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ABSTRACT
This paper introduces a new algorithm for solving a sub-
class of quantified constraint satisfaction problems (QCSP)
where existential quantifiers precede universally quantified
inequalities on continuous domains. This class of QCSPs
has numerous applications in engineering and design. We
propose here a new generic branch and prune algorithm for
solving such continuous QCSPs. Standard pruning opera-
tors and solution identification operators are specialized for
universally quantified inequalities. Special rules are also pro-
posed for handling the parameters of the constraints. First
experimentation show that our algorithm outperforms the
state of the art methods.

Categories and Subject Descriptors
G.1 [Numerical Analysis]: Miscellaneous

General Terms
Theory, Algorithms

Keywords
Quantified constraints, continuous domains, interval arith-
metic

1. INTRODUCTION
Many applications in engineering require verifying safety

or performance conditions on a given system. For instance
verifying for all electrical current in the interval [imin, imax]
and all possible resistor values in the interval r0±5% that the
voltage across the resistor remains lower than a safety bound
umax. In other words, we have to check the satisfiability of

(∀i ∈ [imin, imax]) (∀r ∈ [0.95 r0, 1.05 r0]) (ri ≤ umax). (1)

Examples can be found in [2] where the safety condition
to be verified is a minimal mutual distance between some
satellites during a complete revolution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08March 16-20, 2008, Fortaleza, Ceará, Brazil
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In design problems, requirements are a bit more general.
Instead of verifying theses conditions, we have to determine
values of design variables that satisfy safety and performance
conditions for all values of uncertain physical data. All these
problems can be modeled in the framework of quantified con-
straint satisfaction problems (QCSPs). QCSPs arise natu-
rally in numerous other applications (cf. [15, 16, 2, 12, 13,
23]).

In this paper, we are interested in a restricted form of
QCSPs where existential quantifiers precede universal quan-
tifiers, i.e.

∃x ∈ x,∀y ∈ y, c1(x, y) ∧ · · · ∧ cp(x, y), (2)

where x = (x1, . . . , xn) and y = (y1, . . . , ym) are vectors of
variables, x = (x1, . . . ,xn) and y = (y1, . . . ,ym) are vectors
of intervals over continuous domains, and constraints ci are
inequalities of the form fi(x, y) ≤ 0. In addition to the
problems introduced in [2], this class of QCSPs can tackle
the design of robust controllers, which has been addressed
in numerous works [10, 15, 9, 21, 28, 8].

In general, we are not only interested in the decision prob-
lem (2) but also in finding assignments of the existential
variables which satisfy the constraints.

In other words, we consider x as a search space where
we try to find values x ∈ x such that the relation ∀y ∈
y, c1(x, y) ∧ · · · ∧ cp(x, y) holds. Such a value x is called a
solution of (2) and we define the solution set of (2) in the
following way:

Sol := {x ∈ x : ∀y ∈ y ,
∧

i∈{1,...,p}

ci(x, y)}. (3)

An essential observation is that in all mentioned appli-
cations, solution sets are continuums of solutions and that
users are not really interested by isolated solutions but by
continuous subsets of x where all points are solutions. In-
deed, in design problems determining the real value of a
physical value without any tolerance information does not
really make sense. That’s why we compute two sets I and B
(called respectively the inner approximation and the bound-
ary approximation) which satisfy the following relation:

I ⊆ Sol ⊆ I ∪ B. (4)

Set I contains only solutions whereas set B contains the
boundary of the solution set. Thus B contains indifferently
solutions and non-solutions. I ∪ B contains the whole solu-
tion set and is called the outer approximation. Actually, due
to computational limitations, I and B are unions of boxes
(cf. Figure 1).



Figure 1: On the left hand side, the solution set Sol;
on the right hand side, the inner approximation I
in light gray and the boundary approximation B in
dark gray.

In this paper, we propose a new algorithm for computing
the sets of boxes I and B. In contrast with other methods
dedicated to the resolution of QCSPs, we handle the QCSP
(2) as a non quantified CSP with quantified constraints:
we introduce a CSP equivalent to (2) formed of constraints
cy(x) on the variables x (the domain parameter y is explic-
itly given in exponent for clarity). These constraints are
quantified inequalities: cy(x) ≡ ∀y ∈ y, f(x, y) ≤ 0; y are
called the parameters and y their domains. We propose here
a generic branch and prune algorithm dedicated to contin-
uous CSP with parametric constraints. This algorithm is
based on a specific implementation for universally quanti-
fied inequalities of the following techniques:

– Pruning the non solution set;
– Identifying the solution set;
– Handling of parameter domains.

