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——————————————————————————————————–
Abstract
In this Note, we study the characterization of the kernel of the Laplace operator
with Dirichlet boundary conditions in exterior domains. We consider data in
weighted Sobolev spaces.
Résumé
Nouvelle caractérisation du noyau du laplacien en domaine extérieur.
Nous étudions dans cet article la caractérisation du noyau de l’opérateur lapla-
cien avec des conditions de Dirichlet au bord dans un ouvert extérieur. Nous
considérons des données dans des espaces de Sobolev avec poids.
——————————————————————————————————–

1 Introduction
Let Ω′ be a bounded open region of Rn (n ≥ 2), not necessarily connected,
with a Lipschitz-continuous boundary Γ and let Ω be the complement of Ω′.
We suppose that Ω′ has a finite number of connected components and each
connected component has a connected boundary, so that Ω is connected. The
purpose of this Note is to characterize the kernel Ap,q(Ω) of the Laplace operator
with Dirichlet boundary conditions:

Ap,q(Ω) = {z ∈W 1,p
0 (Ω) +W 1,q

0 (Ω);∆z = 0 in Ω and z = 0 on Γ}. (1.1)

The reason why we suggest an idea to study Ap,q(Ω) is explained in Remark 2.2.
Since the problem is posed in a n-dimensional exterior domain, it is important
to specify the behavior at infinity for the data and solutions. We have chosen
to impose such conditions by setting our problem in weighted Sobolev spaces
which provide a correct functional setting for unbounded domains. It means
that the growth and decay of functions at infinity are expressed by means of
weights, in particular, the function in these weighted Sobolev spaces satisfies an
optimal weighted Poincaré-type inequality. In the whole text, bold characters
are used for vector or matrix fields. We now introduce the definition of weighted
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Sobolev spaces and some its properties. A typical point in Rn is denoted by
x = (x1, ..., xn) and its norm is given by r = |x | = (x2

1 + ... + x2
n)

1
2 . We define

the weight function ρ(x ) = 1+ r. For each p ∈ R and 1 < p <∞, the conjugate

exponent p′ is given by the relation
1
p

+
1
p′

= 1. We now define the weighted

Sobolev space

W 1,p
0 (Ω) = {u ∈ D′(Ω),

u

w
∈ Lp(Ω),∇u ∈ Lp(Ω)},

where

w =

{
(1 + r) if p 6= n,

(1 + r) ln(2 + r) if p = n.

This space is a reflexive Banach space when endowed with the norm:

||u||W 1,p
0 (Ω) = (|| u

w
||pLp(Ω) + ||∇u ||pLp(Ω))

1/p.

We note that the logarithmic weight only appears if p = n and all the local
properties of W 1,p

0 (Ω) coincide with those of the corresponding classical Sobolev

space W 1,p(Ω). We set
◦
W

1, p
0 (Ω) = D(Ω)

W 1, p
0 (Ω)

and we denote the dual space

of
◦
W

1, p
0 (Ω) by W−1,p′

0 (Ω), which is a space of distributions. When Ω = Rn, we

have W 1,p
0 (Rn) =

◦
W

1, p
0 (Rn). We have the algebraic and topological imbeddings

W 1,p
0 (Ω) ↪→W 0,p

−1 (Ω) if p 6= n,

where
W 0,p

−1 (Ω) = {u ∈ D′(Ω),
u

1 + r
∈ Lp(Ω)}.

For all λ ∈ Nn where 0 ≤ |λ| ≤ 2, the mapping

u ∈W 1,p
0 (Ω) → ∂λu ∈W 1−|λ|,p

0 (Ω)

is continuous. Also recall the following Sobolev embeddings (see [1]):

W 1,p
0 (Ω) ↪→ Lp∗(Ω) where p∗ =

np

n− p
and 1 < p < n.

Note that R ⊂W 1,p
0 (Ω) if and only if p ≥ n. We now set that

Ap(Ω) = { y ∈W 1,p
0 (Ω);∆y = 0 in Ω and y = 0 on Γ}.

In the two-dimensional space, let U =
1
2π

ln r be the fundamental solution of
Laplace’s equation. We now define

u0 = U ∗
(

1
|Γ|
δΓ

)
, (1.2)

where δΓ is the distribution defined by

∀ϕ ∈ D(R2), < δΓ, ϕ > =
∫

Γ

ϕdσ.

