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Introduction and result

In this text, we are interested in the exponentially small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian ∆ (0)

f,h (acting on 0-forms) on a connected compact Riemannian manifold with regular boundary. Our purpose is to derive with the same accuracy as in [HKN] and in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] asymptotic formulas for the smallest non zero eigenvalues of the Neumann realization of ∆ (0) f,h .

A similar problem was considered by many authors via a probabilistic approach in [FrWe], [HKS], [Mic], and [Kol]. More recently, in the case of R n , accurate asymptotic forms of the exponentially small eigenvalues were obtained in [BEGK] and [BGK]. These results were improved and extended to the cases of boundaryless compact manifolds in [HKN] and of compact manifolds with boundaries for the Dirichlet realization of the Witten Laplacian in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF]. We want here to extend these last results to the case of compact manifolds with boundaries for the Neumann realization of the Witten Laplacian, that is with coherently deformed Neumann boundary conditions.

The function f is assumed to be a Morse function on Ω = Ω ∪ ∂Ω with no critical points at the boundary. Furthermore, its restriction to the boundary f | ∂Ω is also assumed to be a Morse function. From [ChLi], which completed results yet obtained in the boundaryless case (see [START_REF] Simon | Semi-classical analysis of low lying eigenvalues, I. Nondegenerate minima: Asymptotic expansions[END_REF] [Wit][CFKS] [Hen][HeSj4][Hel3]), the number m p of eigenvalues of the Neumann realization of the Witten Laplacian ∆ (p) f,h (acting on p-forms) in some interval [0, Ch

The point of view of [HKN] and [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] intensively uses, together with the techniques of [START_REF] Helffer | Puits multiples en limite semi-classique IV -Etude du complexe de Witten[END_REF], the two facts that the Witten Laplacian is associated with a cohomology complex and that the function x → exp -f (x) h is a distributional solution in the kernel of the Witten Laplacian on 0-forms allowing to construct very efficiently quasimodes.

Recall that the Witten Laplacian is defined as

∆ f,h = d f,h d * f,h + d * f,h d f,h , (1.0.1)
where d f,h is the distorted exterior differential d f,h := e -f (x)/h (hd) e f (x)/h , (1.0.2) and where d * f,h is its adjoint for the L2 -scalar product canonically associated with the Riemannian structure (see for example [GHL][Gol] [Sch]) The restriction of d f,h to p-forms is denoted by d (p) f,h . With these notations, the Witten Laplacian on functions is

∆ (0) f,h = d (0) * f,h d (0) f,h .
(1.0.3)

In the Witten complex spirit and due to the relation

d (0) f,h ∆ (0) f,h = ∆ (1) f,h d (0) f,h , (1.0.4)
it is more convenient to consider the singular values of the restricted differential d

f,h : F (0) → F (1) . The space F ( ) is the m -dimensional spectral subspace of ∆ ( ) f,h , ∈ {0, 1},

F ( ) = Ran 1 I(h) (∆ ( ) f,h ) ,
(1.0.5) with I(h) = [0, Ch 3 2 ] and the property 1

1 I(h) (∆ (1) f,h )d (0) f,h = d (0) f,h 1 I(h) (∆ (0) 
f,h ) .

(1.0.6)

The restriction d f,h F ( ) will be more shortly denoted by β

( ) f,h β ( ) f,h := (d ( ) f,h ) /F ( ) .
(1.0.7)

We will mainly focus on the case = 0.

In order to exploit all the information which can be extracted from well chosen quasimodes, working with singular values of β (0)

f,h appears to be more efficient than considering their squares, the eigenvalues of ∆ (0) f,h . Those quantities agree better with the underlying Witten complex structure. Note that in our case, 0 is the smallest eigenvalue of the (deformed) Neumann realization of the Witten Laplacian on 0-forms due to the belonging of x → exp -f (x) h to the domain of this operator (see Proposition 2.3.1 for 1 The right end a(h) = Ch the exact definition).

Let us now state the main result. Let U (0) and U (1) denote respectively the set of local minima and the set of generalized critical points with index 1, or generalized saddle points, of the Morse function f on Ω (see Definition 5.2.1 for the exact meaning of "generalized"). The analysis requires an assumption which ensures that the exponentially small eigenvalues are simple with different logarithmic equivalent as h → 0. Although it is possible to consider more general cases like in [HKN] and in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF], we will follow the point of view presented in [Nie] and work directly in a generic case which avoids some technical and unnecessary considerations.

Assumption 1.0.1. The critical values of f and f ∂Ω are all distinct and the quantities f (U (1) ) -f (U (0) ), with U (1) ∈ U (1) and U (0) ∈ U (0) are distinct.

After this assumption, a one to one mapping j from U (0) \ U (0) 1 when U (0) 1

is the global minimum, into the set U (1) can be defined. The local minima are denoted by U

k , k ∈ {1, . . . , m 0 }, and the generalized saddle points by U

(1) j , j ∈ {1, . . . , m 1 }. The ordering of the local minima as well as the one to one mapping j will be specified in Subsection 5.3. The final result will be expressed with the next quantities.

Definition 1.0.2. For k ∈ {2, . . . , m 0 }, we define:

γ k (h) =          det Hess f (U (0) k ) 1 4 (πh) n 4 if U (0) k ∈ Ω -2∂nf (U (0) k ) h 1 2 det Hess f | ∂Ω (U (0) k ) 1 4 (πh) n-1 4 if U (0) k ∈ ∂Ω , δ j(k) (h) =          det Hess f (U (1) j(k) ) 1 4 (πh) n 4 if U (1) j(k) ∈ Ω -2∂nf (U (1) j(k) ) h 1 2 det Hess f | ∂Ω (U (1) j(k) ) 1 4 (πh) n-1 4 if U (1) j(k) ∈ ∂Ω ,
and,

θ j(k) (h) =          h 1 2 π 1 2 (πh) n 2 | λ Ω 1 | 1 2
det Hess f (U

(1)

j(k) ) 1 2 if U (1) j(k) ∈ Ω h 2 -2∂nf (U (1) j(k) ) (πh) n-2 2 | λ ∂Ω 1 | 1 2 det Hess f | ∂Ω (U (1) j(k) ) 1 2 if U (1) j(k) ∈ ∂Ω ,
where λ W 1 is the negative eigenvalue of Hess f | W (U

(1) j(k) ) for W = Ω or W = ∂Ω.

Theorem 1.0.3. Under Assumption 1.0.1 and after the ordering specified in Subsection 5.3, there exists h 0 such that, for h ∈ (0, h 0 ] , the spectrum in [0, h 3 2 ) of the Neumann realization of ∆ (0) f,h in Ω consists of m 0 eigenvalues 0 = λ 1 (h) < . . . < λ m 0 (h) of multiplicity 1. Moreover, the above m 0 -1 non zero eigenvalues are exponentially small and admit the following asymptotic expansions:

λ k (h) = γ 2 k (h) δ 2 j(k) (h) θ 2 j(k) (h) e -2 f (U (1) j(k) )-f (U (0) k ) h 1 + hc 1 k (h)
where γ k (h), δ j(k) (h), and θ j(k) (h) are defined in the above definition and c 1 k (h) admits a complete expansion:

c 1 k (h) ∼ ∞ m=0 h m c k,m
. This theorem extends to the case with Neumann boundary conditions the previous result of [BGK] and its improvements in [HKN] and [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] (see also non-rigorous formal computations of [KoMa], who look also at cases with symmetry and the books [FrWe] and [Kol] and references therein).

To prove this theorem, we will follow the same strategy as in [HKN] and in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] and some intermediary results will be reused without demonstration (what will be indicated in the article). Moreover, some proofs will be improved (see for example the final proof reduced now to a simple Gaussian elimination explained in [Lep]). At least, the geometry of the Neumann case is different from the geometry of the above references. This leads to different results (compare Theorem 1.0.3 and the main theorem of [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF]) and some proofs have to be entirely reconsidered. In fact, the study of the Dirichlet realization of the Witten Laplacian done in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] agreed better with the local geometry near the boundary, which led to simpler computations (see the local WKB construction in Section 4 for example).

The article is organized as follows.

In the second section, we analyze in detail the boundary complex adapted to our analysis in order to keep the commutation relation (1.0.4) (a part of the answer already existed in the literature (see [Sch], [Duf], [DuSp], [Gue], and [ChLi]) in connection with the analysis of the relative or absolute cohomology as defined in [Gil]). The third section is devoted to the proof of rough estimates (to get a precise localization of the spectrum of the Laplacian) replacing the harmonic oscillator approximation in the case without boundary. These two sections bring no additional difficulties in comparison with what was done in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF]. In the fourth section, we give the WKB construction for an eigenform of the Witten Laplacian on 1-forms localized near a critical point of the boundary, according to the analysis done in [START_REF] Peutrec | Local WKB construction for boundary Witten Laplacians[END_REF]. Moreover, it was possible in the Dirichlet case to use only a single coordinate system in order to approximate an eigenform by a WKB construction while different coordinate systems arise naturally here. Lemma 3.3.1 will play a crucial role to juggle with these different coordinate systems. In the first part of the fifth section we label the local minima and we construct the above injective map j under Assumption 1.0.1. In its second part, after having constructed adapted quasimodes to our analysis, we make some scalar estimates -using the Laplace method -which lead directly to the final proof of the theorem, using the result of [Lep], in the sixth section. Again, we cannot use like in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] a single coordinate system and we must again call on Lemma 3.3.1 to be able to use the Laplace method. It is due to the local geometry near a generalized critical point with index 1 which is rather more complicated than in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF].

Witten Laplacian with Neumann boundary condition 2.1 Introduction and notations

This section is analogous to the second section of [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] and we will use the same notations that we recall here.

Let Ω be a C ∞ connected compact oriented Riemannian n-dimensional manifold. We will denote by g 0 the given Riemannian metric on Ω ; Ω and ∂Ω will denote respectively its interior and its boundary.

The cotangent (resp. tangent) bundle on Ω is denoted by T * Ω (resp. T Ω) and the exterior fiber bundle by ΛT * Ω = ⊕ n p=0 Λ p T * Ω (resp. ΛT Ω = ⊕ n p=0 Λ p T Ω). The fiber bundles ΛT ∂Ω = ⊕ n-1 p=0 Λ p T ∂Ω and ΛT * ∂Ω = ⊕ n-1 p=0 Λ p T * ∂Ω are defined similarly. The space of C ∞ , C ∞ 0 , L 2 , H s , etc. sections in any of these fiber bundles, E, on O = Ω or O = ∂Ω, will be denoted respectively by

C ∞ (O; E), C ∞ 0 (O; E), L 2 (O; E), H s (O; E), etc.
When no confusion is possible we will simply use the short notations

Λ p C ∞ , Λ p C ∞ 0 , Λ p L 2 and Λ p H s for E = Λ p T * Ω or E = Λ p T * ∂Ω.
Note that the L 2 spaces are those associated with the unit volume form for the Riemannian structure on Ω or ∂Ω (Ω and ∂Ω are oriented). The notation C ∞ (Ω; E) is used for the set of C ∞ sections up to the boundary. Finally since ∂Ω is C ∞ , C ∞ (Ω; E) is dense in H s (Ω; E) for s ≥ 0 and the trace operator ω → ω| ∂Ω extends to a surjective operator from H s (Ω; E) onto H s-1/2 (∂Ω; E) as soon as s > 1/2. Let d be the exterior differential on C ∞ 0 (Ω; ΛT * Ω)

d (p) : C ∞ 0 (Ω; Λ p T * Ω) → C ∞ 0 (Ω; Λ p+1 T * Ω)
and d * its formal adjoint with respect to the L 2 -scalar product inherited from the Riemannian structure

d (p), * : C ∞ 0 (Ω; Λ p+1 T * Ω) → C ∞ 0 (Ω; Λ p T * Ω) .
Remark 2.1.1. Note that d and d * are both well defined on C ∞ (Ω; ΛT * Ω) .

We set, for a function f ∈ C ∞ (Ω; R) and h > 0, the distorted operators defined on C ∞ (Ω; ΛT * Ω):

d f,h = e -f (x)/h (hd) e f (x)/h and d * f,h = e f (x)/h (hd * ) e -f (x)/h ,
The Witten Laplacian is the differential operator defined on C ∞ (Ω; ΛT * Ω) by: ∆

f,h = d * f,h d f,h + d f,h d * f,h = (d f,h + d * f,h ) 2 . (2.1.1)
Remark 2.1.2. The last equality becomes from the property dd = d * d * = 0 which implies:

d f,h d f,h = d * f,h d * f,h = 0. (2.1.2)
It means, by restriction to the p-forms in C ∞ (Ω; Λ p T * Ω):

∆ (p) f,h = d (p), * f,h d (p) f,h + d (p-1) f,h d (p-1), * f,h . Note that (2.1.2) imply that, for all u in C ∞ (Ω; Λ p T * Ω), ∆ (p+1) f,h d (p) f,h u = d (p) f,h ∆ (p) f,h u (2.1.3) and ∆ (p-1) f,h d (p-1), * f,h u = d (p-1), * f,h ∆ (p) f,h u . (2.1.4)
We end up this section by a few relations with exterior and interior products (respectively denoted by ∧ and i), gradients (denoted by ∇) and Lie derivatives (denoted by L) which will be very useful:

(df ∧) * = i ∇f (in L 2 (Ω; Λ p T * Ω )) , (2.1.5) d f,h = hd + df ∧ , (2.1.6) d * f,h = hd * + i ∇f , (2.1.7) d • i X + i X • d = L X , (2.1.8) ∆ f,h = h 2 (d + d * ) 2 + |∇f | 2 + h L ∇f + L * ∇f ,
(2.1.9) where X denotes a vector field on Ω or Ω.

Remark 2.1.3. We work here on a Riemannian manifold and the operators introduced depend on the Riemannian metric g 0 . Nevertheless, we have omitted here this dependence for conciseness.

Stokes and Green formulas

In order to define suitably the self-adjoint Neumann realization of the Witten Laplacian ∆ f,h that we will study in the rest of this work, we need variants from the Stokes and the Green formulas.

For that, we use some notations and properties which are very convenient for boundary problems and which are introduced for example in [Sch] and recalled in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF].

Definition 2.2.1. We denote by n σ the outgoing normal at σ ∈ ∂Ω and by n * σ the 1-form dual to n σ for the Riemannian scalar product.