Other methods [1, 24, 2, 25] have been proposed to com-
pute approximations of the solution set of (2). The new al-
gorithm we propose here is both much simpler than the pre-
viously proposed algorithms, and also much more efficient.
First experimentation show that our algorithm outperforms
the methods introduced in [1, 24, 2, 25].

Notations.Boldface symbols denotes intervals, e.g. x =
[x, x] = {x ∈ R : x ≤ x ≤ x} where x and x belong to a
finite subset of R (usually the floating point numbers, cf.
[11]). The set of these intervals is denoted by IR and the set
of n dimensional interval vectors (also called boxes) by IR

n.
The width of an interval vector x = (x1, . . . ,xn) is wid(x) =
maxi |xi− xi| and its midpoint is mid(x). x̃ denotes a value
of x. For two boxes x and y, the interval hull is denoted
by x∨ y and is the smallest box which contains both x and
y (note the difference between the union [−1, 1] ∪ [2, 3] =
{x ∈ R : −1 ≤ x ≤ 1 ∨ 2 ≤ x ≤ 3} which is disconnected,
and the interval hull [−1, 1] ∪ [2, 3] = [−1, 3]). Also, their
set difference is denoted by x\y = {x ∈ x : x /∈ y}.

Outline of the paper.Section 2 recalls some basics on CSP
with continuous domains. Section 3 describes the key fea-
tures of the algorithm we propose. First experimental results
are given in Section 4.

2. BASICS ON CSP WITH CONTINUOUS
DOMAINS

To tackle CSP with continuous domains, a key issue is to
be able to prove properties on continuums of real numbers.
Interval analysis handles this problem in an efficient way
using only computations on floating point numbers.

We recall here some basics which are required to under-
stand the paper. More details can be found in [22, 17].

An interval contractor for a constraint c with n variables
is a function

Contractc : IR
n −→ IR

n, (5)

that satisfies the following properties: (1) Contractc(x) ⊆ x;
(2) ∀x

(

x ∈ x ∧ c(x)
)

=⇒ x ∈ Contractc(x). Such contrac-
tors can be implemented using various techniques [22, 19, 4,
7] for standard inequality constraints. Examples and exper-
imentation presented in this paper use contractors based on
the 2B–consistency.

2B–consistency [5, 19] (also known as hull consistency)
states a local property on the bounds of the domain of a
variable at a single constraint level. A constraint c is 2B-
consistent if, for any variable xi, there exist values in the
domains of all other variables that satisfy c when xi is fixed
to xi and xi.

The filtering by 2B–consistency of P = (x,C) is the CSP
P ′ = (x′, C) such that

• P and P ′ have the same solutions;

• P ′ is 2B-consistent;

• x′ ⊆ x and the domains in x′ are the largest ones for
which P ′ is 2B-consistent.

Filtering by 2B–consistency of P always exists and is unique [19],
that is to say, it is a closure.

3. DESCRIPTION OF THE ALGORITHM
The key idea of our algorithm is to reformulate a QCSP

as a CSP with parametric constraints. More precisely, we
reformulate a QCSP with constraints of type (2) as a CSP
〈V, C,D〉 where:

– V = (x1, . . . , xn);
– C = {cy1 , . . . , cyp} with cyi (x) ≡ ∀y ∈ y, fi(x, y) ≤ 0;
– D = (x1, . . . ,xn).

The parameter domains are considered at the level of each
constraint, so we can process them differently for each con-
straint; they are initialized with y. Standard techniques
have to be adapted for this class of constraints. For exam-
ple, we show in Subsection 3.2 that Contract∀y∈y,f(x,y)≤0(x)
can be achieved with Contractf(x,ỹ)≤0(x) for any ỹ ∈ y, the
latter being implemented using standard interval contrac-
tors.

3.1 Outline of the Algorithm
The branch and prune algorithm we propose alternates

pruning and branching steps in a standard way to reject
parts of the search space that do not contain any solution.
This process is interleaved with the identification of inner
boxes that contain only solutions.

