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The bottleneck of micromagnetic simulations is the computation of the long-ranged magnetostatic
fields. This can be tackled on regular N-node grids with Fast Fourier Transforms in time N log N ,
whereas the geometrically more versatile finite element methods (FEM) are bounded to N

4/3 in the
best case. We report the implementation of a Non-uniform Fast Fourier Transform algorithm which
brings a N log N convergence to FEM, with no loss of accuracy in the results.

The power of computers steadily increases over the
years while the size of devices used in fundamental sci-
ence or technology is shrinking. Today we have reached
a cross-over where numerical simulations are capable of
describing in detail the physics of nanodevices, for which
they thus play a leading role in their understanding
and designing. In numerical micromagnetics for spin
electronics, a bottleneck is the computation of the mag-
netostatic interactions which by nature are long-ranged.
These interactions can be expressed in terms of either
magnetostatic field H or scalar pseudo-potential φ such
that H = −∇φ. The latter is convenient since it boils
the problem down to a single scalar unknown. To deal
with magnetostatic interactions, essentially two distinct
approaches have been implemented, depending on the
type of mesh used :

1. for Finite Difference (ie. translation invariant)
meshes, a Green approach with Fast Fourier
Transforms, called FD-FFT. Computation time is
moderate (N log N with N the number of nodes),
but the curved boundaries that occur often in
experimental devices are not ideally described ;

2. for Finite Element (much more general) meshes,
a Finite Element Method coupled to a Boundary
Element Method, called FEM-BEM. This can
faithfully describe curved boundaries but compu-
tation time is higher, at least N3/2 in 2D (resp.
N4/3 in 3D).

In this Letter we report the implementation of a new
magnetostatic code which combines the advantages of
both cited approaches : it uses a FEM mesh thus de-
scribing curved boundaries as well as FEM-BEM, albeit
with computation time N log N . It is based on a algo-
rithm reported recently for computing non-periodic Fast-
Fourier Transforms (NFFT)1. Our code, called FEM-
NFFT, proves to be significantly faster than FEM-BEM
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with no loss of precision. As a first step the implementa-
tion was done for a 2D geometry (which pertains to 3D
systems with one direction of translational invariance,
i.e. cylinder-like) for the proof of concept. The gain is
expected to be even greater in more realistic 3D calcu-
lations. This demonstrates the potential of FEM-NFFT
for micromagnetism and thus spin-electronic devices.

Let us recall the principle and features of FD-FFT and
FEM-BEM before presenting our approach and results.
We consider a system Ω with boundary ∂Ω, displaying a
known magnetization distribution M(r).

Finite Difference micromagnetic codes use a transla-
tion invariant grid. On such a grid, FFTs can be used to
compute convolutions in time N log N . This motivates a
Green approach for magnetostatics : φ is calculated as a
convolution of the Green function G = −(1/2π) log r in
2D [resp. G = 1/(4πr) in 3D] with the magnetic charges,
volumic ρ = −∇ · M and surfacic σ = M · n :

φ(r) =

∫
Ω

ρ(r′)·G(r−r
′)dr′+

∫
∂Ω

σ(r′)·G(r−r
′)dr′ (1)

The N log N speed explains the wide and lasting use
of FD in micromagnetic simulations2. However, most
devices have curved boundaries, either by design or as
a result of experimental imperfections. Simulating these
cases with FD requires the use of saw-tooth boundaries
to describe the magnetic material. This geometrical
approximation may induce inadequate descriptions3.

Finite Element micromagnetic codes use, on the con-
trary, complex-shaped meshes with triangles (resp. tetra-
hedrons) as 2D (resp. 3D) unit cells. They consequently
suffer much less from the above-mentioned limitations.
However, without translational invariance of the mesh,
FFTs are not available. Bearing in mind that direct sum-
mation of Eq.(1) on a FEM mesh, called FEM-direct,
would cost N2 time, one understands why the Green ap-
proach is thought incompatible with FEM codes.