For any ω ∈ C ∞ (Ω; Λ p T * Ω), the form tω is the element of C ∞ (∂Ω; Λ p T * Ω) defined by:

(tω) σ (X 1 , . . . , X p ) = ω σ (X T 1 , . . . , X T p ) , ∀σ ∈ ∂Ω ,
with the decomposition into the tangential and normal components to ∂Ω at σ:

X i = X T i ⊕ x ⊥ i n σ . Moreover, (tω) σ = i nσ ( n * σ ∧ ω σ )
. The projected form tω, which depends on the choice of n σ (i.e. on g 0 ), can be compared with the canonical pull-back j * ω associated with the imbedding j : ∂Ω → Ω. Actually the exact relationship is j * ω = j * (tω). With an abuse of notation, the form j * (tω) will be simply written tω for example in Stokes formula without any possible confusion. The normal part of ω on ∂Ω is defined by:

nω = ω| ∂Ω -tω ∈ C ∞ (∂Ω; Λ p T * Ω).
If necessary tω and nω can be considered as elements of C ∞ (Ω; Λ p T * Ω) by a variant of the collar theorem (see [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] or [Sch] for details). The Hodge operator is locally defined in a pointwise orthonormal frame (E 1 , . . . , E n ) by:

( ω x )(E σ(p+1) , . . . , E σ(n) ) = ε(σ) ω x (E σ(1) , . . . , E σ(p) ) , for ω x ∈ Λ p T *
x Ω and with any permutation σ ∈ Σ(n) of {1, . . . , n} preserving {1, . . . , p} (ε(σ) denotes the signature of σ). We recall the formulas:

( ω x ) = (-1) p(n-p) ω x , ∀ω x ∈ Λ p T * x Ω , (2.2.1
)

ω 1 | ω 2 Λ p L 2 = Ω ω 1 ∧ ω 2 , ∀ω 1 , ω 2 ∈ Λ p L 2 , (2.2.2)
and:

d * ,(p-1) = (-1) p d (n-p) , d (p) = (-1) p+1 d * ,(n-p-1) , (2.2.3) n = t , t = n , (2.2.4) t d = d t , n d * = d * n . (2.2.5)
With the previous convention j * (tω) = tω, the Stokes formula writes:

∀ω ∈ C ∞ (Ω; Λ p T * Ω), Ω dω = ∂Ω j * ω = ∂Ω tω , (2.2.6)
and a first deformed Green formula given in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] states that

d f,h ω | d f,h η Λ p+1 L 2 + d * f,h ω | d * f,h η Λ p-1 L 2 = ∆ f,h ω | η Λ p L 2 + h ∂Ω (tη) ∧ ( nd f,h ω) -h ∂Ω (td * f,h ω) ∧ ( nη) (2.2.7)
holds for all ω ∈ Λ p H 2 and η ∈ Λ p H 1 . This formulation of (2.2.7) does not depend on the choice of an orientation. If µ and µ ∂Ω denote the volume forms in Ω and ∂Ω, the orientation is chosen such that (µ ∂Ω ) σ (X 1 , . . . , X n-1 ) = µ σ ( n σ , X 1 , . . . , X n-1 ). A simple computation in normal frames (see [Sch], prop. 1.2.6) leads to:

tω 1 ∧ nω 2 = ω 1 | i nσ ω 2 Λ p T * σ Ω dµ ∂Ω , (2.2.8) for ω 1 ∈ C ∞ (Ω; Λ p T * Ω) and ω 2 ∈ C ∞ (Ω; Λ p+1 T * Ω).
Definition 2.2.2. We denote by ∂f ∂n (σ) or

∂ n f (σ) the normal derivative of f at σ: ∂f ∂n (σ) = ∂ n f (σ) := ∇f (σ) | n σ .
As a consequence of (2.2.8) we get the following useful decomposition formula.

Lemma 2.2.3. (Normal Green Formula) The identity

d f,h ω 2 Λ p+1 L 2 + d * f,h ω 2 Λ p-1 L 2 = h 2 dω 2 Λ p+1 L 2 + h 2 d * ω 2 Λ p-1 L 2 + |∇f | ω 2 Λ p L 2 + h (L ∇f + L * ∇f )ω | ω Λ p L 2 + h ∂Ω ω | ω Λ p T * σ Ω ∂f ∂n (σ) dµ ∂Ω (2.2.9)
holds for any ω ∈ Λ p H 1 such that nω = 0.

Proof.

Since C ∞ (Ω; Λ p T * Ω) is dense in Λ p H 1 , while both terms of the identity are continuous on Λ p H 1 , the form ω can be assumed to be in C ∞ (Ω; Λ p T * Ω). We use the relation (2.2.7) with both f = 0 (d 0,h = hd and d * 0,h = hd * ) and a general f ∈ C ∞ (Ω; R). We obtain:

d f,h ω 2 Λ p+1 L 2 + d * f,h ω 2 Λ p-1 L 2 -h 2 dω 2 Λ p+1 L 2 -h 2 d * ω 2 Λ p-1 L 2 = (∆ f,h -∆ 0,h )ω | ω Λ p L 2 + h ∂Ω (tω) ∧ n(df ∧ ω) -h ∂Ω (ti ∇f ω) ∧ ( nω) = (∆ f,h -∆ 0,h )ω | ω Λ p L 2 + h ∂Ω ω | i nσ (df ∧ ω) ΛT * σ Ω dµ ∂Ω .
By (2.1.9):

(∆ f,h -∆ 0,h )ω | ω Λ p L 2 = |∇f | ω 2 Λ p L 2 + h (L ∇f + L * ∇f )ω | ω Λ p L 2 .
For the integral term, we write:

i nσ (df ∧ ω)(X 1 , . . . , X p ) = (df ∧ ω) ( n σ , X 1 , . . . , X p ) = df ( n σ ).ω(X 1 , . . . , X p ) because nω = 0 = ∇f (σ) | n σ .ω(X 1 , . . . , X p ) = ∂f ∂n (σ) ω(X 1 , . . . , X p ) ,
which proves the lemma.

Normal Neumann realization

In this subsection, we specify the self-adjoint realization of ∆

f,h in which we are interested. Like in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF], we want this self-adjoint realization (denoted by ∆ N f,h ) to coincide with the Neumann realization on 0-forms and to preserve the complex structure:

(1 + ∆ N,(p+1) f,h ) -1 d (p) f,h = d (p) f,h (1 + ∆ N,(p) f,h ) -1 and (1 + ∆ N,(p-1) f,h ) -1 d (p-1), * f,h = d (p-1), * f,h (1 + ∆ N,(p) f,h ) -1 on the form domain of ∆ N,(p) f,h .
Having in mind the works [Sch] and [ChLi] about cohomology complexes and boundary problems, we introduce the space:

Λ p H 1 0,n = H 1 0,n (Ω; Λ p T * Ω) = ω ∈ H 1 (Ω; Λ p T * Ω) ; nω = 0 . (2.3.1)
In the case p = 0, it coincides with the space H 1 (Ω), while for p ≥ 1 the condition says only that the form vanishes on ∂Ω when applied to non tangential p-vectors. Since the boundary ∂Ω is assumed to be regular, the space

Λ p C ∞ 0,n = C ∞ 0,n (Ω; Λ p T * Ω) = ω ∈ C ∞ Ω, Λ p T * Ω ; nω = 0 is dense in Λ p H 1 0,n .
The next construction is a variant of known results in the case f = 0 (see [Sch]). We will use the notations:

D f,h (ω, η) = d f,h ω | d f,h η Λ p+1 L 2 + d * f,h ω | d * f,h η Λ p-1 L 2 and D f,h (ω) = D f,h (ω, ω) = d f,h ω 2 Λ p+1 L 2 + d * f,h ω 2 Λ p-1 L 2 . Proposition 2.3.1. The non negative quadratic form ω → D f,h (ω) is closed on Λ p H 1 0,n . The as- sociated (self-adjoint) Friedrichs extension is denoted by ∆ N,(p) f,h . Its domain is: D(∆ N, (p) 
f,h ) = u ∈ Λ p H 2 ; nω = 0 and nd f,h ω = 0 , and we have:

∀ω ∈ D(∆ N,(p) f,h ), ∆ N,(p) f,h ω = ∆ (p) f,h ω in Ω . Proof.
By the same argument as in the proof of Proposition 2.4 of [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF], the space Λ p H 1 0,n is isomorphic to the direct sum:

Λ p H 1 0 ⊕ tΛ p H 1/2 (∂Ω; Λ p T * Ω) with continuous embedding. Hence, since ∂Ω is a regular boundaryless manifold, its dual is the direct sum of Λ p H -1 and tΛ p H -1/2 (∂Ω; Λ p T * Ω):

Λ p H 1 0,n = Λ p H -1 ⊕ tΛ p H -1/2 (∂Ω; Λ p T * Ω) .
We have to check that ω → D

(p) f,h (ω) + C ω 2 Λ p L 2 is equivalent to the square of the Λ p H 1 norm on Λ p H 1 0,n
. By (2.1.6)-(2.1.9) this is equivalent to the same result for f = 0 and h = 1. This last case is known as Gaffney's inequality which is a consequence of the Weitzenböck formula (see [Sch], Theorem 2.1.7). Hence the quadratic form ω → D f,h (ω) is closed on Λ p H 1 0,n and the identity

∀η ∈ Λ p H 1 0,n , D (p) f,h (ω, η) = A (p) ω, η defines an isomorphism A (p) : Λ p H 1 0,n → (Λ p H 1 0,n ) . The self-adjoint Friedrichs extension ∆ N,(p) f,h
is then defined as the operator:

D(∆ N,(p) f,h ) = ω ∈ Λ p H 1 0,n , A (p) ω ∈ Λ p L 2 , ∆ N,(p) f,h ω = A (p) ω .
It remains to identify this domain and the explicit action of A (p) .

If ω belongs to D(∆ N,(p) f,h ), by the first Green formula (2.2.7) we get:

∀η ∈ Λ p C ∞ 0 , ω | A (p) η = D (p) f,h (ω, η) = ω | ∆ (p)
f,h η .

The inequality:

|D (p) f,h (ω, η)| ≤ C ω Λ p H 1 η Λ p H 1 , together with the density of Λ p C ∞ 0 in Λ p H 1 0 implies that the current ∆ (p) f,h ω ∈ D (Ω; Λ p T * Ω) is indeed the Λ p H -1 component of A (p) ω.
Assume that ω belongs to Λ p H 1 0,n ∩ Λ p H 2 ; then the Green formula (2.2.7) gives:

h ∂Ω (tη) ∧ ( nd f,h ω) = D (p) f,h (ω, η) -∆ (p) f,h ω | η Λ p L 2 , ∀η ∈ Λ p H 1 0,n .
By density, one can define, for any ω in Λ p H 1 0,n such that ∆

(p) f,h ω ∈ Λ p L 2
, a trace of nd f,h ω by the previous identity, observing that the r.h.s. defines an antilinear continuous form with respect to η. With this generalized definition of nd (p) f,h ω we claim that:

D(∆ N,(p) f,h ) = ω ∈ Λ p H 1 0,n , ∆ (p) f,h ω ∈ Λ p L 2 and nd (p) f,h ω = 0 .
The last point consists in observing that the boundary value problem

∆ (p) f,h u = g, nu = g 1 , nd (p) f,h u = g 2 (2.3.2)
satisfies the Lopatinski-Shapiro conditions. At the principal symbol level (h > 0 fixed), these conditions are indeed the same as for

(dd * + d * d) (p) u = g, nu = g 1 , nd (p) u = g 2 .
This is checked in [Sch]. Hence any solution to (2.3.2) with g ∈ Λ p L 2 , g 1 = g 2 = 0 belongs to Λ p H 2 .

Proposition 2.3.2.

For any p ∈ {0, . . . , n}, the self-adjoint unbounded operator

∆ N,(p) f,h introduced in Proposition 2.3.1 has a compact resolvent. Moreover, if z ∈ C \ R + , the commutation relations (z -∆ N,(p+1) f,h ) -1 d (p) f,h v = d (p) f,h (z -∆ N,(p) f,h ) -1 v , and 
(z -∆ N,(p-1) f,h ) -1 d (p-1), * f,h v = d (p-1), * f,h (z -∆ N,(p) f,h ) -1 v , hold for any v ∈ Λ p H 1 0,n .
Proof.

The domain of the operator is contained in Λ p H 2 , which is compactly embedded in Λ p L 2 , by the Sobolev injections. This yields the first statement. Since Λ p C ∞ 0,n is dense in Λ p H1 0,n , it is sufficient to consider the case when v ∈ Λ p C ∞ 0,n . For such a v and for z ∈ C \ R + , we set:

u = (z -∆ N,(p) f,h ) -1 v.
Due to the ellipticity of the associated boundary problem (the Lopatinski-Shapiro conditions are verified) u belongs to C ∞ (Ω; Λ p T * Ω). The commutation relations (2.1.3) and (2.1.4) can be applied since here f ∈ C ∞ (Ω; R):

(z -∆ (p+1) f,h )d (p) f,h u = d (p) f,h (z -∆ (p) f,h )u = d (p) f,h v (2.3.3) and (z -∆ (p-1) f,h )d (p-1), * f,h u = d (p-1), * f,h (z -∆ (p) f,h )u = d (p-1), * f,h v . (2.3.4) Since u ∈ D(∆ N,(p)
f,h ) , we have nu = 0 and nd

(p) f,h u = 0. Then, nd f,h u = 0 and nd f,h d f,h u = 0 imply d f,h u ∈ D(∆ N,(p+1) f,h
). So by (2.3.3) we have:

d (p) f,h (z -∆ N,(p) f,h ) -1 v = d f,h u = (z -∆ N,(p+1) f,h ) -1 d (p) f,h v .
In order to show the second commutation relation, we first use the relation (2.2.5) which implies:

nd * f,h u = hd * nu + n(i ∇f u) = 0.
For the normal trace of the differential, we write (∆ f,h u = zu -v):

nd f,h (d * f,h u) = znu -nv -nd * f,h d f,h u = -d * f,h nd f,h u = 0 . Hence d (p-1), * f,h u belongs to D(∆ N,(p-1) f,h
) and the identity (2.3.4) yields the last commutation relation to show.

Definition 2.3.3. For any Borel subset E ⊂ R and p ∈ {0, . . . , n}, we will denote by

1 E (∆ N,(p) f,h ) the spectral projection of ∆ N,(p) f,h on E.
From Proposition 2.3.2 and Stone's Formula we deduce: Corollary 2.3.4. For any Borel subset E ⊂ R, the identities

1 E (∆ N,(p+1) f,h )d (p) f,h v = d (p) f,h 1 E (∆ N,(p) f,h )v and 1 E (∆ N,(p-1) f,h )d (p-1), * f,h v = d (p-1), * f,h hold for all v ∈ Λ p H 1 0,n . In the particular case when v is an eigenvector of ∆ N,(p) f,h corresponding to the eigenvalue λ, then d (p) f,h v (resp. d (p-1), * f,h v) belongs to the spectral subspace Ran 1 {λ} (∆ N,(p+1) f,h ) (resp. Ran 1 {λ} (∆ N,(p-1) f,h )).
Proposition 2.3.2 and Corollary 2.3.4 were stated for p-forms v ∈ Λ p H 1 0,n (Ω), belonging to the form domain of ∆ N,(p) f,h . It is convenient to work in this framework because the multiplication by any cut-off function preserves the form domain ΛH 1 0,n (Ω):

ω ∈ ΛH 1 0,n (Ω), χ ∈ C ∞ (Ω) ⇒ (χω ∈ ΛH 1 0,n (Ω)) ,
while this property is no more true for D(∆ N f,h ). In this spirit, we will often refer to the next easy consequence of the spectral theorem.