We also introduce new parameter instantiations and pa-
rameter reduction techniques which play a key role during
the pruning of the search space and the identification of the
solution sets. These key points are detailed in subsections
3.2, 3.3 and 3.4. They are implemented within a branching
process (see Algorithm 1) using the following functions:

Function ParameterInstantiation() returns a set of con-
straints C′ which is equivalent to C on the domain x, but



Algorithm 1: Generic Branch and Prune Algorithm
Input: C, x, ǫ
Output: (I,B)
U ← {(C,x)}; B ← {}; I ← {};1

while ¬empty(U) do2

(C,x)← extract(U);3

if wid(x) > ǫ then4

C′ ← ParameterInstantiation(C,x);5

x′ ← Pruning(C′, x);6

(C′′,x′′, I′)← SolutionIndentification(C′,x′);7

I ← I ∪ I′;8

C′′′ ← ParameterDomainBisection(C′′,x′′);9

U ← U ∪ Branching(C′′′,x′′);10

else11

B ← B ∪ {x};12

end13

end14

return (I,B);15

where some parameters have been instantiated (see Subsub-
section 3.4.3).

Function Pruning() contracts the domain x without loos-
ing any solution of C′ (see Subsection 3.2).

Function SolutionIndentification() contracts x′ to x′′ and
returns a list of inner boxes I′ (see Subsection 3.3). The
domains of the parameters are also updated in C′′ (see Sub-
subsection 3.4.1).

Function ParameterDomainBisection() bisects the param-
eter domains of the constraints and thus increases the num-
ber of constraints in C′′ (see Subsubsection 3.4.2).

Function Branching() achieves a standard bisection of the
domains x′′.

3.2 Pruning

Local Pruning.Given a constraint ∀y ∈ yi, ci(x, y) and
a box x, we want to contract x rejecting only parts which
do not contain any solution of this constraint. To achieve
this task, Benhamou et al. and Ratschan [2, 25] apply
Contractci(x,yi)(x), where y is handled as an existentially

quantified variable in the domain yi. However, this strategy
lacks efficiency. That’s why we propose a better contractor
by instantiating the parameter to an arbitrary value ỹ ∈ yi

(see Example 1). More formally, the box x is contracted us-
ing Contractci(x,ỹ)(x) which rejects only parts of x that do

not satisfy ci(x, ỹ), and thus, do not satisfy ∀y ∈ yi, ci(x, y).
Many strategies can be used to choose ỹ. We chose ỹ =

mid(yi). Experimentation have shown that searching for a
better value of ỹ is not worthwhile. This is due to the fact
that the parameter handling techniques reduce the impact
of this choice (see examples 4 and 5 in Subsection 3.4).

Example 1. Let us consider the constraint c(x) defined
by ∀y ∈ y, f(x, y) ≤ 0 with f(x, y) = 10y − x − y2, y =
[0, 1], and x = [0, 15]. The solution set of this simple CSP
is the interval [9, 15]. To reject values of x that do not
satisfy c(x), we apply Contractf(x,0.5)≤0(x), which reduces x
to x′ = [4.75, 15]. The method proposed in [2, 25] computes
Contractf(x,y)≤0(x) but cannot achieve any contraction.

Global Pruning.The contraction of x using one constraint
removes solutions of this constraint, and therefore solutions
of the global CSP. This is illustrated in the first row of Figure
2 where diagrams (a) and (b) show two local contractions
leading to x1′ and x2′. The global contraction depicted in
Diagram (c) is obtained by computing x1′ ∩ x2′. Of course,
in practice we compute this intersection in an incremental
way.

3.3 Identification of Sets of Solutions
As in [6, 24, 26, 2, 25, 27], the identification of sets of

solutions is implemented by applying interval contractors
to the negation of the constraints. Again, this process is
achieved for each constraint separately. However, now only
areas that are proved to be local solutions for all constraints
are solutions of the whole CSP.

Identification of Solutions for a Single Constraint.In
order to identify parts of a box x which contains only so-
lutions of the constraint ∀y ∈ yi, fi(x, y) ≤ 0, we compute

〈xi′,yi′〉 = Contractfi(x,y)≥0(〈x,yi〉), (6)

where 〈x,y〉 stands for the vector (x1, . . . ,xn,y1, . . . ,ym).
Thus, every value of x\xi′ satisfies fi(x, y) < 0 for all values
of y in yi. Indeed, the part of 〈x,yi〉 which has been pruned
does not contain any solution:

∀x ∈ x ∀y ∈ yi , (x /∈ xi′∨y /∈ yi′) =⇒ ¬(fi(x, y) ≥ 0). (7)

From (7) we have trivially

∀x ∈ x ∀y ∈ yi , x /∈ xi′ =⇒ fi(x, y) < 0. (8)

This process is illustrated on the following example.