To deal with magnetostatics, FEM codes thus go back
to the Poisson equation −∆φ = ρ, with the usual reg-
ularity condition that the field should decay at infinity.
Applying FEM, the equations are translated into a linear
system, which is solved by standard iterative methods4
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in time N3/2 in 2D (resp. N4/3 in 3D) Not only is this
asymptotically slower than the N log N time required
for FD-FFT, but N here takes higher values, because
the mesh must extend well beyond Ω in order to tackle
the regularity condition at infinity. This induces an ad-
ditional slowdown, and also creates finite-size artifacts.

To avoid meshing outside Ω, the main approach
consists in coupling FEM with a Boundary Element
Method, resulting in the so-called FEM-BEM5. The
asymptotic complexity of the Poisson solver is unchanged
but the BEM step introduces another time limitation
N2

∂ where N∂ is the number of boundary nodes. In the
most favorable case consisting of compact systems N∂ ≈
N1/2 in 2D (resp. N∂ ≈ N2/3 in 3D). However for flat
geometries, of particular relevance to applications, N∂ ≈
N , in which case the time limitation for FEM-BEM may
be pretty severe.

Our innovation is to revert, within the FEM frame-
work, to a Green approach. The convolution (1) is dis-
cretized in a way typical for FEM, and computed using
a fairly recent mathematical method called NFFT (Non-
uniform Fast Fourier Transform). NFFTs allows one to
compute discrete convolutions in time N log N without
the equispaced data requirement of FFTs.

More in details, we seek φ at the nodes (ri), i=1...N

of the mesh. A linear interpolation inside each element,
of known magnetization values M(ri), is used to evalu-
ate charges ρ and σ at points rj , j=1...M defined as the
quadrature points for the integrals in (1)6.

Consequently, (1) is rewritten the following way :

φ(ri) =

M∑
j=1

ρj G(ri − rj) ωj det J(rj)

+

M∑
j=1

σj G(ri − rj) ωj detJ(rj) (2)

where
– ρj = ρ(rj) if rj is in the interior of Ω, 0 otherwise,

– σj = σ(rj) if rj is on ∂Ω, 0 otherwise,

– ωj is the weight of rj in the quadrature scheme,

– J(rj) is the Jacobian of the affine transformation
mapping the unit element on that containing rj .

We then use NFFTs to compute (2). Although the
seminal paper7 dates back to 1993, the NFFT method
remains little-known even in the mathematical commu-
nity. A presentation of the method can be found Ref.8.
Here we sketch the basic strategy and show that com-
putation time does not exceed N log N , ie. that of the
classical FFT.

Let us look at our non equispaced data as a sum of
Dirac functions. The goal is to find the spectrum of this
data function. The idea is to convey initial information

over a regular grid, so that an FFT can be used. We
therefore choose a regular grid X and let the data dif-
fuse to the X nodes through convolution with a Gaussian
function (or more generally a smooth localized function).
The Gaussian is localized in space, so we can consider
that each piece of data diffuses only to a fixed number of
the nearest X nodes. Computation time of this diffusion
step is thus proportional to N .

The question arises how to choose the period of the X
grid. In our case, the answer depends on how smooth the
Green function G is. A necessary preliminary step before
executing the NFFT is therefore to smooth G around the
origin ; the price to pay is an afterwards correction in the
smoothing zone. It can be shown that a grid of size p2N
in 2D (resp. p3N in 3D) is convenient, where p is the
degree of smoothness chosen for G.

We then perform, according to the initial idea, a
FFT on the X grid, in time proportional to N log N .
Based on the convolution theorem, what we get is the
Fourier coefficients of the data function multiplied by
those of the Gaussian. Therefore, we finally divide these
numbers by the Fourier coefficients of the Gaussian to
get the desired spectrum. The number of divisions is
proportional to N . As a whole, the NFFT is expected
to behave asymptotically like N log N , as all extra steps
behave like N .