Lemma 2.3.5. Let A be a non negative self-adjoint operator on a Hilbert space H with associated quadratic form q A (x) = (x | Ax) and with form domain Q(A). Then for any a, b ∈ (0, +∞), the implication

(q A (u) ≤ a) ⇒ 1 [b,+∞) (A)u 2 ≤ a b holds for any u ∈ Q(A).
3 First localization of the spectrum

Introduction and result

Let us first recall that we are working with the fixed Riemannian metric g 0 on Ω. Like in the third section of [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] for their tangential Dirichlet realization of the Witten Laplacian, we check here that the number of eigenvalues of ∆

N,(p) f,h

smaller than h 3/2 equals a Morse index which involves in its definition the boundary conditions. To this end, we will adapt [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] which uses techniques yet presented in [START_REF] Simon | Semi-classical analysis of low lying eigenvalues, I. Nondegenerate minima: Asymptotic expansions[END_REF], [CFKS], [ChLi], [Bis], [Bur], and in [START_REF] Helffer | Etude du Laplacien de Witten associé à une fonction de Morse dégénérée[END_REF].

In order to make the connection between the normal Neumann realization of the Witten Laplacian ∆ N f,h and the Morse theory, we assume additional properties for the function f up to the boundary ∂Ω. With this assumption, the function f has a finite number of critical points with index p in Ω. Note furthermore that the assumption ensures that there is no critical point on ∂Ω, which implies that the outgoing normal derivative

∂f ∂n (U ) is not 0 when U is a critical point of f | ∂Ω . Definition 3.1.3. For ∈ {0, . . . , n}, the integer m ∂Ω ,-is the number of critical points U of f | ∂Ω with index such that ∂f ∂n (U ) < 0 (with the additional convention m ∂Ω n,-= 0). For p ∈ {0, . . . , n}, let m Ω p = m Ω p + m ∂Ω p,-. Remark 3.1.4.
In [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF], the authors worked with the tangential Dirichlet conditions (tω = 0 and td * f,h ω = 0) and the corresponding definition was similar with m ∂Ω ,-and ∂f ∂n (U ) < 0 replaced respectively by m ∂Ω -1,-and ∂f ∂n (U ) > 0. The aim of this section is to prove the following theorem: Theorem 3.1.5. Under Assumption 3.1.1, there exists h 0 > 0, such that the normal Neumann realization of the Witten Laplacian ∆ N f,h introduced in Subsection 2.3 has, for h ∈ (0, h 0 ] , the following property: For any p ∈ {0, . . . , n}, the spectral subspace

F (p) = Ran1 [0,h 3/2 ) (∆ N,(p) f,h ) has rank: dim F (p) = m Ω p .
To prove this theorem, we will adapt for the normal Neumann realization of the Witten Laplacian the proof given in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] for the tangential Dirichlet realization. Many points of this demonstration do not require any modification, so we will only recall these results without any demonstration. The theorem will be proved in the Subsection 3.3.

A few preliminary lemmas

In this subsection, we recall some results of [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] that we need to prove Theorem 3.1.5.

Variationnal results for the Witten Laplacian on R k

Let g be a C ∞ metric on R k which equals the Euclidean metric outside a compact set K.

Assumption 3.2.1 (g).

The function f is a Morse C ∞ real-valued function and there exist C 1 > 0 and a compact K such that, for the metric g:

∀x ∈ R k \ K, |∇f (x)| ≥ C -1 1 and |Hess f (x)| ≤ C 1 |∇f (x)| 2 . (3.2.1)
Note that the above assumption ensures that f has a finite number of critical points and m p will denote the number of critical points with index p . Let us recall the Propositions 3.6 and 3.7 of [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF]. They gather consequences of Simader's Theorem in [Sima] about the essential self-adjointness of non negative Schrödinger operators, of Persson's Lemma in [Per] about the localization of the essential spectrum and of the semiclassical analysis a la Witten in [Wit] leading to Morse inequalities. We refer the reader also to [CFKS][Hen] [Hel3] or [Zha] for the Witten approach to Morse inequalities in the boundaryless case and to [START_REF] Milnor | Morse Theory[END_REF] and [Lau] for a topological presentation of Morse theory.

Proposition 3.2.2. Under Assumption 3.2.1, there exist h 0 > 0, c 0 > 0 and c 1 > 0 such that the following properties are satisfied for any h ∈ (0, h 0 ]: i) The Witten Laplacian ∆ f,h as an unbounded operator on

L 2 (R k ; ΛT * R k ) is essentially self-adjoint on C ∞ 0 (R k ; ΛT * R k ) . ii) For any Borel subset E in R, the identities 1 E (∆ (p+1) f,h )d (p) f,h u = d (p) f,h 1 E (∆ (p) f,h )u and 1 E (∆ (p-1) f,h )d (p-1), * f,h u = d (p-1), * f,h 1 E (∆ (p) f,h )u (3.2.2)
hold for any u belonging to the form domain of

∆ (p) f,h . In particular, if v is an eigenvector of ∆ (p) f,h associated with the eigenvalue λ, then d (p) f,h v (resp. d (p-1), * f,h v) belongs to the spectral subspace Ran 1 {λ} (∆ (p+1) f,h ) (resp. Ran 1 {λ} (∆ (p-1) f,h )). iii) The essential spectrum σ ess (∆ (p) f,h ) is contained in [c 1 , +∞). iv) The range of 1 [0,c 0 h) (∆ (p) f,h ) has dimension m p , for all h ∈ (0, h 0 ] . Proposition 3.2.3.
If the Morse function f satisfies Assumption 3.2.1 and admits a unique critical point at x = 0 with index p 0 , so m p = δ p,p 0 , then there exist h 0 > 0 and c 0 > 0 , such that the following properties hold for h ∈ (0, h 0 ]:

i) For p = p 0 , ∆ (p) f,h ≥ c 0 hId . ii) If ψ h p 0 is a normalized eigenvector of the one dimensional spectral sub- space Ran 1 [0,c 0 h) (∆ (p 0 ) f,h ) , it satisfies d f,h ψ h p 0 = 0 , d (p 0 -1), * f,h ψ h p 0 = 0 and ∆ (p 0 ) f,h ψ h p 0 = 0 , so that Ran 1 [0,c 0 h) (∆ (p 0 ) f,h ) = Ker ∆ (p 0 ) f,h . Moreover σ(∆ (p 0 ) f,h ) \ {0} ⊂ [c 0 h, ∞) . iii) If χ ∈ C ∞ 0 (R k ) satisfies χ = 1 in a neighborhood of 0, then there exists C χ ≥ 1 , such that, for all h ∈ (0, h 0 /C χ ) , the inequality, (1 -χ)∆ (p) f,h (1 -χ) ≥ C -1 χ [1 -χ] 2 ,
holds in the sense of quadratic form on Λ p H 1 (R k ).

The model half-space problem

We work here on R n -= R n-1 × (-∞, 0) with a Riemannian metric g0 . Assume furthermore that there are coordinates ), which is assumed to be a C ∞ function. According to the standard notation, the coefficients of G(x) -1 are written g ij (x).

x = (x , x n ) such that g0 = n i,j=1 g0 ij (x)dx i dx j satisfies g0 i,n = g0 n,i = 0 for i < n (3.2.3) and ∀x ∈ R n -\ K 1 , ∂ x g0 ij (x) = 0 , (3.2.4) for some compact set K 1 ⊂ R n -. In this paragraph, the coordinates (x , x n ) are fixed while different metrics on R n -are considered. The notation G(•) will be used for the matrix valued map x → G(x) = t G(x) = (g ij (x)) i,j ∈ GL n (R
Consider also a function f which has a specific form in the same coordinates (x , x n ).

Assumption 3.2.4. The function f ∈ C ∞ (R n -) satisfies: i) The estimates |∇f (x)| ≥ C -1 and |∂ α x f (x)| ≤ C α hold, for all x ∈ R n -and all α ∈ N n , α = 0. ii) The function f is the sum f (x , x n ) = -1 2 f + (x n ) + 1 2 f -(x ) . Moreover, there exists C 1 > 0 such that ∀x n ∈ (-∞, 0) , C -1 1 ≤ |∂ xn f + (x n )| ≤ C 1 ,
and f -is a Morse function on R n-1 which satisfies Assumption 3.2.1 for the metric n-1 i,j=1 g0 ij (x , 0)dx i dx j and admits a unique critical point at x = 0 with index p 0 .

The boundedness of |∂ α

x f |, 1 ≤ |α| ≤ 2, avoids any subtle questions about the domains. Proposition 3.2.5. Under Assumption 3.2.4-i), the unbounded operator

∆ N f,h on L 2 (R n -; ΛT * R n -) , with domain D(∆ N f,h ) = ω ∈ ΛH 2 (R n -) , nω = 0 , nd f,h ω = 0 , is self-adjoint. If E is any Borel subset of R, the relations 1 E (∆ N,(p+1) f,h ) d (p) f,h u = d (p) f,h 1 E (∆ N,(p) f,h )u , and 1 E (∆ N,(p-1) f,h ) d (p-1), * f,h u = d (p-1), * f,h 1 E (∆ N,(p) f,h )u , (3.2.5) hold for any u ∈ Λ p H 1 0,n (R n -) . Proof.
The uniform estimate on ∇f allows the same proof as for Proposition 2.3.2 and Corollary 2.3.4 (here C ∞ 0,n denotes the space of C ∞ compactly supported functions in R n -with a vanishing normal component on {x n = 0}).

We are looking for a result similar to Proposition 3.2.2 and Proposition 3.2.3 for the case with normal boundary condition on R n -(this result will be stated in Subsection 3.2.3). One difficulty here comes from the metric which, although diagonal in the coordinates (x , x n ), is not constant. The general case can be reduced to a simpler situation where g ij (x) = g ij (x ) with g nn = 1 after several steps. We need some notations. Definition 3.2.6. For a metric g which satisfies (3.2.4), the corresponding H s -norm on the space Λ p H s (R n -) is denoted by Λ p H s ,g and the notation Λ p H s is kept for the Euclidean metric g e = n i=1 dx 2 i . Similarly, the quadratic form associated with

∆ N,(p) f,h is written D g,f,h (ω) = d * g,f,h ω 2 Λ p-1 L 2 ,g + d f,h ω 2 Λ p+1 L 2 ,g , ∀ω ∈ Λ p H 1 0,n (R n -) ,
where the codifferential d * g,f,h also depends on g .

Remark 3.2.7. The considered metrics satisfying (3.2.4), the different (L 2 , g)-norms are equivalent.

The required accuracy while comparing the quadratic forms D g,f,h needs some care. We will work further with partitions of unity and the next proposition, similar to the standard IMS localization formula (see [CFKS]), but in the case with boundary, will be useful.

Proposition 3.2.8. (IMS Localization Formula) For W = Ω or W = R n -, consider {χ k } 1,...,N a partition of unity of W (i.e. satisfying N k=1 χ 2 k = 1 on W ). Let g and f be respectively a Riemannian metric and a C ∞ function (satisfying Assumption 3.2.4-i) in the case R n -) on W . The next IMS localization formula is then valid:

∀ω ∈ ΛH 1 0,n , D g,f,h (ω) = N k=1 D g,f,h (χ k ω) -h 2 |∇χ k | ω 2 ΛL 2 ,g . (3.2.6)
Proof. For clarity, we omit the dependence on g in the proof.

Recall, from N k=1 χ 2 k = 1, than for any η ∈ ΛH 1 : 

N k=1 χ k dχ k ∧ η = 0 ,
χ k i ∇χ k η = 0 . (3.2.7) Now, for any ω ∈ ΛH 1 0,n and k ∈ {1, . . . , N }, D f,h (χ k ω) = d f,h (χ k ω) + d * f,h (χ k ω) . From (2.1.6) and (2.1.7), d f,h (χ k ω) = hdχ k ∧ ω + χ k d f,h ω and d * f,h (χ k ω) = hi ∇χ k ω + χ k d * f,h ω .
Hence, from N k=1 χ 2 k = 1, (2.1.6), and (2.1.7), for any ω ∈ ΛH 1 0,n ,

N k=1 D f,h (χ k ω) = D f,h (ω) + N k=1 h 2 ( dχ k ∧ ω | dχ k ∧ ω + i ∇χ k ω | i ∇χ k ω ) + N k=1 2 Re ( hdχ k ∧ ω | hχ k dω + χ k df ∧ ω + hi ∇χ k ω | hχ k d * ω + χ k i ∇f ω ) . Using (3.2.7), N k=1 D f,h (χ k ω) = D f,h (ω) + h 2 N k=1 ( dχ k ∧ ω | dχ k ∧ ω + i ∇χ k ω | i ∇χ k ω ) .
At least, the identity

i X (α ∧ β) = (i X α) ∧ β + (-1) deg α α ∧ (i X β) implies dχ k ∧ ω | dχ k ∧ ω + i ∇χ k ω | i ∇χ k ω = i ∇χ k (dχ k ∧ ω) + dχ k ∧ (i ∇χ k ω) | ω = (i ∇χ k dχ k )ω | ω = |∇χ k | 2 ω | ω ,
which proves the proposition.

Let us give now two lemmas whose proofs are the same than the proofs of Lemmas 3.11 and 3.12 of [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF].

The first lemma provides a reduction to the case ∂ xn G = 0 and the second allows us to consider again a simpler metric with g nn = 1.

Lemma 3.2.9.

Let g 1 and g 2 be two metrics which satisfy (3.2.4) and coincide on {x n = 0}.

Let f be a function satisfying Assumption 3.2.4. There exist constants C 12 ≥ 1 and h 0 > 0 such that the inequality,

D g 2 ,f,h (ω) ≥ (1 -C 12 h 2/5 )D g 1 ,f,h (ω) -C 12 h 7/5 ω 2 Λ p L 2 ,g 1 , (3.2.8) holds for ω ∈ Λ p H 1 0,n (R n -)
, with p ∈ {0, . . . , n} and h ∈ (0, h 0 ), as soon as supp ω ⊂ x n ≥ -C 0 h 2/5 . Lemma 3.2.10. Let g 1 and g 2 be two conformal metrics (which satisfy (3.2.4)) in the sense:

g 2 = e ϕ(x) g 1 .
Let f be a function satisfying Assumption 3.2.4. Then there exist constants C 12 ≥ 1 and h 0 > 0 , such that the inequality,

∀ω ∈ Λ p H 1 0,n (R n -), D g 2 ,f,h (ω) ≥ C -1 12 D g 1 ,f,h (ω) -C 12 h 2 ω 2 Λ p L 2 ,g 1 , (3.2 
.9) holds, for all p ∈ {0, . . . , n} and all h ∈ (0, h 0 ) .