The next lemma characterizes the kernel Ap(Ω) (see [3]).
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Lemma 1.1. Let 1 < p <∞ and suppose that Γ is of class C1,1.
i) If p < n or if p = n = 2, then Ap(Ω) = {0}.
ii) If p ≥ n ≥ 3, then

Ap(Ω) = {c(λ− 1); c ∈ R},

where λ ∈
⋂

r> n
n−1

W 1,r
0 (Ω) is the unique solution of the following problem

∆λ = 0 in Ω and λ = 1 on Γ. (1.3)

iii) If p > n = 2, then

Ap(Ω) = {c(µ− u0); c ∈ R},

where u0 is defined by (1.2) and µ is the only solution in
⋂
r>2

W 1,r
0 (Ω) of the

problem
∆µ = 0 in Ω and µ = u0 on Γ. (1.4)

Remark 1.2. When Γ is the unit sphere of Rn (n ≥ 3), then λ =
1

|x |n−2
. Note

that ∇λ ∈ Ln/(n−1),∞(Rn) and
λ

w
∈ Ln/(n−1),∞(Rn), where the weak-type

space Lp,∞(Rn) is defined as follows

u ∈ Lp,∞(Rn) ⇔ sup
t>0

t (
∫
{x∈Rn,|u(x)|>t}

dx )1/p <∞.

Then we will write λ ∈W 1,n/(n−1)
0,∞ (Rn).

2 Main results
In this section, we give a theorem that characterizes the kernel Ap,q(Ω) of the
Laplace operator with Dirichlet boundary conditions:

Ap,q(Ω) = {z ∈W 1,p
0 (Ω) +W 1,q

0 (Ω);∆z = 0 in Ω and z = 0 on Γ},

with 1 < p < q <∞.

Theorem 2.1. Let 1 < p < q < ∞ and Ω ⊂ Rn be an exterior domain with
C1,1 boundary.
i) If q < n or if q = n = 2, then Ap,q(Ω) = {0}.
ii) If q ≥ n ≥ 3, then

Ap,q(Ω) = {c(λ− 1); c ∈ R}

where λ ∈
⋂

r> n
n−1

W 1,r
0 (Ω) is the unique solution of the problem (1.3).

iii) If q > n = 2, then

Ap,q(Ω) = {c(µ− u0); c ∈ R}

where µ ∈
⋂
r>2

W 1,r
0 (Ω) is the unique solution of the problem (1.4).
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Proof. Let z ∈ Ap,q(Ω), then z = u − v with u ∈ W 1,p
0 (Ω), v ∈ W 1,q

0 (Ω) and
u = v on Γ. Let now ṽ ∈ W 1,q

0 (Rn) an extended function of v outside Ω. We
set ũ = u in Ω, ũ = ṽ outside Ω and z̃ = ũ − ṽ. It is easy to see that z̃ in
W 1,p

0 (Rn) +W 1,q
0 (Rn) and z̃ = 0 outside Ω. Set now h = ∆z̃. As supp h ⊂ Γ,

then h ∈W−1,p
0 (Rn).

A. If n ≥ 3: We consider 3 following cases:
1) The case

n

n− 1
< p: We know that there exists w ∈ W 1,p

0 (Rn) such that

∆w = h in Rn. The difference w−z̃ belongs to W 1,p
0 (Rn)+W 1,q

0 (Rn) and is har-
monic in Rn. We begin by supposing that q < n. We deduce that w = z̃ in Rn

and then w vanishes on Γ. Since p < n, thanks to Lemma 2.10 [3], w is unique
and w = 0 in Ω, i.e., z = 0 in Ω. Now if q ≥ n, there exists a constant c such
that w− z̃ = c and w = c on Γ. If p < n, from Lemma 2.10 [3], then w is unique
and w = cλ in Ω where λ ∈

⋂
r> n

n−1

W 1,r
0 (Ω) is a unique solution of the system

(1.3). Therefore, we can deduce z = c(λ − 1) in Ω. If p ≥ n, it is easy to de-
duce that w is unique up to a constant and we still obtain that z = c(λ−1) in Ω.