Example 2. Continuing Example 1, let us consider c(x)
and x = [4.75, 15]. In order to identify values of x that sat-
isfy c(x), we apply Contractf(x,y)≥0(x,y) and obtain x′ =
[4.75, 10] and y′ = [0.475, 1]. Therefore, x\x′ =]10, 15] con-
tains only solutions of the constraint.

Identification of Solutions of the whole CSP.The xi′

for i ∈ {1, . . . , p} have been computed in such a way that all
values of x\xi′ verify ci(x) (cf. the diagrams (d) and (e) of
the second row of Figure 2). Thus, the values of x that are
outside all xi′ satisfy all the constraints. Formally,

x\(x1′ ∪ · · · ∪ xp′) (9)

contains only solutions of the CSP. This inner approxima-
tion (9) is the dashed area of Diagram (f) of the second
row of Figure 2. Its description becomes very complicated
for higher dimensions and when numerous constraints are
involved. As in [25], we use instead the weaker inner ap-
proximation

x\(x1′ ∨ · · · ∨ xp′). (10)

This inner approximation is represented on Diagram (g) of
the second row of Figure 2. Let us define x′ = x1′∨· · ·∨xp′.
The closure1 of x\x′ is added to the set of inner boxes while
x′ has to be further explored.

1The set difference x\x′ is not closed in general, e.g.
[−10, 10]\[−1, 1] = [−10,−1[∪]1, 10]. Nevertheless, we can
observe that if f is continuous and non positive in x\x′,



Figure 2: Upper row: pruning computed from local contractions. Lower row: identification of solutions using
local contractions of the negation of the constraints.

3.4 Handling Parameter Domains
As said before, the size of the domains of the parameters is

a critical issue for an efficient application of interval contrac-
tors. This section details the three methods implemented in
our algorithm to overcome this problem. The goal of these
methods is to only apply interval contractors to parts of the
initial parameter domains while keeping the CSP solution
set unchanged.

3.4.1 Parameter Domain Pruning
During the identification of solutions (6) the domains of

the parameters yi are reduced to yi′. In [2, 25], the initial
parameter domain is restored, so this contraction of the pa-
rameter domains is not propagated. However, this reduced
domain can be used while keeping the solution set of the
constraint unchanged. Indeed, (7) trivially entails

∀x ∈ x ∀y ∈ (yi\yi′) fi(x, y) < 0, (11)

As a consequence, for every fixed x in x, ∀y ∈ yi′, c(x, y)
implies ∀y ∈ yi, c(x, y). Finally, we can replace the latter
by the former keeping the solution set unchanged during
the solution identification step of the algorithm. This is
a significant improvement that is implemented without any
overhead since the parameter domains have to be contracted
anyway during the solution identification step.

Example 3. In Example 2, the identification of solutions
step has contracted the parameter domain from y = [0, 1]
to y′ = [0.475, 1]. This latter domain can be used in future
processing while keeping unchanged the CSP solution set.

3.4.2 Parameter Domain Bisection
Bisecting parameter domains is the most obvious way to

reduce them. This is a critical issue to improve the con-
vergence of the algorithm. Bisection is also used in [25]
but implemented in a different way. Here, we change the
constraint ∀y ∈ y, c(x, y) to the conjunction of the two con-
straints ∀y ∈ y1, c(x, y) and ∀y ∈ y2, c(x, y), where y1 and
y2 are obtained by bisecting y. The following example il-
lustrates how the parameter domain bisection is performed,

then it is also non positive in its closure cl(x\x′), e.g. if
f(x) ≤ 0 in [−10,−1[∪]1, 10] then f(x) ≤ 0 also holds in
[−10,−1] ∪ [1, 10]. Thus, cl(x\x′), which can be described
by a simple union of boxes, is recorded instead of x\x′.

and how it improves the pruning process as well as the iden-
tification of solutions.

Example 4. Let us come back to Example 1 where the
constraint store contains only one constraint C = {(∀y ∈
y, f(x, y) ≤ 0)}. Bisecting parameter domains, we obtain
the new constraint store C′ = {(∀y ∈ y1, f(x, y) ≤ 0), (∀y ∈
y2, f(x, y) ≤ 0)} with y1 = [0, 0.5] and y2 = [0.5, 1]. The
latter constraint store is equivalent to the original one, but
contains more constraints with smaller parameter domains.