Small eigenvalues for the model half-space problem

Before giving the proof of Theorem 3.1.5, we state the main result for the model half-space problem which is similar to Proposition 3.2.2 and Proposition 3.2.3. Proposition 3.2.11. Assume that the metric g0 satisfies (3.2.3) and (3.2.4) and let f be a Morse function satisfying Assumption 3.2.4 for some p 0 ∈ {0, . . . , n}. Then there exist constants h 0 > 0, c 0 > 0 and c 1 > 0, such that the self-adjoint operator ∆ N f,h satisfies the following properties for h ∈ (0, h 0 ]: i) For p ∈ {0, . . . , n} , the essential spectrum σ ess (∆

N,(p) f,h ) is contained in [c 1 , +∞). ii) For p ∈ {0, . . . , n} , the range of 1 [0,c 0 h) (∆ N,(p) f,h ) has dimension δ p,p 0 if ∂ xn f (0) = -1 2 ∂ xn f + (0) < 0 , 0 if ∂ xn f (0) = -1 2 ∂ xn f + (0) > 0 . iii) In the first case, Ran 1 [0,c 0 h) (∆ N,(p 0 ) f,h ) = Ker ∆ N,(p 0 ) f,h = Cϕ h , where ϕ h -e f + (xn)/2h ψ h p 0 Λ p L 2 = O(h 1/10 ) ,
and ψ h p 0 belongs to the kernel of a (n -1)-dimensional Witten Laplacian ∆

(p 0 ) g ,f -/2,h in a metric g , which is conformal to g 0 = n-1 i,j=1 g0 ij (x , 0)dx i dx j on R n-1 . iv) For any χ ∈ C ∞ 0 (R n -) such that χ = 1 in a neighborhood of 0, there exists C χ > 0 such that the lower bounds (1 -χ)∆ N,(p) f,h (1 -χ) ≥ C -1 χ [1 -χ] 2 , 0 ≤ p ≤ n , hold, for any h ∈ (0, h 0 /C χ ), in the sense of quadratic forms on Λ p H 1 0,n (R n -) .
Remark 3.2.12. This proposition is an adaptation of Proposition 3.13 of [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] in the case with normal boundary conditions: we have mainly replaced f + (x n ) by -f + (x n ) and p 0 + 1 by p 0 and the proof is similar.

Proof.

The clue of this result is an accurate lower bound for the quadratic form D g0 ,f,h (η) , when evaluated for η such that supp η ⊂ x n ≥ -C 0 h 2/5 . By Lemmas 3.2.9 and 3.2.10, one can find a metric g, which satisfies (3.2.3) and (3.2.4), with G(x) = G(x ) independent of the x n -coordinate, g nn = 1 and a constant C > 1 such that

D g0 ,f,h (η) ≥ C -1 D g,f,h (η) -Ch 7/5 η 2 ΛL 2 ,g . (3.2.10) Take two cut-off functions χi ∈ C ∞ (R) , such that χ1 ∈ C ∞ 0 (R) , χ1 = 1 in a neighborhood of 0 such that χ2 1 + χ2 2 = 1 . By the IMS localization formula (3.2.6), for any ω ∈ ΛH 1 0,n (R n -) , D g0 ,f,h (ω) ≥ D g0 ,f,h ( χ1 (h -2/5 x n )ω) + D g0 ,f,h ( χ2 (h -2/5 x n )ω) -Ch 6/5 ω 2 ΛL 2 ,g 0 . By (2.2.9), since |∇f (x)| 2 ≥ C -1 on R n -,
the second term of the r.h.s. is bounded from below by a constant times χ2 (h -2/5 x n ))ω 2 ΛL 2 ,g 0 and we get:

D g0 ,f,h (ω) ≥ D g0 ,f,h ( χ1 (h -2/5 x n )ω) -Ch 6/5 χ1 (h -2/5 x n )ω 2 ΛL 2 ,g 0 + C -1 2 χ2 (h -2/5 x n )ω 2 ΛL 2 ,g 0 .
Finally after changing the constant C ≥ 1, the inequality (3.2.10) yields

D g0 ,f,h (ω) ≥ C -1 D g,f,h ( χ1 (h -2/5 x n )ω) -Ch 6/5 χ1 (h -2/5 x n )ω 2 + C -1 χ2 (h -2/5 x n )ω 2 , (3.2.11)
where the L 2 -norms in the r.h.s. can be computed with the metric g or g0 while possibly adapting the constant C, owing to Remark 3.2.7. Here and in the sequel, we omit the subscript (ΛL 2 , g) for L 2 -norms. Now the problem is reduced to the analysis of D g,f,h with the metric g. The product structure of the metric g allows an explicit analysis of the spectrum.

(a) The case n = 1.

We have

x = x n ∈ R -, f (x) = -1 2 f + (x n ) .
Here the metric is g = dx 2 n . We keep the reference to the index n for the later application.

The spaces Λ 0 H 1 0,n (R -) and Λ 1 H 1 0,n (R -) are respectively H 1 (R -) and β(x n ) dx n , β ∈ H 1 0 (R -) .
By identity (2.2.9), for any 1-form β dx n with β ∈ H 1 0 (R -):

D g,-f + /2,h (β dx n ) = h 2 ∂ xn β 2 + 1 4 ∂ xn f + β 2 - h 2 ∂ 2 xn f + (x n )β | β .
(3.2.12) From (3.2.12), we get:

D g,-f + /2,h (β dx n ) ≥ (C -2 -hC) β 2 ,
and deduce that there exist c 1

(∂ xn f + , ∂ 2 xn f + ) = c 1 > 0 and h 0 > 0 such that, for all h ∈ (0, h 0 ] , ∆ N,(1) g,-f + /2,h ≥ c 1 Id . (3.2.13)
Again by identity (2.2.9), we have for any 0-form α ∈ H 1 (R -):

D g,-f + /2,h (α) = h 2 ∂ xn α 2 + 1 4 ∂ xn f + α 2 + h 2 ∂ 2 xn f + (x n )α | α - h 2 ∂ xn f + (0) |α(0)| 2 , (3.2.14)
and there are two subcases:

(a1) Subcase ∂ xn f + (0) < 0:
In this case, identity (3.2.14) implies: 

∀α ∈ Λ 0 H 1 0,n , D g,-f + /2,h (α) ≥ (C -2 -hC) α 2 , which provides the existence of c 1 (∂ xn f + , ∂ 2 xn f + ) = c 1 > 0 and h 0 > 0 such that: ∆ N,(0) -f + /2,h ≥ c 1 Id , ∀h ∈ (0, h 0 ] . (3.2.15) (a2) Subcase ∂ xn f + (0) > 0: If ∆ N,(0) -f + /2,h (α) = λ h α , with λ h < c 1 ,
-f + /2,h (d -f + /2,h α) = λ h d -f + /2,h α ,
which implies, by (2.1.6):

d -f + /2,h α = h∂ xn α - 1 2 (∂ xn f + ) α = 0 . Hence: α(x n ) = C e f + (xn)/2h .
The 0-form e f + (xn)/2h belongs to Ker (∆ N,(0)

-f + /2,h ) , so λ h = 0 . (b) The case n > 1. First note that any ω ∈ Λ p H 1 0,n (R n -) is a sum ω = #I=p-1 α I (x)dx I ∧ dx n + #J=p β J (x)dx J =: α ∧ dx n + β , with α I , β J ∈ H 1 (R n -) , α I (x , 0) = 0 , while dx I = dx i 1 ∧ • • • ∧ dx i #I , I = {i 1 < . . . < i #I } ⊂ {1, . . . , n -1} and J = {j 1 < . . . < j #J } ⊂ {1, . . . , n -1} . If in addition ω ∈ Λ p H 2 (R n -)
, the condition ndω = 0 reads, with the metric g, ∂ xn β J (x , 0) = 0. Secondly, we remind the reader that with the product metric g the Riemannian connection, the Riemann tensor and therefore the Hodge Laplacian, owing to the Weitzenböck formula, split like direct sums:

∇ X Y = ∇ n Xn Y n + ∇ X Y , Riem(x, y, z, t) = Riem n (x n , y n , z n , t n ) + Riem (x , y , z , t ) , R (4) = ijkl Riem ijkl (dx i ∧) • i ∇x j • (dx k ∧) • i ∇x = R n (4) + R (4) , (d + d * ) 2 = (d xn + d * xn ) 2 + (d x + d * x ) 2 .
We refer the reader to [GHL] (p. 110 and p. 70) for details and more general statements.

Thirdly, the decomposition

f (x) = -1 2 f + (x n ) + 1 2 f -(x ) with the product metric g gives |∇f | 2 = |∇ xn f | 2 + |∇ x f | 2 L ∇f + L * ∇f = - 1 2 L ∇f + + L * ∇f + + 1 2 L ∇f -+ L * ∇f -. For ω = α ∧ dx n + β ∈ D(∆ N f,h
) (with the product metric g), we have

D g,f,h (ω) = ω | ∆ f,h ω = ω | ∆ n -f + /2,h ω + ω | ∆ f -/2,h ω .
Since the two operators ∆ n -f + /2,h (acting only in the variable x n ) and ∆ f -/2,h (acting only in the variable x ) preserve the partial degree in dx n , we get

D g,f,h (ω) = α ∧ dx n | ∆ n -f + /2,h (α ∧ dx n ) + β | ∆ n -f + /2,h β + α ∧ dx n | ∆ f -/2,h (α ∧ dx n ) + β | ∆ f -/2,h β (3.2.16)
Hence the variables (x , x n ) can be separated. The equivalence between the norms J γ J (x ) dx J and J γ J (x ) on Λ p T * R n -, where J = {j 1 < . . . < j #J } ⊂ {1, . . . , n -1}, leads to 2 :

D g,f,h (ω) ≥ 1 c R n-1 #I=p-1 D n -f + /2,h (α I (x , .) dx n ) + #J=p D n -f + /2,h (β J (x , .)) dλ(x ) + 0 -∞ D f -/2,h (α(., x n )) + D f -/2,h (β(., x n )) dx n , (3.2.17)
where we used the notations D f -/2,h for the quadratic form of the Witten Laplacian on R n-1 and D n -f + /2,h for the quadratic form of the 1-dimensional Witten Laplacian on R -with boundary conditions. The measure dλ(x ) simply equals (det G(x )) 1/2 dx . The absence of α -β cross product term is due to (3.2.16).

Again there are two subcases.

(b1) Subcase ∂ xn f + (0) < 0:
The analysis of the one dimensional problem implies the existence of c 1 > 0 independent of x such that:

D n -f + /2,h (α I (x , .) dx n ) ≥ c 1 α I (x , .) 2 and D n -f + /2,h (β J (x , .)) ≥ c 1 β J (x , .) 2 .
Hence there exists c 2 > 0 such that:

∀ω ∈ Λ p H 1 0,n , D g,f,h (ω) ≥ c 2 ω 2 and ∆ N,(p) f,h ≥ c 2 Id , ∀p ∈ {0, . . . , n} . (b2) Subcase ∂ xn f + (0) > 0:
Then there exists c 1 > 0 such that

D g,f,h (ω) ≥ 1 c R n-1 #J=p D n -f + /2,h (β J (x , .)) dλ(x ) + 0 -∞ D f -/2,h (β(., x n )) + c 1 α 2 . (3.2.18)
If ω is a p-form with p = p 0 (deg β = deg ω), the lower bound

D f -/2,h (β) ≥ C -1 1 h β 2 ,
which was given in Proposition 3.2.3, yields:

D g,f,h (ω) ≥ C -1 h ω 2 ,
while the equality D g,f,h (ω) = 0 implies that p = p 0 and that ω = c e f + (xn)/2h ψ h p 0 , where ψ p 0 belongs to the kernel of the (n -1)dimensional Witten Laplacian associated with the metric

g = n-1 i,j=1 g i,j (x , 0)dx i dx i .
We have now all the ingredients to check every statement for the metric g0 .

We focus on the subcase ∂ xn f + (0) > 0, which covers all possibilities.

Statements i) and iv) Statement i) is a consequence of iv) together with Persson's Lemma in [Per].

It is sufficient to check that, for all R > 0, there exists c R > 0, such that, for all ω

∈ Λ p H 1 0,n (R n -) supported in {min(|x |, |x n |) > R}, one has D g0 ,f,h (ω) ≥ c R ω 2 .
The inequalities (3.2.11) and (3.2.18), together with the estimate

D f -/2,h (β(•, x n )) ≥ c R β(•, x n ) 2 if supp ω ⊂ {|x | > R} ,
provided by Proposition 3.2.3-iii), yield the result.

Statements ii) and iii) If p = p 0 the inequalities (3.2.11), (3.2.18) and the inequality

D f -/2,h (β(., x n )) ≥ C -1 h β(., x n ) 2 , imply D g0 ,f,h (ω) ≥ c 0 h ω 2 , and ∆ N,(p) f,h ≥ c 0 h Id . (3.2.19)
If p = p 0 , by Proposition 3.2.5, the only possibility for

λ h ∈ [0, c 0 h) to be an eigenvalue of ∆ N,(p 0 ) f,h is λ h = 0 . Assume indeed ∆ N,(p 0 ) f,h u h = λ h u h with λ h ∈ [0, c 0 h) and u h = 1.
By Proposition 3.2.5(3.2.5) and (3.2.19), d

(p 0 ) f,h u h = d (p 0 -1), * f,h
u h = 0. Thus:

λ h = ∆ N,(p 0 ) f,h u h | u h = D g0 ,f,h (u h ) = 0 .
When the metric is g, the corresponding spectral subspace is one dimensional and equals C e f + (xn)/2h ψ h p 0 . For the metric g0 , the equation ∆ N,(p 0 ) g0 ,f,h ω = 0 with ω = 1 (which implies D g0 ,f,h (ω) = 0 ) and the inequality (3.2.11) lead to:

C 2 h 6/5 χ1 (h -2/5 x n )ω 2 ≥ D g,f,h ( χ1 (h -2/5 x n )ω) + χ2 (h -2/5 x n )ω 2 .
Without the last term, Lemma 2.3.5 implies:

dist L 2 ( χ1 (h -2/5 x n )ω, C e f + (xn)/2h ψ h p 0 ) ≤ Ch 1/10 .
The upper bound of the last term,

χ2 (h -2/5 x n )ω 2 ≤ C 2 h 6/5 , implies: dist L 2 (ω, C e f + (xn)/2h ψ h p 0 ) = O(h 1/10 ) .
It remains to check that Ker ∆ N,(p 0 ) f,h

is not reduced to {0} . The statements of Lemma 3.2.9 and Lemma 3.2.10 are symmetric with respect to the choice of the metric. Hence the reverse inequality of (3.2.11) (with exchange of g and g0 ),

D g,f,h (ω) ≥ C -1 D g0 ,f,h ( χ1 (h -2/5 x n )ω) -Ch 6/5 χ1 (h -2/5 x n )ω 2 + C -1 χ2 (h -2/5 x n )ω 2 , (3.2.20) also holds for any ω ∈ ΛH 1 0,n (R n -)
. We apply it with ω = e f + (xn)/2h ψ h p 0 and this leads to:

D g0 ,f,h ( χ1 (h -2/5 x n )ω h ) ≤ Ch 6/5 χ1 (h -2/5 x n )ω 2 .
The Min-Max principle then says that ∆ N,(p 0 ) f,h admits an eigenvalue smaller than Ch 6/5 . It has to be 0 due to the above argument.

Proof of Theorem 3.1.5

We end here the proof of Theorem 3.1.5 by introducing, after a partition of unity, convenient coordinates which allow the comparison with the model half-space problem. That proof is almost the same as the proof of the corresponding theorem in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF], but we recall it for completeness.