We implemented FEM-NFFT to 2D test cases where
an analytical solution φa is available, so that errors can
be readily estimated. Interpolation and quadrature rou-
tines are written in C++ and the NFFT package used9

is in C99. For G we have chosen a smoothness degree of
2. On each test case, we provide computation times and
error estimates for FEM-direct, the classic FEM-BEM
and our NFFT-based method. The computed error is

the normalized root mean square (MsL)−1(
∑N

i=1 |φ(ri)−

φa(ri)|
2/N)1/2, where Ms is the saturation magnetization

and L the system diameter set at unity, . Computations
are done on an Intel P4 2GHz with 1GB RAM running
Fedora 5.

The first test case is a disk uniformly magnetized along
the x-axis (a cylinder in 3D space). The analytical solu-
tion is φ(x) = Ms x/2. The second case is the so-called
magic cylinder, a circular annulus of radii R1, R2 where
the angle between magnetization and the x-axis equals
twice the polar angle. The name stems from the uni-
form magnetic field thus induced in the inner region.
The analytical solution inside the annulus is φ(r, θ) =
Ms r cos θ log(r/R2) in polar coordinates.

Tables 1 and 2 display the numerical results for the
two cases, respectively. It can be readily seen that FEM-
NFFT provides results very similar to FEM-direct. The
error induced by the NFFTs is thus negligible. Compared
to FEM-BEM, errors are comparable for non-uniformly
magnetized systems (see Table 2) whereas for uniform
distributions, Green approaches, to which FEM-NFFT
belong, are more accurate by one order of magnitude
(see Table 1). This is because they can treate apart volu-
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mic and surfacic charge contributions. Concerning com-
putational time, FEM-direct is as expected the quickest,
gaining a factor around 5 over FEM-BEM for the finer
meshes. Nodes required in 3D cases of interest commonly
count up to 105, around which number the time advan-
tage of FEM-NFFT over classical methods such as FEM-
BEM is expected to reach one order of magnitude.

Fig. 1 – Test case 1 : the uniformly magnetized disk.
Mesh used for N = 400 (left) and magnetization

distribution (right).

Tab. I – Test case 1 : error (in ppm) and computation
time (in seconds) of FEM-direct, FEM-BEM and

FEM-NFFT for different mesh sizes.
error time

N FEM- FEM- FEM- FEM- FEM- FEM

direct BEM NFFT direct BEM NFFT

400 93.6 162 90.3 0.401 0.070 0.089
1572 17.3 52.8 16.8 7.71 0.390 0.385
9489 2.16 25.8 2.09 233 4.75 2.18
37938 −− 23.2 0.650 3720∗ 40.1 9.81

∗
: estimated.

Fig. 2 – Test case 2 : the magic cylinder. Mesh used for
N = 1192 (left) and magnetization distribution (right).

To conclude, we have successfully implemented a Non-
uniform Fast Fourier Transform (NFFT) algorithm to
compute magnetostatic fields for micromagnetic simula-
tions based on Finite Element methods (FEM). The new
approach, called FEM-NFFT, combines the advantages
previously found separately in Finite Difference methods

Tab. II – Test case 2 : error (in ppm) and computation
time (in seconds) of FEM-direct, FEM-BEM and

FEM-NFFT for different mesh sizes.
error time

N FEM- FEM- FEM- FEM- FEM- FEM

direct BEM NFFT direct BEM NFFT

1192 174 172 174 3.58 0.290 0.331
2091 95.8 94.2 95.8 14.0 0.640 0.498
8214 24.7 32.1 24.8 211 4.59 2.02
22683 −− 21.5 9.05 1600∗ 34.0 6.62

∗
: estimated.

(computation time scaling like N log N) and FEM (faith-
ful description of curved boundaries). Thus FEM-NFFT
promises a leap in the attractiveness of micromagnetic
simulations of spin electronic devices.
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