The pruning operator is now applied to each constraint of
the store, thus the two contractions Contractf(x,0.25)≤0(x)
and Contractf(x,0.75)≤0(x) are computed. This leads to x′ =
[6.9375, 15]. The pruning achieved here is sharper than the
one computed without bisecting the parameter domains (cf.
Example 1).

To identify solutions of this new CSP, we compute (xi′,yi′) =
Contractf(x,y)≥0(x

′,yi) for i ∈ {1, 2}. We obtain x1′ = ∅,

y1′ = ∅, x2′ = [6.9375, 9.75] and y2′ = [0.71875, 1]. Fi-
nally, x′ is contracted to x1′ ∨ x2′ = [6.9375, 9.75] while
cl([6.9375, 15]\[6.9375, 9.75]) = [9.75, 15] is proved to be an
inner box. The solution identification is also more efficient
thanks to the bisection of the parameter domain (cf. Exam-
ple 2).

3.4.3 Parameter Instantiation
The constraint ∀y ∈ y, f(x, y) ≤ 0, where y = [y, y], can

be simplified if the function f is proved to be monotonic
w.r.t. the parameter. Indeed, if f is increasing (resp. de-
creasing) w.r.t. y, then the quantified constraint is obviously
equivalent to the non-quantified constraint f(x, y) ≤ 0 (resp.
f(x, y) ≤ 0). The variation of the function can be checked
by evaluating its derivative w.r.t. the parameter on the in-
tervals x and y. The same property holds if there are several
parameters, using a derivative w.r.t. each parameter.

Example 5. Let us come back to Example 1. Evaluating

(∂f/∂y)(x,y) = 10− 2y = [8, 10], (12)

we prove that f is increasing w.r.t. y. Therefore, the con-
straint ∀y ∈ y, f(x, y) ≤ 0 is equivalent to f(x, 1) ≤ 0.
Then, the pruning contracts x = [0, 15] to [9, 15] and the
solution identification proves that [9, 15] contains only so-
lutions. On this simple example, we obtain an exact de-
scription of the solution set. This set is much sharper than



Qine

problem ratio Rsolver 2B 2B+

Circle
0.98 55.67 0.90 1.03
0.99 169.51 2.32 2.22

0.999 − 69.18 31.55

PathPoint
0.6 122.72 0.01 0.01

0.65 334.34 0.01 0.02
0.7 − 0.02 0.03

Parabola
0.96 48.33 1.47 1.36
0.97 130.30 2.74 1.92
0.98 − 8.77 6.59

Robot
0.98 10.34 0.06 0.08
0.99 26.74 0.14 0.18

0.999 − 5.37 4.08

Satellite
0.5 303.30 71.36 114.33

0.55 − 168.32 268.36
0.6 − 227.09 368.90

Robust1
0.999 1.10 0.01 0.00

0.9999 7.16 0.04 0.00
0.99999 76.25 0.10 0.00

Robust4
0.5 − −

∗ 0.00
0.55 − − 0.01
0.6 − − 0.01

Robust5
0.7 75.35 0.00 0.00

0.75 80.62 0.00 0.00
0.8 − 0.01 0.00

Robust6
0.7 59.98 0.02 0.00

0.75 224.33 0.05 0.00
0.8 − 0.09 0.00

Table 1: Timing (in seconds) for Rsolve vs Qine

the contractions obtained without this instantiation of the
parameter (cf. examples 1 and 2).

The parameter instantiation can drastically improve the
efficiency of the pruning and the solution identification steps.
However, evaluating derivatives can be expensive, in par-
ticular when they involve trigonometric function. Experi-
mentation presented in the next section illustrate well this
trade-off.

4. EXPERIMENTATION

This section compares the results of the IPA system de-
scribed in [2], Rsolver [25] from S. Ratschan with our system,
called “Qine”, on a set of 9 benches.

The 9 benches come from the literature. The Circle, Path-
Point, Parabola, Robot and Satellite QCSPs are taken from
[2]. A description of Robust1 (respectively, Robust4, Ro-
bust5 and Robust6) can be found in [8] (respectively, [21],
[15] and [14]).