Proof of Theorem 3.1.5. Let {U k , 1 ≤ k ≤ K} denote the union of the critical points of f and f | Ω . Consider a partition of unity of Ω, N k=1 χ 2 k = 1, such that the C ∞ 0 (Ω) function χ k identically equals 1 in a neighborhood of U k when 1 ≤ k ≤ K. A refinement of this partition of unity will be specified later by the local construction of adapted coordinates. We recall that the operator ∆ N f,h is the Friedrichs extension associated with the quadratic form:

D g 0 ,f,h (ω) = d f,h ω 2 ΛL 2 ,g 0 + d * ,g 0 f,h ω 2 ΛL 2 ,g 0 , on ΛH 1 0,n (Ω) .
The IMS localization formula (3.2.6) gives, for any ω ∈ ΛH 1 0,n ,

D g 0 ,f,h (ω) = N k=1 D g 0 ,f,h (χ k ω) -h 2 |∇χ k | ω 2 ΛL 2 ,g 0 .
If supp χ k does not meet the boundary, the term D g 0 ,f,h (χ k ω) behaves like in the boundaryless case (see [HKN] for details):

• If k > K, then we have ∀ω ∈ ΛH 1 , D g 0 ,f,h (χ k ω) ≥ C -1 χ k ω 2 ΛL 2 ,g 0 . • If k ≤ K and U k is a critical point of f with index p k = p , then ∀ω ∈ ΛH 1 , D g 0 ,f,h (χ k ω) ≥ C -1 h χ k ω 2 ΛL 2 ,g 0 . • If k ≤ K and U k is a critical point of f with index p k = p , then there exists a fixed 1-dimensional space F (p) k (determined by Hess f (U k )) such that, ∀ω ∈ ΛH 1 , D g 0 ,f,h (χ k ω) ≤ C -1 h 6/5 χ k ω 2 Λ p L 2 ,g 0 implies ∀ω ∈ ΛH 1 , dist (χ k ω, F (p) k ) ≤ Ch 1/10 ω Λ p L 2 ,g 0 .
Again like in the proof of Proposition 3.2.11-iii), this last statement refers to Lemma 2.3.5 at the level of quadratic forms.

Consider now the case when supp χ k ∩ ∂Ω = ∅ , with the support of χ k centered around a point U 0 ∈ ∂Ω . There are two cases:

U 0 is a critical point of f | ∂Ω with ∂f ∂n (U 0 ) < 0 which is equivalent to -∂f ∂n (U 0 ) = |∇f (U 0 )| or U 0 is not a critical points of f | ∂Ω with ∂f ∂n < 0 which is equivalent to (-∂f ∂n )(U 0 ) < |∇f (U 0 )| . Indeed, U 0 is either a critical point of f | ∂Ω with ∂f ∂n (U 0 ) > 0, i.e. ∂f ∂n (U 0 ) = |∇f (U 0 )| or U 0 is not a critical point of f | ∂Ω , i.e. ∂f ∂n (U 0 ) < |∇f (U 0 )|. Case 1) (-∂f ∂n )(U 0 ) < |∇f (U 0 )| . Then the cut-off χ k is chosen so that, in a neighborhood V of supp χ k , ∀x ∈ V ∩ ∂Ω, (- ∂f ∂n )(x) < (1 -δ) |∇f (x)| ,
for some δ > 0. Locally it is possible to construct a function f such that

-∂ n f = ∇ f in V ∩ ∂Ω and ∇ f = |∇f | in V . By setting ω = χ k ω for ω ∈ ΛH 1 0,n
, the Green formula (2.2.9) and the inequality

D g 0 , f ,h (ω) ≥ 0 imply (L ∇f + L * ∇f being a tensor) -h ∂Ω ω | ω Λ p T * σ Ω ∂f ∂n (σ) dσ ≤ -(1-δ)h ∂Ω ω | ω Λ p T * σ Ω ∂ f ∂n (σ) dσ ≤ (1-δ) h 2 dω 2 Λ p+1 L 2 + h 2 d * ω 2 Λ p-1 L 2 + |∇f | ω 2 Λ p L 2 + C 1 h ω 2 Λ p L 2 . • If k > K, ∀ω ∈ ΛH 1 0,n , D g 0 ,f,h (χ k ω) = D g 0 ,f,h (ω) ≥ δ 2 |∇f | ω 2 Λ p L 2 ≥ C -1 V χ k ω 2 Λ p L 2 .
Case 2) -∂f ∂n (U 0 ) = |∇f (U 0 )|. In this case we will conclude by applying Proposition 3.2.11. We recall that U 0 ∈ ∂Ω is a critical point of f | ∂Ω with ∂f ∂n (U 0 ) < 0 and with index p 0 . Around U 0 , we introduce adapted local coordinates, denoted by x = (x , x n ). This coordinate system is provided by Lemma 3.3.1 below, applied with f 1 = f and α = f | ∂Ω∩V 0 . Then the function Φ + of Lemma 3.3.1 is nothing but f and has the form f (x) = -x n + 1 2 f -(x ). Moreover, Ω corresponds locally to {x n ≤ 0}. In order to apply Proposition 3.2.11, it remains to check that the function f can be extended to R n -, so that it satisfies Assumption 3.2.4 where U 0 is a critical point of f | ∂Ω . We recall that we have not specified the choice of x in the boundary. The function f | ∂Ω∩V 0 being a Morse function, we can choose in a small neighborhood V 0 ⊂ ∂Ω of U 0 = (0, . . . , 0) Morse coordinates x = (x 1 , . . . , x n-1 ) for f -which are normal at U 0 for the metric i,j<n g ij (x , 0)dx i dx j . With these coordinates, f has the form, in a small neighborhood V 0 of 0:

f (x) = -x n + n-1 j=1 λ j x 2 j + f (U 0 ) . (3.3.1) We choose χ k such that supp χ k ⊂ V 0 . Choosing a cut-off χ n-1 ∈ C ∞ 0 (R n-1 ) , χ n-1 = 1 near supp χ k ∩ ∂Ω, f is extended to R n -by: f (x) = -x n + χ n-1 (x ) + 1 -χ n-1 (x ) |x |   n-1 j=1 λ j x 2 j   + f (U 0 ) . (3.3.2) Moreover, choosing another cut-off χ n ∈ C ∞ 0 (R n -) , χ n = 1 near supp χ k , we extend g 0 to R n -by: g = χ n g 0 + (1 -χ n )g e , (3.3.3)
where g e is the Euclidian metric on R n -. With these coordinates, the quantity D g, f ,h (χ k ω) = D g 0 ,f,h (χ k ω) attains the form discussed in Proposition 3.2.11. We can now discuss the lower bound of D g, f ,h (χ k ω), depending on the localization by the cut-off χ k , such that supp such that the inequality,

χ k ∩ ∂Ω = ∅. • If k ≤ K, the origin of the coordinate system is U 0 = U k . If U k is not a critical point of f | ∂Ω with index p k = p and ∂f ∂n (U k ) < 0 , then ∀ω ∈ Λ p H 1 0,n , D g, f ,h (χ k ω) ≥ C -1 h χ k ω 2 ΛL 2 ,g . • If k ≤ K
∀ω ∈ Λ p H 1 0,n , D g, f ,h (χ k ω) ≤ C -1 h 6/5 χ k ω 2 Λ p L 2 ,g implies: dist (χ k ω, F (p) k ) ≤ C h 1/10 χ k ω Λ p L 2 ,g .

We now introduce the set

A p of indices k, 1 ≤ k ≤ K, such that • either U k is a critical point of f with index p , • or U k is a critical point of f | ∂Ω with index p such that ∂f ∂n (U k ) < 0 . For ω ∈ Λ p H 1 0,n (Ω) with ω Λ p L 2 ,g = 1 , we get D g 0 ,f,h (ω) ≤ C -1 h 6/5 ⇒   dist (ω, k∈Ap F (p) k ) ≤ Ch 1/10   .
Hence the dimension of the spectral subspace,

F (p) = Ran1 [0,h 3/2 ) (∆ N,(p) f,h ) ⊂ Ran1 [0,ch 6/5 ) (∆ N,(p) f,h ) , is at most #A p = m Ω p . We next verify that dim F (p) ≥ #A p = m Ω p .
According to the Min-Max principle, it suffices to find an orthonormal set of p-forms ω

h k ∈ Λ p H 1 0,n (Ω) , k ∈ A p , such that D g 0 ,f,h (ω h k ) = o(h 3/2
) . Indeed it is enough to take a truncated element of the kernel of the local model for ∆ N,(p) f,h around U k , k ∈ A p . We give the details for the case

U k ∈ ∂Ω. Take two cut-off χ 1,k ∈ C ∞ 0 (R n -), χ 1,k = 1 near 0 (with supp χ 1,k ⊂ supp χ k ) and χ 2,k such that χ 2 1,k + χ 2 2,k = 1 .
With the same coordinate system as above, we write on R n -,using the IMS localization formula (3.2.6) and Proposition 3.2.11-iv),

D gk , fk ,h (ω) ≥ D gk , fk ,h (χ 1,k ω) + C -1 χ 2,k ω 2 -Ch 2 i=1,2 |∇χ i,k | ω 2 ,
where gk and fk are defined on R n -according to the previous construction and coincide with g 0 and f in a neighborhood of supp χ k . According to Proposition 3.2.11, there exists η h k ∈ Λ p H 1 0,n (R n -) in the domain of the associated Witten Laplacian, such that D gk , fk ,h (η h k ) = 0 . By taking

ω h k = χ 1,k η h k -1 χ 1,k η h k ,
we obtain the existence of h 0 > 0, C and C such that, for h ∈ (0, h 0 ]:

χ 2,k η h k 2 ≤ C h 2 η h k 2 ,
and, consequently,

D g 0 ,f,h (ω h k ) ≤ C h 2 η h k 2 χ 1,k η h k 2 ≤ C h 2 .
The next lemma, which provides in different situations the suitable coordinate systems, simply makes use of the standard solution to Hamilton-Jacobi equations in the non characteristic case. It is proved in [START_REF] Peutrec | Local WKB construction for boundary Witten Laplacians[END_REF].

Lemma 3.3.1. 1) Let be f 1 ∈ C ∞ (Ω, R) and U 0 ∈ ∂Ω a critical point of f 1 | ∂Ω with ∂f 1 ∂n (U 0 ) = 0 . Assume furthermore α ∈ C ∞ (∂Ω, R) be a local solution to |∇ T α| 2 = |∇ T f 1 | 2 around U 0 .
Then there exists a neighborhood V 0 of U 0 in Ω such that the eikonal equation:

|∇Φ ± | 2 = |∇f 1 | 2 (on the boundary, it means |∂ n Φ ± | 2 + |∇ T Φ ± | 2 = |∂ n f 1 | 2 + |∇ T f 1 | 2 )
with the boundary conditions

Φ ± | ∂Ω∩V 0 = α , ∂ n Φ ± | ∂Ω∩V 0 = ± ∂f 1 ∂n | ∂Ω∩V 0
admits a unique local smooth real-valued solution.

2) There exists local coordinates (x 1 , . . . ,

x n ) = (x , x n ) in a neighborhood of U 0 in Ω with (x , x n )(U 0 ) = 0
where the function Φ ± and the metric g 0 have the form:

Φ ± = ∓x n + α(x ) and g 0 = g nn (x) dx 2 n + n-1 i,j=1 g ij (x) dx i dx j .
Moreover, the boundary ∂Ω is locally defined by {x n = 0} and Ω corresponds to sgn ∂f 1 ∂n (U 0 )) x n > 0 .

Remark 3.3.2. Lemma 3.3.1 will be used with various functions f 1 and α and will provide several coordinate systems:

• We have already introduced the coordinate system x = (x, x n ) associated with f 1 = f and α = f ∂Ω .

• The coordinate system denoted simply by x = (x , x n ) will be associated with f 1 = f and α = ϕ, where ϕ is the Agmon distance along the boundary. This system will be used to give the simple form

Φ = Φ + = -x n + ϕ(x ) to the Agmon distance Φ, solving |∇Φ| 2 = |∇f | 2 with the boundary condition ∂ n Φ = ∂ n f
. Agmon distances are specified in Section 4 below.

• Finally the coordinate system x = (x , xn ) will be associated with f 1 = (f + Φ) and α = f ∂Ω + ϕ and will be used in the final application of the Laplace method.

4 Accurate WKB analysis near the boundary for ∆

(1) f,h

Introduction

We work here under Assumption 3.1.1. Like in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF], we have shown that for 0 ≤ p < n, some quasimodes of ∆

N,(p) f,h

being near the spectral subspace in 1

[0 , h 3 2 ) (∆ N,(p)
f,h ) are localized near the boundary ∂Ω and more precisely near critical points of f | ∂Ω with index p such that ∂f ∂n < 0 . In the boundaryless case ( [HKN]) and in the case with tangential Dirichlet boundary conditions [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF]), the WKB analysis done in [START_REF] Helffer | Puits multiples en limite semi-classique IV -Etude du complexe de Witten[END_REF] and in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] says that the small eigenvalues are of order O(e -C/h ) and provides an accurate approximate basis of Ran1 [0,h 3/2 ) (∆

(p) f,h ) .
In order to get a similar result, we need an accurate WKB analysis at the boundary, and like in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF], we restrict our attention on the case p = 1 because our motivation is to analyze the Witten Laplacian on 0-forms. For an accurate comparison between eigenvectors and WKB quasimodes near a critical point U 1 of f | ∂Ω with index 1 and ∂f ∂n (U 1 ) < 0 , we introduce another self-adjoint realization of ∆ 

Local WKB construction

Take U 1 a critical point of f ∂Ω with index 1 such that ∂f ∂n (U 1 ) < 0. According to [START_REF] Peutrec | Local WKB construction for boundary Witten Laplacians[END_REF], there exists a local coordinate system (x 1 , . . . , x n ) = (x , x n ) which satisfies the next properties: i) dx 1 , . . . , dx n is an orthonormal basis of T * U 1 (Ω) positively oriented.

ii) The boundary ∂Ω corresponds locally to x n = 0 and the interior Ω to x n < 0. Moreover, the choice of the coordinates (x 1 , . . . , x n-1 ) (centered at U 1 such that dx 1 , . . . , dx n is an orthonormal basis of T * U 1 (Ω)) in the boundary is arbitrary.

