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HÖLDERIAN REGULARITY-BASED IMAGE INTERPOLATION

Jacques Levy-Vehel Pierrick Legrand

COMPLEX Team, INRIA Rocquencourt, 78153 Le Chesnay Cedex, France

ABSTRACT
We consider the problem of interpolating a signal inIRd

known at a given resolution. In our approach, the signal is as-
sumed to belong to a given (large) class of signals. This class
is characterized by local regularity constraints, that canbe
described by a certain inter-scale behaviour of their wavelet
coefficients. These constraints allow to predict the scalen co-
efficients from the ones at lower scales. We investigate some
properties of this interpolation scheme. In particular, wegive
the Hölder regularity of the refined signal, and present some
asymptotic properties of the method. Finally, numerical ex-
periments are presented. Both the theoretical and numerical
results show that our regularity-based scheme allows to obtain
good quality interpolated images.

1. INTRODUCTION AND BACKGROUND

A ubiquitous problem in signal and image processing is to
obtain data sampled with the best possible resolution. At the
acquisition step, the resolution is limited by various factors
such as the physical properties of the captors or the cost. It
is therefore desirable to seek methods which would allow to
increase the resolution after acquisition. This is useful for
instance in medical imaging or target recognition. At first
sight, this might appear hopeless, since one cannot ”invent”
information which has not been recorded. However, there are
a number of situations of practical interest where this can be
done. A first class of such situations is when several low reso-
lution overlapping signals are available. This occurs in video
sequences, radar imaging or MRI. Interpolation (also called
superresolution in this context) is then the process of combin-
ing these multiple low resolution signals into a high resolution
one. This is not the frame we shall consider here.

In more general situations, a single signal is available for
interpolation. Compared with the case above, one needs to
supplement the data brought by the low resolution signal by
a richera priori information. Several methods have been ex-
plored, which may be roughly split into two types: In the first,
”class-based” one, the signal is assumed to belong to some
class, with conditions expressed mainly in the time or fre-
quency domain. Such classes include band-limited or time-
limited signals, positive and/or sparse signals, and smooth-
ness classes such asCn or Besov spacesBs

p,q. This puts

constraints on the interpolation, which is usually obtained as
the minimum of a two-terms cost-function: The first term en-
sures that the reconstructed high resolution image is compat-
ible with the observed low resolution one. The second term
corresponds to thea priori smoothness information. Works
following this approach include [1, 2, 3, 4, 5, 6, 7].

The second type of approach, which could be called ”con-
textual”, has been proposed in recent papers originating from
several communities (computer vision, computer graphics,AI)
[8, 9, 10]. It originates from the observation that most class-
based methods results in overly smooth images at higher in-
terpolation rates (i.e. larger than 4). Contextual methodstry
to overcome this problem by using a ”local learning” tech-
nique: Basically, the system is given some information about
the local features in a given class of signals (a database). It
then uses this information to compute a high resolution signal
by comparing the local features of the signal to be processed
with the ones of the signals in the database. The assumption
is that neighbourhoods in the images of the database that are
similar at resolutionsn, n − 1, . . . , n − i, should remain so
at the ”superresolution”n+ 1. The methods then proceed by
finding, for any neighbourhood in the image to be processed,
similar neighbourhoods in the database, and then interpolat-
ing on the basis on the known high resolution versions of the
database neighbourhoods.

A number of problems remain with most techniques de-
veloped so far: While the interpolated image is usually too
smooth, it also occur sometimes that on the contrary too many
details are added, in particular in smooth regions. In addition,
the creation of details is not well controlled, so that one can
neither predict how the high resolution image will look like,
nor the theoretical properties of the interpolation scheme.

Let us now explain in informal terms how our method
works. Broadly speaking, our main motivation is to find a
way to interpolate in such a way that smooth regions as well
as irregular ones (i.e. sharp edges or textures) remain so af-
ter zooming. We interpret this as a constraint on the the local
regularity: The interpolation method should preserve the lo-
cal regularity. The next step is to define an index of local reg-
ularity which is both a reasonable measure of the perceived
regularity and mathematically/computationally tractable. In
that view, we use a notion of Hölder exponent. Hölder ex-
ponents have been shown to correspond to an intuitive notion



of regularity in both images and 1D signals [11]. In order to
control the interpolation and to obtain a simple implementa-
tion, we need to make some assumptions on the signal, to the
effect that (a) this Hölder exponent can be easily estimated
from wavelet coefficients (b) the Hölder exponent allows to
predict the finer scales coefficients. Technically, this requires
that the signal is notoscillatory(see section 2). This scheme
allows to control both the reconstruction error and the regular-
ity of the interpolated signal (this regularity does not depend
on assumptions on the original signal). This regularity in turn
controls the visual appearance of the added information, i.e.
the (local) high frequency content.

To get an intuitive understanding of the method, it is use-
ful to recast this in terms of wavelet coefficients: LetX de-
noted the input signal and letdj,k be its wavelet coefficients,
where, as usual,j corresponds to scale andk to location.
Roughly speaking, if a signal has regularityα at pointt, then
its wavelet coefficientdj,k(j,t) ”above”t are bounded byC2−jα

for some constantC: ∀j = 1 . . . n, |dj,k(j,t)| ≤ C2−jα. As
said above,α correspond to an intuitive notion of regular-
ity: A largeα translates in a smooth signal, whileα ∈ (0, 1)
means that the signal is continuous and non differentiable at
t. If the signal is discontinuous att but bounded, thenα = 0.
Now if we are willing to preserve the regularity, we should
prescribe the wavelet coefficient abovet at the superresolved
scalen+ 1 in such a way that|dn+1,k(n+1,t)| ≤ C2−(n+1)α.