The Rsolver and Qine benches have been run on an Intel
Core Duo 2 at 2.4Ghz with a time out of 600s. To limit the
effect of the high memory consumption of these algorithms,
the available memory has been restricted to 1Gb. Thus,
a bench could either succeed to run within these two lim-
its, end with a time out (“−”), or reach the memory limit
(“−∗”).

Table 1 reports the results obtained with Rsolver and
Qine. It gives Rsolver timing, as well as the time required
to solve the benches for the different Qine running options :

• “2B” uses the contractor based on 2b-consistency tech-
niques. More precisely, its implementation relies on
a forward-backward evaluation of the direct acyclic
graph which represents the constraint.

IPA QINE

problem ratio t t ∗ corr 2B 2B+

Circle
0.8928 2.4 1.402 0.14 0.20
0.9326 9.328 5.450 0.20 0.30
0.9535 64.876 37.907 0.30 0.42

PathPoint 0.8172 148.66 86.86 0.08 0.12

Parabola
0.8716 0.340 0.1986 0.06 0.06
0.9340 2.824 1.65 0.34 0.33
0.9650 75.936 44.3697 1.80 1.65

Robot
0.9924 1.112 0.6497 0.26 0.34
0.9973 5.908 3.452 1.07 1.10
0.9980 16.933 9.894 1.89 1.81

Satellite
0.2813 5.660 3.3071 18.41 29.61
0.4844 27.633 16.146 52.79 84.90

Table 2: Timing (in seconds) for IPA vs Qine

• “2B+” combines the previous contractor with the deriva-
tive based parameter handling strategy introduced in
subsection 3.4.3.

The results have been computed according to a ratio (col-
umn 2) where

ratio =
Vinner + Vouter

Vinitial

(13)

where Vinner is the total volume of the inner boxes, Vouter is
the total volume of the outer boxes and Vinitial is the volume
given by the initial domains of the variables. Though all the
benches have been run for ratios going from 0.5 to 0.99999,
the table gives only the most significant results for the sake
of space.

As shown in table 1, in average, Qine outperforms Rsolver
by one order of magnitude. For instance, Qine handles the
Robust benches immediately while Rsolver needs much for
time to do so. A comparison of the different available com-
binations shows that the “2B+” combination has a more
robust behavior. It takes advantage of all the available infor-
mation and offers a good trade-off between the computation
time and the domain reductions. However, on the Satellite
bench, 2B performs better than 2B+. This illustrates the
trade-off between the cost of derivative computation and the
benefit of parameter instantiations.

Tables 2 compares IPA with Qine. IPA system has been
run on a Pentium M at 2Ghz running Linux. To allow a
fair comparison, we have computed a timing correction :
the same system, Rsolver, has been run on both systems
in order to determine this correction. Therefore, the initial
timing obtained for IPA (column 3) has been multiplied by
0.58 (column 4) to allow a fair comparison between the two
systems.

Here again, Qine outperforms IPA. Indeed, IPA was not
able to solve the PathPoint bench within the timeout for
only one of the tested ratios. However, IPA is faster than
Qine on the Satellite bench for the lower ratio values. This
behavior is probably due to the limit of the 2B based con-
tractor whose domain reduction capabilities decrease when
a variable has multiple occurrences within one constraint.
IPA is based on a Box contractor which does not suffer from
the same behavior (see [7] for a detailed comparison of 2B
and Box). However, when the ratio value increases, Qine be-
comes faster than IPA. For instance, IPA needs more than
876s (corrected time) to solve the Satellite bench for a ratio



of 0.6276 whereas Qine achieves this task with 2B within
401.44s.

Note that the class of QCSPs handled by IPA is limited
to one parameter. Thus, IPA is not able to solve the Robust
benches.

5. CONCLUSION
In this paper, we have introduced a new, simple and effi-

cient algorithm to handle a significant class of QCSPs. Ex-
amples coming from the literature reveal that this class cov-
ers most of the practical applications.

Our algorithm is based on new techniques for handling
parameters. It also takes advantage of information provided
by the derivatives to improve the contraction of the domains
involved in constraints with parameters, a key issue in the
efficient solving of QCSPs.

Experimentation underline the efficiency of our algorithm
which outperforms two of the available state of the art im-
plementations able to handle such QCSPs. In average, our
implementation is by one order of magnitude quicker than
the two other systems.

Further work concerns the improvement of the implemen-
tation of the contractor by using the best filtering techniques
for each type of constraints and the generalization of the
use of available information to still enhance the speed of the
solving process.
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