Let ϕ be the Agmon distance to U 1 on the boundary (i.e. associated with the metric |∇ x f (x , 0)|dx 2 ). Recall that ϕ satisfies

|∇ T f | 2 = |∇ϕ| 2
on the boundary and that ϕ is smooth near U 1 (see [START_REF] Helffer | Multiple wells in the semi-classical limit I[END_REF]). Apply now the first point of Lemma 3.3.1 with f 1 = f and α = ϕ and denote by Φ the function Φ + of the lemma (Φ is the Agmon distance to U 1 , i.e. associated with the metric |∇ x f (x)|dx 2 ). Hence the next equalities are locally satisfied:

|∂ n Φ| 2 + |∇ T Φ| 2 = |∇Φ| 2 = |∇f | 2 , Φ| ∂Ω = ϕ , ∂ n Φ| ∂Ω = ∂f ∂n | ∂Ω .
According to [START_REF] Helffer | Puits multiples en limite semi-classique IV -Etude du complexe de Witten[END_REF] pp. 279-280, there exist Morse coordinates (v 1 , . . . , v n-1 ) for f Ω centered at U 1 and such that dv 1 (U 1 ), . . . , dv n-1 (U 1 ), n * U 1 is orthonormal and positively oriented. With these coordinates

f (v, 0) = λ 1 2 v 2 1 + • • • + λ n-1 2 v 2 n-1 + f (U 1 ) (4.2.1)
and

ϕ(v) = |λ 1 | 2 v 2 1 + • • • + |λ n-1 | 2 v 2 n-1 , (4.2.2)
with λ 1 < 0. Moreover, (x 1 , . . . , x n-1 ) can be chosen equal to (v 1 , . . . , v n-1 ) in the boundary. Hence, the theorem of [START_REF] Peutrec | Local WKB construction for boundary Witten Laplacians[END_REF] given in the Neumann case implies the next proposition:

Proposition 4.2.1. Consider around U 1 the above system of coordinates x = (x , x n ) which satisfies (4.2.1)(4.2.2) with λ 1 < 0. There exists locally, in a neighborhood of x = 0, a C ∞ solution u wkb

1 to ∆ (1) f,h u wkb 1 = e -Φ h O(h ∞ ) (4.2.3) nu wkb 1 = 0 on ∂Ω (4.2.4) nd f,h u wkb 1 = 0 on ∂Ω , (4.2.5)
where u wkb 1 has the form:

u wkb 1 = a(x, h)e -Φ h , with a(x, h) ∼ k a k (x)h k and a 0 (0) = dx 1 .

Another local Neumann realization of ∆ (1) f,h

Let U 1 be a critical point of f | ∂Ω with index 1 and ∂f ∂n (U 1 ) < 0 and let us introduce a new system of local coordinates. We apply Lemma 3.3.1 with f 1 = f and α = ϕ , the Agmon distance to U 1 on the boundary. The function Φ + of the lemma is then Φ, the Agmon distance to U 1 and we have the existence of local coordinates (x , x n ) around U 1 where Φ and the metric g 0 have the form:

Φ = -x n + ϕ(x ) and g 0 = g nn (x) dx 2 n + n-1 i,j=1 g ij (x) dx i dx j .
Moreover, the boundary ∂Ω is locally defined by {x n = 0} and Ω corresponds to {x n < 0}.

We work now with the local coordinate system defined above and x → |x| is the Euclidean norm in these coordinates.

As in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF], we consider the domain, for ρ > 0,

Ω U 1 ,ρ = |x -(0, 1)| 2 < ρ 2 + 1 , x n < 0 ,
which has the shape of a thin lens stuck on ∂Ω with radius ρ and thickness O(ρ 2 ). Its boundary splits into

Γ D := ∂Ω U 1 ,ρ ∩ Ω = |x -(0, 1)| 2 = ρ 2 + 1, x n ≤ 0 and Γ N D := ∂Ω U 1 ,ρ ∩ ∂Ω = x < ρ, x n = 0 .
On this domain, we introduce the functional space

Λ 1 H 1 0;0,n (Ω U 1 ,ρ ) = u ∈ Λ 1 H 1 (Ω U 1 ,ρ ); nu| Γ N D = 0, u| Γ D = 0 .
The Friedrichs extension associated with the quadratic form:

Λ 1 H 1 0;0,n (Ω U 1 ,ρ ) ω → D N g,f,h (ω) = d f,h ω 2 + d * f,h ω 2 , is denoted by ∆ N,D,(1) f,h . The domain of ∆ N,D,(1) f,h is contained in Λ 1 H 2 (Ω U 1 , ρ ) for any 0 < ρ < ρ . An element ω ∈ D(∆ N,D,(1) f,h ) satisfies indeed: ∆ N,D,(1) f,h ω | η = d f,h ω | d f,h η + d * f,h ω | d * f,h η =: D N g,f,h (ω, η) , for all η ∈ Λ 1 H 1 0;0,n . By testing with η ∈ C ∞ 0 (Ω U 1 ,ρ ), this gives ∆ f,h ω ∈ Λ 1 L 2 (Ω U 1 ,ρ
) and therefore ω admits a second trace on Γ N D . By testing with any η ∈ C ∞ 0;0,n (Ω U 0,ρ ) , we get:

nd f,h ω| Γ N D = 0 .
Along Γ N D , ω solves an elliptic boundary value problem ∆

(1)

f,h ω ∈ Λ 1 L 2 , nω = 0 , nd f,h ω = 0 , which provides the H 2 regularity in Ω U 0,ρ for any ρ < ρ . We now prove the Proposition 4.3.1. For ρ > 0 small enough, there exist h ρ > 0 and C ρ > 0, such that the selfadjoint operator ∆ N,D,(1) f,h satisfies the following properties:

a) For h ∈ (0, h ρ ], the spectral projection 1 [0,h 3/2 ) (∆ N,D,(1) f,h ) has rank 1. b) Any family of L 2 -normalized eigenvectors (u h ) h∈(0,hρ] of ∆ N,D,(1) f,h such that the corresponding eigenvalue E(h) is O(h), satisfies ∀ρ < ρ, ∀α ∈ N n , ∃N α ∈ N, ∃C α,ρ > 0 such that, ∀x ∈ Ω U 1 ,ρ , ∂ α x u h (x) ≤ C α,ρ h -Nα exp -Φ(x) h . (4.3.1) c) There exists ε ρ > 0 such that the first eigenvalue E 1 (h) of ∆ N,D,(1) f,h sat- isfies E 1 (h) = O(e -ερ/h ) . d) If u h 1 denotes the eigenvector of ∆ N,D,(1) f,h
associated with eigenvalue E 1 (h) and normalized by the condition tu h

1 (0) = tu wkb 1 (0) , then ∀ρ < ρ, ∀α ∈ N n , ∀N ∈ N, ∃C N,α,ρ > 0 such that, ∀x ∈ Ω U 1 ,ρ , ∂ α x (u h 1 -u wkb 1 )(x) ≤ C N,α,ρ h N exp -Φ(x) h . (4.3.2)
Once this is proved, one easily gets rough exponentially small upper bounds for the m Ω first eigenvalues of ∆ N,( ) f,h ( ∈ {0, 1}) on Ω, by constructing quasimodes suitably localized near each of the critical points.

The next subsections are devoted to the proof of Proposition 4.3.1. A fondamental ingredient for the proof is a variant of the integration by parts formula of Lemma 2.2.3. Lemma 4.3.2. Let ρ > 0 and let ψ be a real-valued Lipschitz function on Ω U 1 ,ρ . The relation

Re D N g,f,h (ω, e 2 ψ h ω) = h 2 de ψ h ω 2 Λ 2 L 2 + h 2 d * e ψ h ω 2 Λ 0 L 2 + (|∇f | 2 -|∇ψ| 2 + hL ∇f + hL * ∇f )e ψ h ω | e ψ h ω Λ 1 L 2 + h Γ N D ω | ω Λ 1 T * σ Ω e 2 ψ(σ) h ∂f ∂n (σ) dσ (4.3.3) holds for any ω ∈ Λ 1 H 1 0;0,n (Ω U 1 ,ρ ). Moreover, when ω ∈ D(∆ N,D,(1) f,h
) , the left-hand side equals Re e 2 ψ h ∆

(1)

f,h ω | ω .
Proof.

For ω in Λ 1 H 1 0;0,n (Ω U 1,ρ ) , we have ω := e 2 ψ h ω in Λ 1 H 1 0;0,n (Ω U 1 ,ρ ) and the same computations as the ones done in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] to prove Lemma 4.3 lead to:

D N g,f,h (ω, e 2 ψ h ω) = D N g,f,h (ω, ω) -|∇ψ| 2 ω | ω -dψ ∧ ω | d f,h ω + d f,h ω | dψ ∧ ω + i ∇ψ ω | d * f,h ω -d * f,h ω | i ∇ψ ω .
By taking the real part, we obtain:

Re D N g,f,h (ω, e 2 ψ h ω) = D N g,f,h (ω, ω) -|∇ψ| 2 ω | ω .
We conclude by applying Lemma 2.2.3 .

Exponential decay of eigenvectors of

∆ N,D, (1) f,h 
As in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF], the pointwise estimate,

∂ α x u h (x) = O(h -N α e -Φ(x)
h ) , which is stated in Proposition 4.3.1-b), will be proved in several steps. We will first consider H 1 -estimates and deduce afterwards higher order estimates from elliptic regularity. Even for H 1 -estimates we need two steps: we prove first the exponential decay along the boundary Γ N D by applying Lemma 4.3.2 with the function ψ similar to ϕ introduced above ; then the exponential decay in the interior of Ω U 1 ,ρ is obtained with ψ similar to Φ once the boundary term is well controlled.

Proof of a) and b) in Proposition 4.3.1.

Statement a)

Actually it is a simple comparison with the full half-space problem via Min-Max principle as we did for Theorem 3.1.5.

Any ω ∈ Λ 1 H 1 0;0,n (Ω U 1 ,ρ ) can in- deed be viewed as an element of Λ 1 H 1 0,n (R n -) by setting ω = 0 on R n -\Ω U 1 ,ρ . Statement b) Let u h ∈ D(∆ N,D, (1) f,h ) satisfy ∆ 
(1)

f,h u h = E(h)u h , E(h) = O(h) , u h = 1 .
We will use the notation ũh = e ψ h h u h .

The integration by parts formula (4.3.3) will be applied with ψ = ψ h where ψ h will be similar to ϕ or similar to Φ . Let us recall

|∇f | 2 = |∇Φ| 2 , ∂f ∂n = ∂Φ ∂n and Φ(x , x n ) = -x n + ϕ(x ), (4.4.1)
where x = 0 is a local minimum for ϕ with ϕ(0) = 0 . Moreover we have ∇x n • ∇ϕ(x ) = 0 so that:

|∇f | 2 = |∇Φ| 2 = |∇x n | 2 + |∇ϕ| 2 . (4.4.2)
We will first show the decay along the boundary before we propagate the decay in the normal direction inside Ω (see [START_REF] Helffer | Puits multiples en limite semi-classique V -Etude des minipuits[END_REF] and [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] for references).

Step 1: Decay along Γ N D .

We take:

ψ h (x , x n ) = ϕ(x ) -Ch log ϕ(x ) h , if ϕ(x ) > Ch ϕ(x ) -Ch log C , if ϕ(x ) ≤ Ch ,
where the constant C > 1 will be fixed later. We associate the sets:

Ω h -= x = (x , x n ) ∈ Ω U 1 ,ρ ; ϕ(x ) < Ch , and 
Ω h + = x = (x , x n ) ∈ Ω U 1 ,ρ ; ϕ(x ) > Ch .
The condition E(h) = O(h) the formula (4.3.3), (4.4.1) and (4.4.2) imply the existence of C 1 > 0 such that:

C 1 h ũh 2 Λ 1 L 2 (Ω h -) ≥ hdũ h 2 Λ 2 L 2 + hd * ũh 2 Λ 0 L 2 + |∇x n | 2 ũh | ũh Λ 1 L 2 -h Γ N D ũh | ũh Λ 1 T * σ Ω ∂x n ∂n (σ) dσ + (|∇ϕ| 2 -|∇ψ h | 2 )ũ h | ũh -C 1 h 1 Ω h + (x)ũ h | ũh , (4.4.3)
with C 1 determined by f and the upper bound of E(h) . Furthermore,

∇ψ h = ∇ϕ -1 Ω h + (x) Ch∇ϕ ϕ ,
so we have:

∇ψ h 2 = |∇ϕ| 2 + 1 Ω h + (x) -2Ch |∇ϕ| 2 ϕ + C 2 h 2 |∇ϕ| 2 ϕ 2 .
Consequently,

C 1 h ũh 2 Λ 1 L 2 (Ω h -) ≥ hdũ h 2 Λ 2 L 2 + hd * ũh 2 Λ 0 L 2 + |∇x n | 2 ũh | ũh Λ 1 L 2 -h Γ N D ũh | ũh Λ 1 T * σ Ω ∂x n ∂n (σ) dσ + |∇ϕ| 2 2Ch ϕ - C 2 h 2 ϕ 2 -C 1 h 1 Ω h + (x)ũ h | ũh . For x ∈ Ω h + , 2Ch ϕ - C 2 h 2 ϕ 2 ≥ Ch ϕ ( since 2a -a 2 ≥ a ∀ a ∈ [0, 1])
then, ϕ being a positive Morse function, there exists C 2 > 0 which is determined by ϕ such that, for all x ∈ Ω h + ,

C 2 ≥ |∇ϕ(x )| 2 ϕ(x ) ≥ C -1 2
and we get:

C 1 h ũh 2 Λ 1 L 2 (Ω h -) ≥ hdũ h 2 Λ 2 L 2 + hd * ũh 2 Λ 0 L 2 + |∇x n | 2 ũh | ũh Λ 1 L 2 -h Γ N D ũh | ũh Λ 1 T * σ Ω ∂x n ∂n (σ) dσ + CC -1 2 -C 1 h 1 Ω h + (x)ũ h | ũh .(4.4.4) Since ∂ n f (U 1 ) = ∂ n x n (U 1
) = 0, we can choose ρ small enough such that:

C 3 ≥ |∇x n | 2 ≥ C -1 3 on Ω U 1 ,ρ ,
where C 3 is a stricly positive constant.

Hence we get, by adding the term (CC

-1 2 -C 1 )h 1 Ω h - (x)ũ h |ũ h to (4.4.4): CC -1 2 h ũh 2 Λ 1 L 2 (Ω h -) ≥ hdũ h 2 Λ 2 L 2 + hd * ũh 2 Λ 0 L 2 + (1 + 2δ(C)h) |∇x n | 2 ũh | ũh Λ 1 L 2 -h Γ N D ũh | ũh Λ 1 T * σ Ω ∂x n ∂n (σ) dσ , where δ(C) = 1 2 C -1 3 (CC -1 2 -C 1 ) → +∞ when C → +∞ .
At least, we have on Ω h -by the definitions:

ũh ≤ e C |u h | a.e.
and the condition u h = 1 leads to:

δ(C)h ≥ hdũ h 2 Λ 2 L 2 + hd * ũh 2 Λ 0 L 2 + (1 + 2δ(C)h) |∇x n | 2 ũh | ũh Λ 1 L 2 -h Γ N D ũh | ũh Λ 1 T * σ Ω ∂x n ∂n (σ) dσ , (4.4.5) 
where δ(C) = e 2C CC -1 2 .