For concreteness, let us explain schematically how our
method would act in two simple situations: On a uniform re-
gion, all the wavelet coefficients are close to zero. The bound
on the wavelet coefficients then holds with arbitrarily large
α, since0 ≤ C2−jα for all α > 0. As a consequence, the
predicted coefficientdn+1,k will be zero, since it must satisfy
the same inequality: The smooth region will remain smooth,
because no detail will be added. On the other hand, above a
step edge, the wavelet coefficientsdj,k do not decay in scale.
This imply thatα = 0. The predicted coefficientdn+1,k will
then be of the same order asdn,k. As a consequence, the local
regularity of the interpolated image will be again equal to 0at
this point, and the edge will not be blurred.

We describe the interpolation procedure in the next sec-
tion. Section 3 highlights some theoretical features of the
method related to asymptotic regularity properties of the in-
terpolated signal and bounds on the reconstruction error. Fi-
nally, section 4 displays some numerical experiments.

2. THE METHOD

LetX denote the original signal, andXn = (xn
1 , . . . x

n
2n) its

regular sampling over the2n points(tn1 , . . . t
n
2n). Letψ denote

a wavelet such that the set{ψj,k}j,k forms an orthonormal
basis ofL2. Let dj,k be the wavelet coefficients ofX .

For k = 1 . . . 2n, we consider the pointt = tnk and the
wavelet coefficientsdj,k(j,t) which are located ”above” it (ie
k(j, t) = ⌊(t + 1)2j+1−n⌋). Let αn(t) denote the slope of

the liminf regression of the vector(log(d1,k(1,t), . . . dn,k(n,t))
versus(−1, . . . ,−n).
See [12] for an account on liminf regressions. Whenn tends
to infinity,αn(t) tends to liminf

log dn,k(n,t)

−n
. This number has

been considered in the literature [13] under the name ofweak
scalingexponent, denotedβw. It is a measure of the local
regularity in the following sense. The weak scaling exponent
of the signalX at t0 is defined as:

βw = sup{s : ∃n, X(−n) ∈ Cs+n
t0

}.

whereX(−l) denotes a primitive of orderl ofX andCs
t0

is
the usual pointwise Hölder space att0. When the local Hölder
exponentαl and the pointwise Hölder exponentαp of X at t
coincide, thenβw is also equal to their common value. See
[14] for more on this topic. In the following we will always
assume that this is the case. In other words, we consider that
our signals belong to the classS defined as follows:

S = {X ∈ L2(IR), ∀t ∈ IR, αp(t) = αl(t)}

The classS may appear somewhat abstract to the reader.
Here are a few clues.S contains allC∞ signals and all
signals of the type

∑
n∈IN |t − tn|

γn , with tn ∈ IR, γn ∈

IR+. Many everywhere irregular signals are also inS, such
as the continuous nowhere differentiable Weierstrass function∑

n∈IN 2−nh sin(2nt), h ∈ (0, 1). On the other hand, ”chirp”
signals as|t|γ sin(1/|t|β), γ > 0, β > 0 do not belong toS.
The easiest way to picture elements inS is maybe through
their wavelet transform: At each pointt, the ”largest” coef-
ficients are located abovet in the following sense. Take any
sequencedj,k of coefficients such thatk2−j tends tot. Then,
if X belongs toS,

liminf j→∞

log |dj,k|

−j
≥ liminf j→∞

log |dj,k(j,t)|

−j
(1)

For a general continuous signal (i.e. a signal not inS),
the Hölder regularity att may always be evaluated from the
decay ofall the wavelet coefficientsdj,k such thatk2−j tends
to t (i.e. from liminf such as above). When the signal is inS,
inequality (1) implies that we may restrict our attention tothe
onesabovet. Such signals are called ”non-oscillatory” in the
literature.

To perform the interpolation, we compute above each point
t the regression of the wavelet coefficientsvsscale. The pa-
rameters of the regression allow to build the extrapolated co-
efficient. These coefficients in turn determine the ”superre-
solved” signal.



3. REGULARITY AND ASYMPTOTIC PROPERTIES

We give two properties of the regularity-based interpolation.
See [15] for more results and proofs. LetX̃n+m the signal
afterm interpolations,β̃n,k the slope of the regression and

log2

(
K̃n+1,k

)
the ordinate in zero.

Proposition 1 If X ∈ Cα then, whatever the numberm of
added scales:

‖ X − X̃n+m ‖2
2≤

c2

2

1

22α − 1
2−2αn +

K̂n

22β̂n − 1
2−2β̂nn

With (K̂n+1, β̂n) such as:

K̂n+12
−2j(β̂n+ 1

2 ) = max
( eKn+1,k,β̃n,k)

[
K̃n+1,k2−2j(β̃n,k+ 1

2 )
]

Proposition 2 Let X belong toS, and assumeX ∈ Cα.
Then,∀ε > 0, ∃N :

n > N ⇒ ||X − X̃n+m||2 = O(2−(n+m)(α−ε))

In addition,
||X − X̃n+m||Bs

p,q
= O(2−(n+m)(α−s−ε)) for all s < α− ε.

4. NUMERICAL EXPERIMENTS

We present results of the regularity-based interpolation on two
images. The first one is the well-known Lena image, the sec-
ond is a scene containing a Japonese door (toryi ). Both orig-
inal images are 128x128 pixels and are shown on figure 1.
Figure 2 displays a comparison between four-times bicubic
and regularity-based interpolations on a detail of Lena. Fig-
ure 3 presents eight-times bicubic and regularity-based inter-
polations on a detail of the door image.

Fig. 1. Original Lena and Door images, 128x128 pixels
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