2) The case 1 < p <
n

n− 1
: In the n-dimensional case, let E(x ) = cn|x |2−n be

the fundamental solution of Laplace’s equation. As δ ∈W−1,p
0 (Rn) is the Dirac

distribution, then there exists a unique w0 ∈W 1,p
0 (Rn) such that

∆w0 = h − δ < h, 1 >
W−1,p

0 (Rn)×W 1,p′
0 (Rn)

in Rn.

We now set that

w = w0 − E < h, 1 >
W−1,p

0 (Rn)×W 1,p′
0 (Rn)

.

Then ∆w = h in Rn and w−z̃ is harmonic. Note that the origin is not in Ω. The
restriction of w to Ω belongs to W 1,p

0 (Ω)+W 1,r
0 (Ω) for all r > n

n−1 . The function

w belongs to W 1,p
0 (Rn)+W 1,n/(n−1)

0,∞ (Rn), i.e., ∇w ∈ Lp(Rn)+Ln/(n−1),∞(Rn).
Hence, the difference w− z̃ belongs to W 1,p

0 (Rn)+W
1,n/(n−1)
0,∞ (Rn)+W 1,q

0 (Rn).
a) The case q < n: We deduce w = z̃ in Rn and w = 0 on Γ. Then ∆w0 = 0
in Ω and w0 =< h, 1 > E on Γ. As p′ > n, for any ϕ ∈ Ap′(Ω) and for any
ψ ∈ D(Ω), we have the following Green’s formula∫

Ω

ψ∆ϕdx =
∫

Ω

ϕ∆ψ dx + 〈∂ϕ
∂n

, ψ〉Γ − 〈ϕ, ∂ψ
∂n
〉Γ.

where < ., . >Γ denotes the duality between W
−1
p ,p′(Γ) and W 1− 1

p ,p(Γ). Then,
we deduce that ∫

Ω

ϕ∆ψ dx = −〈∂ϕ
∂n

, ψ〉Γ.

Thanks to the density of D(Ω) in W 1,p
0 (Ω), for all ϕ ∈ Ap′(Ω) and for all

v ∈W 1,p
0 (Ω), we have

< ∆v, ϕ >
W−1,p

0 (Ω)×
◦

W
1,p′

0 (Ω)
= − <

∂ϕ

∂n
, v >

W
−1
p

,p′
(Γ)×W

1− 1
p

,p
(Γ)

. (2.1)
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Applying (2.1) with v = w0 ∈W 1,p
0 (Ω) and ϕ = λ− 1 ∈ Ap′(Ω), we obtain

< h, 1 >< E,
∂λ

∂n
>

W
1− 1

p
,p

(Γ)×W
−1
p

,p′
(Γ)

= 0.

Note that,

< E,
∂λ

∂n
>Γ =<

∂E

∂n
, λ >Γ =

∫
Γ

∂E

∂n
.

Let BR the open ball of radius R > 0 centered at the origin such that Ω′ ⊂ BR

and set that ΩR = Ω ∩BR. Then we have

0 =
∫

ΩR

∆E =
∫

Γ

∂E

∂n
−

∫
∂BR

∂E

∂n
.

It is easy to verify that
∫

∂BR

∂E

∂n
= 1, then < h, 1 >= 0. Consequently, from

Lemma 2.10 [3], we deduce w0 = 0 in Ω. Therefore, w = 0 and z = 0 in Ω.
b) The case q ≥ n: There exists a constant c such that w − z̃ = c in Rn and
w = c on Γ. Then, ∆w0 = 0 in Ω and w0 = c+ < h, 1 > E on Γ. Applying
again (2.1), we obtain

< c+ < h, 1 > E,
∂λ

∂n
>Γ = 0.