We now apply (4.3.3) to ũh with ψ = 0, f and h replaced respectively by -x n and h 1+δ(C)h , in order to get,

(1 + δ(C)h) -1 hdũ h 2 Λ 2 L 2 + (1 + δ(C)h) -1 hd * ũh 2 Λ 0 L 2 + (1 + δ(C)h) |∇x n | 2 ũh | ũh -h Γ N D ũh | ũh Λ 1 T * σ Ω ∂x n ∂n (σ) dσ + hC 4 ||ũ h || 2 Λ 1 L 2 ≥ 0 , (4.4.6) with C 4 > 0 independent of C.
The difference (4.4.5)-(4.4.6) yields:

δ(C)h 3 1 + δ(C)h dũ h 2 Λ 2 L 2 + d * ũh 2 Λ 0 L 2 -hC 4 ||ũ h || 2 Λ 1 L 2 + δ(C)h |∇x n | 2 ũh | ũh ≤ δ(C)h . We choose C > 1 large enough such that δ(C)C -1 3 -C 4 > 0.
This leads, after choosing h 0 > 0 small enough, to the existence of a constant C 5 > 0 such that, for all h ∈ (0, h 0 ],

C 5 h ≥ h 3 ũh 2 Λ 1 H 1 .
Since ψ h ≥ ϕ + Ch log h (for all C > C), we have proved the existence of N 0 > 0 such that:

e ϕ h u h Λ 1 H 1 ≤ C 6 h -N 0 .
(4.4.7)

Remember that ϕ ≥ 0 vanishes only at x = 0 . Using the trace theorem, this also leads to:

e ϕ h u h | Γ N D Λ 1 H 1/2 (Γ N D ) ≤ C 7 h -N 0 . (4.4.8)
Step 2: Normal decay inside Ω .

We follow a very similar approach by working with the function Φ . We take:

ψ h (x , x n ) = Φ -Ch log Φ h , if Φ > Ch Φ -Ch log C , if Φ ≤ Ch ,
where the constant C > 1 will be fixed later. We associate the sets:

Ω h -= x = (x , x n ) ∈ Ω U 1 ,ρ ; Φ < Ch and Ω h + = x = (x , x n ) ∈ Ω U 1 ,ρ ; Φ > Ch .
The formula (4.3.3) is used like in Step 1, with ũh = e ψ h h u h and E(h) = O(h). The difference comes from the fact that the boundary term is already estimated with (4.4.8).

We have indeed on the boundary x n = 0 the inequality: e 

C 1 h ũh 2 Λ 1 L 2 (Ω h -) +C 1 h e ϕ h u 2 H 1/2 (Γ N D ;Λ 1 T * Ω U 1 ,ρ ) ≥ hdũ h 2 Λ 2 L 2 + hd * ũh 2 Λ 0 L 2 + (|∇f | 2 -|∇ψ h | 2 )ũ h | ũh -C 1 h 1 Ω h + (x)ũ h | ũh .
Moreover, from (4.4.8) and the inequality

|ũ h (x)| ≤ e C |u h (x)| a.e. in Ω h -,
we get, for any C > 1, the existence of δ(C) > 0 such that the following estimate is satisfied:

δ(C)h 1-2N 0 ≥ C 1 h ũh 2 Λ 1 L 2 (Ω h -) + C 1 h e ϕ h u 2 H 1/2 (Γ N D ;Λ 1 T * Ω U 1 ,ρ ) ≥ hdũ h 2 Λ 2 L 2 + hd * ũh 2 Λ 0 L 2 + (|∇f | 2 -|∇ψ h | 2 )ũ h | ũh -C 1 h 1 Ω h + (x)ũ h | ũh . (4.4.9)
Since |∇f | 2 = |∇Φ| 2 and Φ is a positive function without critical points, we can use the same computations as the ones done in Step 1 with ϕ replaced by Φ to get:

|∇f | 2 -|∇ψ h | 2 = 1 Ω h + (x) 2Ch |∇Φ| 2 Φ -C 2 h 2 |∇Φ| 2 Φ 2 ≥ Ch|∇Φ| 2 Φ ≥ C -1 2 Ch , with C 2 > 0 independent of C.
We take C ≥ 2C 1 C 2 . By adding the estimated term

(C -1 2 C-C 1 )h 1 Ω h - (x)ũ h |ũ h to (4.4.9) we get: δ2 (C)h 1-2N 0 ≥ hdũ h 2 Λ 2 L 2 + hd * ũh 2 Λ 0 L 2 + (C -1 2 C -C 1 )h ũh Λ 1 L 2 ,
which gives, by analogy with Step 1, the existence of C 3 > 0 and N 1 > 0 such that:

e Φ h u h Λ 1 H 1 (Ω U 1 ,ρ) ≤ C 3 h -N 1 .
(4.4.10)

Step 3: Elliptic regularity.

We now set ũh = e Φ h u h . For ρ < ρ, we take a cut-off χ ∈ C ∞ (Ω U 1 ,ρ ) with compact support in Ω U 1 ,ρ ∪ Γ N D and such that χ = 1 on a neighborhood of Ω U 1 ,ρ . The form v h = χũ h satisfies the boundary value problem:

v h -∆v h = r h 0 in R n -, nv h = 0 and ndv h = r h 1 on {x n = 0} , with r h 0 Λ 1 L 2 (R n -) = O(h -N 1 ) and r h 1 Λ 2 H 1/2 (R n-1 ) = O(h -N 1 ) .
This implies, by [Sch], the existence of N 2 > 0 such that:

v h Λ 1 H 2 = O(h -N 2
) . We conclude by induction for any finite decreasing sequence (ρ k ) 0≤k≤K with ρ K > ρ and associated cut-offs χ k , with χ k = 1 in a neighborhood of Ω U 1 ,ρ k and supp χ k ⊂ {χ k-1 = 1} , using the Sobolev injections.

Small eigenvalues are exponentially small

We now check that the eigenvalue E 1 (h) of ∆ N,D,(1) f,h lying in [0, h 3/2 ) is actually of order O(e -ερ/h ) for some ε ρ > 0. We prove this by comparison with the half-space problem as it is done in [START_REF] Peutrec | Local WKB construction for boundary Witten Laplacians[END_REF] at the end of the proof of Proposition 4.2.1.

Proof of Proposition 4.3.1-c). Again we introduce in a neighborhood of U 1 , the coordinate system x = (x , x n ) leading to (3.3.1). The function f and the metric g 0 are extended according to (3.3.2) and (3.3.3) so that Proposition 3.2.11 can be applied. Consequently, the half-space Witten Laplacian, ∆ N,(1) f ,h , has a one dimension kernel and its second eigenvalue is larger than Ch 6/5 . Let u h be a normalized eigenvector of ∆ N,D,(1) f,h associated with the first eigenvalue E 1 (h), which belongs to the interval (0,

h 3/2 ] . Let χ ∈ C ∞ (Ω U 1 ,ρ ) be a cut-off function with compact support in Ω U 1 ,ρ ∪ Γ N D and such that χ = 1 in a neighborhood of 0 with ∂χ ∂n ∂Ω ≡ 0. The form v h = χu h ∈ Λ 1 H 2 (R n -) belongs to the domain of ∆ N,(1) f ,h , i.e. nv h = nd f ,h v h = 0. Moreover, v h satisfies (∆ (1) f ,h -E 1 (h))v h = -h 2 [∆, χ]u h in R n - and the 1-form r h = -h 2 [∆, χ]u h vanishes in a neighborhood V 1 of x = 0 .
Due to the exponential decay of u h stated in Proposition 4.3.1-b), there exist C and N 0 , such that r h also satisfies

r h (x) ≤ Ch -N 0   1≤|β|≤2 |∂ β x χ(x)|   e -Φ(x) h ≤ e -cχ h . With v h Λ 1 L 2 = 1 + O(e -c/h ), r h Λ 1 L 2 = O(e -c/h
) and the a priori estimate E 1 (h) = O(h 3/2 ), the spectral theorem implies |E 1 (h) -0| = O(e -c/h ) like in the proof of Proposition 4.2.1 given in [START_REF] Peutrec | Local WKB construction for boundary Witten Laplacians[END_REF].

Accurate comparison with the WKB solution

We now compare the eigenvector associated with an exponentially small eigenvalue with its WKB approximation. We adapt the method presented in [START_REF] Helffer | Introduction to the semi-classical Analysis for the Schrödinger operator and applications[END_REF][START_REF] Helffer | Puits multiples en limite semi-classique II -Interaction moléculaire-Symétries-Perturbations[END_REF] and in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] by following the same strategy as in Subsection 4.4. The H 1 -estimates are done in two steps with ψ h similar to ϕ and then with ψ h similar to Φ . Finally the elliptic regularity is used for the C ∞ -estimates.

Proof of Proposition

4.3.1-d). Let u h 1 ∈ D(∆ N,D,(1) f,h
) be an eigenvector associated with the first eigenvalue

E 1 (h) of ∆ N,D,(1) f,h : ∆ N,D,(1) f,h u h 1 = E 1 (h)u h 1 , u h 1 = 1 .
According to Proposition 4.3.1-c), we know that E 1 (h) = O(e -ερ h ), with ε ρ > 0, while the second eigenvalue of ∆ N,D,(1) f,h is larger than h 3/2 . By taking ρ > 0 small enough, the WKB approximation u wkb 1 presented in Subsection 4.2 satisfies

     ∆ (1) f,h u wkb 1 = O(h ∞ ) e -Φ(x) h in Ω U 1 ,ρ , nu wkb 1 | Γ N D = 0 , nd f,h u wkb 1 | Γ N D = 0 ,
and there exists c > 0, such that for any ρ > 0, we have

u wkb 1 Λ 1 L 2 (Ω U 1 ,ρ ) ∼ ch n+1 4
(see indeed further the proof of Proposition 5.5.7).

The cut-off function χ ∈ C ∞ (Ω U 1 ,ρ ) is supported in Ω U 1 ,ρ/2 ∪ Γ N D and satisfies χ = 1 on Ω U 1 ,ρ with 0 < ρ < ρ/2, ∂χ ∂n ∂Ω ≡ 0. Later, we will take ρ > 0 small enough, so that χ can be taken in the form

χ(x , x n ) = χ 1 (x )χ n (x n ) .
Like in Lemma 2.3.5 (replace 1 [b,+∞) (A) by A 1/2 1 [b,+∞) (A) and a b by a = O(h ∞ ) here), the real constant factor c(h) in the truncated WKB approximation v wkb 1 = c(h)χu wkb 1 can be chosen so that

v wkb 1 -u h 1 Λ 1 H 1 = O(h ∞ )
and, due to the exponential decay of u h 1 and u wkb 1 , (4.6.1) where rh and r h satisfy, according to Proposition 4.3.1-b),

χ(u h 1 -c(h)u wkb 1 ) Λ 1 H 1 = O(h ∞ ) . Set w h = χ(u h 1 -c(h)u wkb 1 ) . The 1-form w h satisfies in Ω U 1 ,ρ (∆ (1) f,h -E 1 (h))w h = χ(x)(∆ (1) f,h -E 1 (h))(u h 1 -c(h)u wkb 1 ) +[∆ (1) f,h , χ](u h 1 -c(h)u wkb 1 ) = rh e -Φ(x) h + r h ,
rh = O(h ∞ ) , supp r h ⊂ supp ∇χ and r h = O(h -N 0 )e -Φ(x) h .
The last estimate can be done for any C k 0 -norm, with k 0 ∈ N. On the boundary ∂Ω U 1 ,ρ = Γ N D ∪ Γ D , we have simply

nw h | Γ N D = 0, w h | Γ D = 0 , and nd f,h w h | Γ N D = 0 .
With the different of choices for ψ h given below, we will use the notation wh = e ψ h h w h .

The 1-forms w and w belong to Λ 1 H 2 (Ω U 1 ,ρ ) and their supports do not meet Γ D . Hence the integration by parts formula (2.2.7) can be used in addition to (4.3.3).

Step 1: Comparison along Γ N D .

Like in the proof of Proposition 4.3.1-b) presented in Subsection 4.4, we introduce the sets

Ω h -= x = (x , x n ) ∈ Ω U 1 ,ρ ; ϕ(x ) < Ch , and Ω h + = x = (x , x n ) ∈ Ω U 1 ,ρ ; ϕ(x ) > Ch .
For any N ∈ N , we take:

ϕ h N (x ) = min ϕ h (x ) + N h log h -1 , ψ(x ) , where ϕ h (x ) = ϕ(x ) -Ch log ϕ(x ) h , if ϕ(x ) > Ch ϕ(x ) -Ch log C , if ϕ(x ) ≤ Ch , and 
ψ(x ) = min ϕ h -(y ) + (1 -ε)|ϕ(x ) -ϕ(y )| , y ∈ supp ∇χ 1 .
We recall that the cut-off χ writes χ(x , x n ) = χ 1 (x )χ n (x n ) . The constant C ≥ 1 will be fixed at the end like in the proof of Proposition 4.3.1-b). The constants ρ ∈ (0, ρ/2) and ε > 0 are chosen so that, for h ∈ (0, h N,ρ ,ε ) ,

ϕ h N (x ) = ϕ h (x ) + N h log h -1 in Ω U 1 ,ρ . (4.6.2)
Consequently, ϕ being the Among distance on the boundary, (4.6.3) Note furthermore the inequalities:

ϕ h N (x ) = ϕ h (x ) + N h log h -1 = ϕ(x ) -Ch log C + N h log h -1 on Ω h -.
ϕ h N (x) ≤ ϕ(x) + N h log h -1 in Ω U 1 ,ρ ϕ h N (x) ≤ ϕ(x) ≤ Φ(x) , if x ∈ supp ∇χ 1 , and ϕ h N (x) ≤ ϕ(x) + N h log h -1 ≤ Φ(x) , if x n ∈ supp χ n .
In particular, we have for h ∈ (0, h N,ρ ,ε ) ,

ϕ h N (x) ≤ Φ(x) , for x ∈ supp ∇χ , which implies e ϕ h N h r h Λ 1 L 2 = O N (h -N 0 ) .
We apply the integration by parts formula (4.3.3), where the left-hand side is computed with (2.2.7), and we obtain for the form wh = e ϕ h N h w h , by analogy with the proof of Proposition 4.3.1-b), using (4.6.1) and

E 1 (h) = O(h ∞ ) = O(h): C 1 h wh Λ 1 L 2 (Ω h -) + rh + e ϕ h N (x) h r h Λ 1 L 2 wh Λ 1 L 2 ≥ hd wh 2 Λ 2 L 2 + hd * wh 2 Λ 0 L 2 + |∇x n | 2 wh | wh Λ 1 L 2 + h Γ N D wh | wh Λ 1 T * σ Ω ∂x n ∂n (σ) dσ + (|∇ϕ| 2 -|∇ϕ h N | 2 ) wh | wh -C 1 h 1 Ω h + (x) wh | wh ,
where the constant C 1 > 0 is determined by f and rh = O(h ∞ ).

In Ω h -the weight e ϕ h N (x) h is bounded by C 2 (C)h -N and this provides wh

Λ 1 L 2 (Ω h -) ≤ C 2 (C)h -N w h Λ 1 L 2 (Ω h -) ≤ C 3 (C, N ) , due to w h Λ 1 H 1 = O(h ∞ ) .
We obtain:

δ(C, N )(h -N 0 wh Λ 1 H 1 + 1) ≥ hd wh 2 Λ 2 L 2 + hd * wh 2 Λ 0 L 2 + |∇x n | 2 wh | wh Λ 1 L 2 + h Γ N D wh | wh Λ 1 T * σ Ω ∂x n ∂n (σ) dσ + (|∇ϕ| 2 -|∇ϕ h N | 2 ) wh | wh -C 1 h 1 Ω h + (x) wh | wh .
In Ω h -, |∇ϕ| 2 = ∇ψ h N 2 , using (4.6.3).

