
n
22’ '
that, for any pe W, * ? (R"1), there exists u; € W>7? (R} ) such that

u; = p and % =0onR" !,

with [Jually 2 ey < C llull 2o . We denote again by uq € W%’p/(ﬂ)
7 +> W, o'’ (Rn—1)
the restriction of u; to Q and £ € W2 P (Tp) the trace of u; on T'g. There

exists ug € W2P (Qg), where R > 0 is such that wy C B C R and Qp =
QN Bg, checking

0 0
ug = & andﬂzoonl“o, uozﬂ:OonaBR
on on
and
ol oy < C Nl
We set ug the extension of ug by 0 outside Br. We have ug € W?’p'(Q) and
~ ou - oy
ug = ¢ and ﬂ:OonFo, u0=ﬂ=OonR"*17
an on
. ~ ~ 2,p
with ||u0||Wf,p/(Q) <C ||u1||W§,p/(Q). We set w = u; —up € Wi (Q), then u
checks 5
u=0onTy, u=p and <% =0 on R
on
and

’ < ’
Il oy < €l oo

’

-4,
Thus, noticing that v € Vy and pe W, * P (R"~1) because, for any value of

nand p/, W2 (Q) C W(l)’p/(Q), we have

0 0
< —U,,u Spn-1= < —U,u >PoURn-1 = / uAv d:c+/ Vv - Vu dx
on on o) Q

—/fudw—i—Tu
Q

=< g, >Rrn-1,
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13}
i.e % = g on R"71. So, problems (P’) and (FV) are equivalents. Moreover,

n n
like p < 7 p > 1 and we apply the previous lemma noticing that we
n— n—

have Ker B = 58' (Q). We deduce that

B’ is an isomorphism from V,, to (V)" L 58/(9). (28)

Moreover T € (V) L 56/ (Q). Indeed, for any ¢ € 58/ (Q), we have

Ty = / fode + < g1, >prn-1 — <1, >pn-1
Q

and

0z 0

<My Spo1= < o >ToURn 1= /QVZ Vo de =< a%,go >Ty,s
which implies, thanks to the condition (19), that T'w» = 0. This allows us to
deduce, thanks to (28), that there exists a unique v € V,, such that B'v =T, i.e
solution of (FV) and consequently of (P’) and we have the following estimate :
) (29)

ol < € (I lwaray + Mgoll oo, +

1
( w, P Ra-1)

Finally, u = z+v € Wy (Q) is solution of (Pyy,) and we have the estimate (23)
thanks to (27) and (29). O

Remark : We notice that when p > and when the data are more

n—1
regular, the weak solution is more regular too; it is in fact the solution of

Theorem 4.2.

5 The second mixed problem

In this section, we want to solve the following problem :

—Au=f inQ,
0
(Par){ o= =go onTy,
on
U= g1 on R* 1,

Here, we still suppose ]% # 1 and, first, we characterize the following kernel :

0
FPQ) ={ze WP (), Az=01in Q, a—; =0onTy, z=0onR" '}
Proposition 5.1. For any p > 1 such that Z% #1, Fh(Q2) = {0}.

Proof- Let z be in Fh(Q2). We define, for almost any (z’,z,) € Q the

*

~ 0z
function z* € W*(Q). Th
unction z* € Wy (Q) en B

=0on fo and we check, like done in the
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proof of Proposition 2.1 that Az* = 0 in Q. The function z* is in the space
0z

{z € W(l)’p(ﬁ), Az =0in €, e 0 on Iy} which is equal to Pli—n/p| (see [5]).
Thus, if p < n, z*:Oinﬁandz:OinQandiprn, 2* is a constant in
so z is constant in Q, but 2 =0 on R"! 50 2 =0in Q and F5(Q) = {0}. O

The following theorem allows us to obtain strong solutions of the problem
(Pas)-

Theorem 5.2. For each p > Ll’ there exists C = C(wg,p) > 0 depen-
n—

ding only on wy and p such that the following holds. For any f € W(l)’p(Q),

1 1
go € W'"5P(T) and g, € W? »P(Rn=1), there exists a unique u € WP(Q)
solution of (Par,). Moreover, u satisfies
). (30)

iy < COlugray + 9ol + Nl oo

1 1
P, P (Rn-1)

P;)‘oof— We know there exists a function ug, € W?’p(Ri) such that ug, = ¢1
Ug,

and =0 on R"~!, checking the estimate :

||ug1||wfvP(R¢) <C ||gl||W37%1p(Rn_l). (31)

We set u; the restriction of ug, to Q and n the normal derivative of u; on I'y.
Then, we set g = go —n € Wlfi’p(l‘o) and h = f + Au; € W9P(Q). Now, we
want to find v € WT?(Q) solution of the following problem (P’) :

(P') —Av=hinQ, g—;}l:gonfo, v=0onR"!