Set that µ = c+ < h, 1 > E on Γ. It is not difficult to see that µ ∈ W 1− 1
r ,r(Γ)

with any r ∈ ] n
n−1 , n[. Then there exists a unique y ∈ W 1,r

0 (Ω) such that
∆y = 0 in Ω and y = µ on Γ. Then, we deduce that y − w0 ∈ Ap,r(Ω).
Thanks to the results for the case 2a) of this Lemma, we have y = w0, i.e.,
w0 ∈ W 1,p

0 (Ω) ∩W 1,r
0 (Ω). We can see that µ also belongs to W 1− 1

q ,q(Γ). Then
there exists θ ∈ W 1,q

0 (Ω) such that ∆θ = 0 in Ω and θ = µ on Γ. Then,
θ − w0 ∈ Ar,q(Ω). From the case 1), there exists a constant α such that
θ − w0 = α(λ − 1) and we deduce that w0 ∈ W 1,q

0 (Ω). Consequently, the
function w ∈ W 1,q

0 (Ω) and since w = c on Γ and from the characterization of
Aq(Ω), we can immediately deduce that w = cλ and z = c(λ− 1) in Ω.

3) The case p =
n

n− 1
: Finally, let ϕ ∈ D(Rn) satisfying

∫
Rn

ϕ = 1 and

µ = E ∗ ϕ. We know that µ ∈ Ln,∞(Rn) ∩ Lr(Rn) for any r > n and
∇µ ∈ Ln/(n−1),∞(Rn) ∩ Ls(Rn) for any s > n

n−1 . The reasonning applies by
remplacing δ by ϕ and E by µ.

B. If n = 2: We know that there exists a unique w0 ∈W 1,p
0 (R2) satisfying

∆w0 = h − < h, 1 >
W−1,p

0 (R2)×W 1,p′
0 (R2)

∆u0 in R2,

where u0 is defined by (1.2). Now we set

w = w0 + < h, 1 >
W−1,p

0 (R2)×W 1,p′
0 (R2)

u0.

Then ∆w = h in R2 and w − z̃ is harmonic. Proceeding as in the case A2
by distinguishing 2 cases q ≤ 2 and q > 2, we obtain results and the proof is
finished.
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Remark 2.2. Let f ∈ W−1,p
0 (Ω), g ∈ W 1− 1

p ,p(Γ) and u ∈ W 1,p
0 (Ω) be a

solution of the following system

−∆u = f in Ω and u = g on Γ.

We recall that the existence of this solution u if and only if f and g satisfy the
compatibility condition

∀ϕ ∈ Ap′(Ω), < f, ϕ >
W−1,p

0 (Ω)×
◦

W
1,p′

0 (Ω)
= 〈 g, ∂ϕ

∂n
〉
W

1− 1
p

,p
(Γ)×W

−1
p

,p′
(Γ)
.

(2.2)
If, in addition, f ∈ W−1,q

0 (Ω), g ∈ W 1− 1
q ,q(Γ) with p < q satisfying the

compatibility condition (2.2) by remplacing p by q, the question "Does the
solution u belong toW 1,q

0 (Ω)?" is risen. Since there exists v ∈W 1,q
0 (Ω) satisfying

−∆v = f in Ω and v = g on Γ and from Theorem 2.1, we obtain u−v ∈ Ap,q(Ω).
Therefore, if q < n or q = n = 2, then u = v and u ∈ W 1,q

0 (Ω). Otherwise,
u = v + λ ∈W 1,q

0 (Ω) with λ ∈ Ap,q(Ω).

We complete this Note by an similar result for the three-dimensional Oseen
equations with an analogous proof.

Theorem 2.3. Let 1 < p < q < ∞ and Ω ⊂ R3 be an exterior domain with
C1,1 boundary.
i) If q < 4, then N p,q(Ω) = {(0, 0)}.
ii) If q ≥ 4, then

N p,q(Ω) = {(λc − c, µc); c ∈ R3}
where (λc, µc) is the unique solution of the following system

−∆λc +
∂λc

∂x1
+∇µc = 0, divλc = 0 in Ω, λc = c on Γ,

such that λc ∈
⋂

r>4/3

X1,r
0 (Ω) and µc ∈

⋂
r>3/2

Lr(Ω). Moreover, we have λc ∈

Ls(Ω) ∩ L∞(Ω) for all s > 2.

Here, the kernel N p,q(Ω) of the exterior Oseen system is defined by

N p,q(Ω) = {(u, π) ∈ [X1,p
0 (Ω) + X1,q

0 (Ω)]× [Lp(Ω) + Lq(Ω)],
T(u, π) = (0, 0) in Ω ,u = 0 on Γ}

with 1 < p < q <∞.
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