We define the functions h* € W?(Q) and g* € Wl_%’p(fo) and, thanks to

[5], there exists a function w € W?’p(ﬁ), unique up to an element of Ppy_,, /),
solution of

~ 0 ~
—Aw =h"in Q, au =g* on Ty,
on
and checking the estimate :

Hw||wf=f’(§)/7>[l,n/p] < O( ”hHW‘f”’(Q) + HgHW“%"’(rO))'

Let wg be a solution of this problem and, for almost any (2/,,) € Q, we set :
vo(x', zp) = —wo(x’, —x,).

We easily check that vg is solution of the same problem that wq satisfies. Thus
Vo — Wo € P[l—n/p]'

n ~
i) We suppose that — > 1. In this case, v = wp in 2 and we deduce that
p

wy = 0 on R™1. So, the function v € W3P(Q), restriction of wo to Q is a
solution of (P’).
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.. n . .= .
ii) We suppose that — < 1. In this case, vg = wo + « in , where « is a real

constant, and, setting ¢ = —504, we deduce that wg = ¢ on R*!. The function

v = wy|n — ¢ is an element of W3P(Q) and v is solution of (P').

Moreover, v, solution of (P’), checks the estimate :

lolwzr@) < COM ey + 190y +lonll o g - (3

(To) P (Rn-1)

Finally, the function u = v+u; € WP(Q) is solution of (Pyy,) and the estimate
(30) comes from (31) and (32). O

Now, we search weak solutions of the problem (Pyy,). We set
W, ={ve WyP(Q), v="0on R"'},

and we firstly give the following lemma that we demonstrate like to Lemma 4.4
reversing only I'g and R"~! (and so, using in its proof the result of the point i)
of the following theorem) :

Lemma 5.3. Let p be such that p > Ll There exists a real constant 3 > 0
n—
such that
Vv - Vuw dx
inf sup & > 0,
w€Wp/ vEW) ||VU||L77(Q) ”Vw”Lp’(Q)
w#0  p#£0

and the operators B from W,/Ker B to(W,) and B’ from Wy to (W,) L
Ker B defined by :

Yo € Wy, Yw € Wy, <Bv,w>=<v,B’w>:/V1}-dew
Q

are isomorphisms.

Theorem 5.4. For each p > 1 checking ﬁ, # 1, there exists C = C(wo,p) >0
p

depending only on wy and p such that the following holds. For any f € W(l)’p(Q),

go € W 5P(Ty) and gy € Wé_g’p(R”*I), there exists a unique u € WP (Q)
solution of (Par,). Moreover, u salisfies
) (33)

||U’HW(1J"'(Q) < O Hf||W§’=P(Q) + ||90||W7%,p T'o) + ||91||W

1-1p
o 7 (RmTY)

(

. n ) n
Proof- i) We suppose — > 1, i.e p > ——.
P n—1

First, we apply Theorem 5.2 to have the existence of s € WP (Q) ¢ WP(Q)
solution of the problem

ﬁ:()onl“o, s=0onR"

—As=fin Q
sfm,an
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and checking :
HSHW})*I’(Q) < ||5|‘Wf’p(ﬂ) <C ||f||W(1]p(Q) (34)
Then, thanks to [6], there exists a function z € WP (R™) solution of
Az=0inR} z=g;on R

checking :

”ZHW})*”(Ri) <C ||91|\W1—%,p

T (35)

We denote again by z the restriction of z to €. It is obvious that the normal
1 1

derivative i of z on Ty is in W™ »P(Ty). We set g = go —n € W™ »P(Ty) and

we want to solve the following problem (P’) :

(P) Av=0in Q, g—:;:gonl“g, v=0onR"!

Let u be in Wl_i’p/(fo). For almost any (2’,z,) € 'y, we set

mp(a’, ap) = p(@’ an) — p(a’, —an).

1

We notice that mpu € W'~ ¥ ' (Ty), and we define
< Gms b > =< g, TH >Fg .

It is obvious that g, € W_%J)(fo) and that g is the restriction of g, to T'y.
Moreover, we easily check that

< g7'r75 >f0: = < G, >foa

where £(2’,2,) = p(x’, —x,) with (2’,z,) € Iy. Thanks to [5], there exists
a function w € W(l)’p (2), unique up to an element of Pp_,/, solution of the
following problem :

Aw:()inﬁ, =gﬂ0nf07

ow
on
and checking :

Hw”""é’p@ﬁ’u—n/m <C Hg””w*%’”(ﬁo)'

Let wg be a solution of this problem. We set for almost any (z’,z,) € 2 :
vo(x’, 2,) = —wo(x', —x,).

The function v is in W47 (Q) and like Awy is nil in Q, we easily check that Auvg

9 ~
is nil too. Thus % has a meaning in Wfi’p(Fo) and we show, like done in the
n
81)0

proof of Theorem 3.3 that — = g, on f‘o. So, the function vy is solution of

n
the same problem that wy satisfies, which implies that vo —wo € P_p/p- We
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conclude like done in the proof of the previous theorem to show the existence
of the solution v € W§?(€) of the problem (P’) checking :

ol < € Mgl o (36)

Finally, the function u = z + s + v € W{() is solution of the problem (Py)
and the estimate (33) comes from (34), (35) and (36).

ii) We suppose — < 1,4.e p < ——.
p n—

Thanks to the section 2, we know there exists a unique z € W(l)’p(Q) solution
of the problem

Az=0inQ, z=00nTy, z=g on R" 1,
checking the estimate :

el < C llaall (37)

_1 .
(1) P (Rn-1)

0
Like Az=0¢€ L?(Q), n = a—; has a meaning in Wﬁi’p(I’o). Weset g=go—17
and we want to find v € WP (Q) solution of the following problem (P’) :

(P') —Av=finQ, %:gonf‘o, v=0onR"!

0

For this, we follow the same idea as the proof of the point ii) in Theorem 4.4
1 ’

reversing only 'y and R"~! and noticing that, for u € W2 P (T'o), we know

easily building s € W2 (Q) such that

ds

s =p and g—i:()onl“o, s:%:OOnR"*,

checking
! < 1y
||SHVV?~11 Q) = C HMHH,’ALFW (To)

and that Ker B’ = ]:g,(Q) = {0}. We have also the following estimate :

olhwsn@) < C (1 lwooiay + ol 3+ ol ) B9)

( NERIEES)

Finally, u = z+v € W§P(Q) is solution of (Pyy,) and we have the estimate (33)
thanks to (37) and (38). O

Remark : We notice that when p >

n
1 and when the data are more

regular, the weak solution is more regular too; it is in fact the solution of the
theorem 5.2.



References

[1] R.A. Adams, Sobolev spaces, Academic Press, New York (1975).

[2] C. Amrouche, The Neumann problem in the half-space, C.R. Acad. Sci.
Paris, Ser.I 335 (2002) 151-156.

[3] C. Amrouche, F. Bonzom, Mixed exterior Laplace’s problem, Journal of
Mathematical Analysis and Applications 338 (1) (2008) 124-140.

[1] C. Amrouche, V. Girault, J. Giroire, Weighted Sobolev spaces for Laplace’s
equation in R™, Journal de Mathématiques Pures et Appliquées 73 (6)
(1994) 576-606.

[5] C. Amrouche, V. Girault, J. Giroire, Dirichlet and Neumann exterior prob-
lems for the n-dimensionnal Laplace operator, an approach in weighted
Sobolev spaces, Journal de Mathématiques Pures et Appliquées 76 (1)
(1997) 55-81.

[6] C. Amrouche, S. Necasova, Laplace equation in the half-space with a non-
homogeneous Dirichlet boundary condition, Math. Bohem. 126 (2) (2001)
265-274.

[7] C. Amrouche, S. Necasova, Y. Raudin, Very weak, generalized and strong
solutions to the Stokes system in the half-space, Journal of Differential
Equations 244 (4) (2008) 887-915.

[8] M. Cantor, Boundary value problem for asymptotically homogeneous ellip-
tic second order operators, Journal of Differential Equations 34 (9) (1979)
102-113.

[9] J. Deny, J.L. Lions, Les espaces de type Beppo-Levi, Ann. Inst. Fourier,
Grenoble (5) (1954) 305-370.

[10] J. Giroire, Etude de quelques problémes aux limites extérieurs et résolution
par equations intégrales, Thése de Doctorat d’Etat, Université Pierre et
Marie Curie, Paris VI (1987).

[11] J. Giroire, J.C. Nedelec, Numerical solution of an exterior Neumann prob-
lem using a double layer potential, Math. of Comp., 32, 144, (1978) 973-990.

[12] B. Hanouzet, Espaces de Sobolev avec poids. Application au probléme de
Dirichlet dans un demi-espace, Rend. Sem. Univ. Padora 46 (1971) 227-272.

[13] G. Hsiao, W. Wendland, A finite element method for some integral equa-
tions of the first kind, Journal of Mathematical Analysis and Applications
58 (3) (1977) 449-481.

[14] M.N. Leroux, Résolution numérique du probléme du potentiel dans le plan
par une méthode variationnelle d’elements finis, Thése de 3éme Cycle, Uni-
versité de Rennes (1974).

[15] M.N. Leroux, Méthode d’élements finis pour la résolution de problémes
extérieurs en dimension deux, R.A.LR.O. 11 (1977) 27-60.

26



[16] R.C. McOwen, The behaviour of the Laplacian on weighted Sobolev spaces,
Comm. on Pure and Applied Math. XXXII (1979) 783-795.

[17] J. Necas, Les méthodes directes en théorie des équations elliptiques. Mas-
son, Paris (1967).

[18] J.C. Nedelec, Approximation par double couche du probléme de Neumann
extérieur, C. R. Acad. Sci. Paris, Ser.A 286 (1979) 103-106.

[19] J.C. Nedelec, J. Planchard, Une méthode variationnelle d’élements finis
pour la résolution numeérique d’un probléme extérieur dans R, R.A.LR.O.,
Anal. Numér. R3 (1973) 105-129.

27