In Ω h + , the point x fulfills almost surely one of the two possibilities:

• Either ∇ϕ h N = ∇ψ , and we get

|∇ϕ| 2 -∇ψ h N 2 ≥ (2ε -ε 2 ) |∇ϕ| 2 ≥ δ ρ,ε ,
where the last lower bound is due to the fact that ϕ N (x) = ψ(x) cannot occur in a neighborhood of x = 0 for ε > 0 small enough and h ∈ (0, h N,ρ ,ε );

• or ∇ϕ h N = ∇ϕ(1 -Ch ϕ ) .
So we get, similarly to the proof of Proposition 4.3.1-b), for C big enough and h ∈ (0, h N,ρ , ] , with h N,ρ , > 0 small enough:

δ2 (C, N )(h -N 0 wh Λ 1 H 1 + 1) ≥ hd wh 2 Λ 2 L 2 + hd * wh 2 Λ 0 L 2 + (1 + 2δ(C)h) |∇x n | 2 wh | wh Λ 1 L 2 +h Γ N D wh | wh Λ 1 T * σ Ω ∂x n ∂n (σ) dσ .
After treating the r.h.s. like in the proof of Proposition 4.3.1-b)-Step 1, we obtain, for a constant N 0 > 0 , wh

Λ 1 H 1 (Ω U 1 ,ρ ) ≤ C 4 h -N 0 .
Our choice of (ε, ρ ) imply

∀x ∈ Ω U 1 ,ρ , ϕ h N ≥ ϕ(x) + N h log h -1 + Ch log h .
We have proved the existence of N 1 and ρ 0 , such that, for any N ∈ N and ρ ∈ (0, ρ 0 ] , there exists h N,ρ > 0 and C N,ρ > 0 , such that:

e ϕ h (u h 1 -c(h)u wkb 1 ) Λ 1 H 1 (Ω U 1 ,ρ ) ≤ C N,ρ h N -N 1
holds for any h ∈ (0, h N,ρ ). This last estimate and Φ|

Γ N D = ϕ imply e Φ h (u h 1 -c(h)u wkb 1 ) Λ 1 H 1/2 (Ω U 1 ,ρ ∩Γ N D ) = O(h ∞ ) .
Step 2: Comparison in the normal direction.

After replacing ρ by ρ , Step 1 provides the estimate

e ϕ h (u h 1 -c(h)u wkb 1 ) Λ 1 H 1 = O(h ∞ ) .
(4.6.4)

We work in Ω U 1 ,ρ with the above estimate and ρ ∈ (0, ρ/2) will be taken again small enough.

In order to get the interior estimate with the weight e Φ h , we modify the previous analysis like in the proof of Proposition 4.3.1-b). The sets Ω h ± are now given by Ω

h -= x = (x , x n ) ∈ Ω U 1 ,ρ ; Φ < Ch , and Ω h + = x = (x , x n ) ∈ Ω U 1 ,ρ ; Φ > Ch . The function ϕ h N , N ∈ N, is given by ϕ h N (x) = min ϕ h (x) + N h log h -1 , ψ(x) , with ϕ h (x) = Φ(x) -Ch log Φ(x) h , if Φ > Ch , Φ(x) -Ch log C , if Φ ≤ Ch , and 
ψ(x) = min ϕ h (y) + (1 -ε)d Ag (x, y), y ∈ supp ∇χ .
We recall that the Agmon distance d Ag (x, y) is the distance between x and y for the metric |∇f | 2 dx 2 and Φ(x) = d Ag (x, U 1 ). Again, the constant C ≥ 1 will be fixed in the end like in the proof of Proposition 4.3.1-b), while the constants ρ ∈ (0, ρ/2) and ε > 0 are chosen so that:

ϕ h N (x) = ϕ h (x) + N h log h -1 in Ω U 1 ,ρ . Again, this implies: ϕ h N (x) = ϕ h (x) + N h log h -1 on Ω h - Now we have the inequalities ϕ h N (x) ≤ Φ(x) + N h log h -1 in Ω U 1 ,ρ and ϕ h N (x) ≤ Φ(x) in supp ∇χ . Hence the estimate e ϕ h N h r h Λ 1 L 2 = O(h -N 0 )
is still valid. Inequality (4.6.4) implies that the L 2 -norm of the trace of wh on Γ N D is O(h ∞ ) and we have the next estimate: wh

Λ 1 L 2 (Ω h -) ≤ C 2 (C)h -N w h Λ 1 L 2 (Ω h -) ≤ C 3 (C, N ) .
With these estimates, the integration by parts formula (4.3.3) and (2.2.7) lead to:

δ(C, N )(h -N 0 wh Λ 1 L 2 + 1) ≥ hd wh 2 Λ 2 L 2 + hd * wh 2 Λ 0 L 2 + (|∇ϕ| 2 -|∇ϕ h N | 2 -C 1 h)1 Ω h + (x) wh | wh .
Finally, for almost all x ∈ Ω h + we have:

either: ∇ϕ h N (x) = ∇ψ(x) and |∇f | 2 -∇ϕ h N 2 = (2ε -ε 2 ) |∇f (x)| 2 ≥ δ ρ,ε > 0 ;
or: ∇ϕ h N (x) = ∇ψ h (x) and we get like in the proof of Proposition 4.

3.1-b) |∇f | 2 -∇ϕ h 2 ≥ C 4 Ch .
By taking C big enough, we get that ||e

ϕ h N h w h || = O(h -N 0 ) for some N 0 > 0. Like in Step 1, this leads to e Φ h (u h 1 -c(h)u wkb 1 ) Λ 1 H 1 (Ω U 1 ,ρ ) = O(h ∞ ) ,
for ρ ∈ (0, ρ/2) small enough.

Step 3:

The estimates in higher order Sobolev spaces are done like in the proof of Proposition 4.3.1-b) by a bootstrap argument after writing a boundary value problem for

χ(u h 1 -c(h)u wkb 1 ) in R n -.
5 Labelling of local minima and construction of the quasimodes

Preliminaries

Here we adapt to our case with Neumann boundary condition the method of selecting the proper critical points with index 1 which was used in [HKN] and in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF]. We recall that the intuition for getting the good labelling of local minima, which is useful even to state properly the assumptions and results, comes from the probabilistic approach. The local minima have to be labelled according to the decreasing order of exit times. We refer to [BGK], [BEGK] and [FrWe] for details. Note that a similar strategy has independently been considered in [CoPaYc] for the spectral analysis on Markov processes on graphs.

Generalized critical points and local structure of the level sets of a Morse function

We recall that we work here on a compact connected oriented Riemannian manifold Ω = Ω ∪ ∂Ω with boundary and that the function f satisfies Assumption 3.1.1. According to our preliminary results on the Witten Laplacian ∆ N f,h in Theorem 3.1.5, we introduce the following definition of generalized critical points with index p . Definition 5.2.1. A point U ∈ Ω will be called a generalized critical point of f with index p if:

• either U ∈ Ω and U is a critical point of f with index p ,

• or U ∈ ∂Ω and U is a critical point with index p of f | ∂Ω such that ∂f ∂n (U ) < 0 ( n being the outgoing normal vector).

Remark 5.2.2. In particular, for p = 0, we get that the generalized minima are simply the local minima.

The set of generalized critical points with index p is denoted by U (p) . We recall that we want to analyze the Witten Laplacian on 0-forms so we restrict our attention to the cases p = 0 and p = 1. From now on, we will use the notation: m p = #U (p) for p = 0, 1 (5.2.1) instead of m Ω p . Finally it is convenient to call U the union of all critical points of f and f | ∂Ω .

Before labelling the local minima, let us recall a few remarks coming from the local analysis of a Morse function which satisfies Assumption 3.1.1 (we refer to [START_REF] Milnor | Morse Theory[END_REF], [HKN], and [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF]).

Local structure of the level sets of a Morse function. In order to analyze the local situation near a point x 0 of Ω, let us introduce:

A < f (x 0 ) := x ∈ Ω ; f (x) < f (x 0 ) ∩ B x 0 ,
where B x 0 is a ball centered at x 0 . Similarly, we can introduce

A ≤ f (x 0 ) := x ∈ Ω ; f (x) ≤ f (x 0 ) ∩ B x 0 .
Interior points: First we observe that, near a non critical point x 0 ∈ Ω of f , one can find B x 0 and a set of local coordinates such that

A < f (x 0 ) = {y 1 < 0} ∩ B x 0 .
Secondly, if x 0 is a critical point with index p, then there exists a ball B x 0 around x 0 and a set of local coordinates centered at x 0 such that

A < f (x 0 ) =    - p =1 y 2 + n =p+1 y 2 < 0    ∩ B x 0 , and 
A ≤ f (x 0 ) =    - p =1 y 2 + n =p+1 y 2 ≤ 0    ∩ B x 0 .
We now observe that

1. When p = 0 (local minimum), A < f (x 0 ) is empty and A ≤ f (x 0 ) is reduced to {x 0 } . 2. When p = 1 , A < f (x 0
) has two connected components and x 0 belongs to the closure of each of the two components. This property will be crucial in the discussion.

When

p ≥ 2, A < f (x 0 ) is (arcwise) connected.
Points on the boundary: If x 0 belongs to ∂Ω, Assumption 3.1.1 leads to two cases: First case. If x 0 is not a critical point of f | ∂Ω , then the hypersurfaces {x | f (x) = f (x 0 )} and ∂Ω intersect transversally in a neighborhood of x 0 . Hence there is a ball B x 0 around x 0 and a set of local coordinates such that

A < f (x 0 ) = {y 1 < 0, y n ≤ 0} ∩ B x 0 , and A ≤ f (x 0 ) = {y 1 ≤ 0, y n ≤ 0} ∩ B x 0 , with Ω ∩ B x 0 = {y n < 0} ∩ B x 0 . Second case. If x 0 is a critical point of f | ∂Ω
with index p and with ± ∂f ∂n (x 0 ) > 0, there are local coordinates (y 1 , . . . , y n-1 , y n ), constructed from the second point of Lemma 3.3.1, such that (y 1 , . . . , y n-1 ) are Morse coordinates for f | ∂Ω and such that

A < f (x 0 ) =    ±y n - p i=1 y 2 i + n-1 i=p+1 y 2 i < 0 , y n ≤ 0    ∩ B x 0 , and 
A ≤ f (x 0 ) =    ±y n - p i=1 y 2 i + n-1 i=p+1 y 2 i ≤ 0 , y n ≤ 0    ∩ B x 0 .
These local models allow to see that 1. If x 0 is a local minimum of f | ∂Ω such that ∂f ∂n (x 0 ) < 0 , then A < f (x 0 ) = ∅ and A ≤ f (x 0 ) = {x 0 } .

2. If x 0 is a local minimum of f | ∂Ω such that ∂f ∂n (x 0 ) > 0 , then A < f (x 0 ) ∩ ∂Ω = ∅ and A ≤ f (x 0 ) ∩ ∂Ω = {x 0 } . Moreover, A < f (x 0 ) is connected.

3. If p = 1 and ∂f ∂n (x 0 ) < 0 (i.e. if x 0 ∈ U (1) ∩ ∂Ω), A < f (x 0 ) has two connected components with a non-empty intersection with ∂Ω and x 0 belongs to the closure of each of the two components. Again, this property will be crucial in the discussion.

4. In all other cases, A < f (x 0 ) is connected with a non-empty intersection with ∂Ω.

Labelling of local minima and first consequence

Remember our main Assumption 1.0.1:

The function f has #U distinct critical values and the quantities f (U (1) )f (U (0) ), with U (1) ∈ U (1) and U (0) ∈ U (0) are distinct.

Definition 5.3.1. For λ ∈ R, we define H 0 ({f < λ}) as the number of connected components of the level set L(λ) = f -1 ((-∞, λ)) .

Due to local structure of the level sets of a Morse function and to Assumption 1.0.1, the function H 0 ({f < λ}) of λ ∈ R is a step function which satisfies, with λ decreasing from +∞:

• H 0 ({f < λ}) decreases by 1 around every λ = f (U (0) ) with U (0) ∈ U (0) .

• wherever H 0 ({f < λ}) increases by 1, it is around a λ = f (U (1) ) with U (1) ∈ U (1) .

• H 0 ({f < λ}) is locally constant away from those points.

Remark 5.3.2. Ω is connected and compact so H 0 ({f < λ}) equals respectively 1 or 0 for λ ≥ λ f or λ ≤ -λ f for some λ f > 0.

Consequently, the previous discussion implies that the number of critical values of f with index 1 where H 0 ({f < λ}) increases (by 1) is equal to m 0 -1 and so that m 1 + 1 ≥ m 0 .

We now label the local minima of f as follow:

1) We set U For any j ∈ {1, . . . , m 1 }, the h-dependent 1-form ψ

(1) j is defined by ψ

(1) j (x) = θ j u j -1 θ j (x)u j (x) .

We set λ app 1 (ε, h) = 0, and for any k ∈ {2, . . . , m 0 } :

λ app k (ε, h) = ψ (1) j(k) | d (0) f,h ψ (0) k 2 .
Remark 5.4.4. a) In the case U

(1) j(k) ∈ Ω, χ k,ε is χk,ε with additional properties (see [HKN] for details) and we will still denote it here by χk,ε . In the case U

(1) j(k) ∈ ∂Ω, the real choice of χ k,ε will be fixed further (see Definition 5.5.8). Moreover, χ k,ε also satisfies the properties of Proposition 5.4.2. b) For the sake of conciseness, we omit the (ε, h)-and h-dependence in the notations ψ (1) j belongs to ∂Ω.

Quasimodal estimates

We end this section by reviewing the quasimodal estimates which are derived from Propositions 5.3.6 and 5.4.2. The asymptotic expansion of the quantity ψ

(1)

j(k) | d (0) f,h ψ (0) k
has also be done in [HKN] when U (0) k and U

(1) j(k) ∈ Ω are interior points. Like in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF], we will simply complete this analysis by establishing the asymptotic expansion of ψ Looking at the proof of Lemma 3.3.1 given in [START_REF] Peutrec | Local WKB construction for boundary Witten Laplacians[END_REF], notice that the coordinates (v 1 , . . . , v n-1 ) in the boundary can be chosen freely. Moreover, according to [START_REF] Helffer | Puits multiples en limite semi-classique IV -Etude du complexe de Witten[END_REF] pp. 279-280, they can be chosen such that dv 1 (U ), . . . , dv n-1 (U ), n * U is orthonormal and positively oriented and

f (v, 0) = λ 1 2 v 2 1 +• • •+ λ n-1 2 v 2 n-1 +f (U ) and ϕ(v) = |λ 1 | 2 v 2 1 +• • •+ |λ n-1 | 2 v 2
n-1 , (5.5.1) with λ 1 < 0 when U = U

(1) j . Hence all the coordinates systems around U ∈ ∂Ω will coincide on ∂Ω while they may differ in Ω according to the case when a normal form is used for f , Φ or f + Φ in Ω.

Remind that the parameter ε 1 > 0 is fixed, while ε 0 and ε ∈ (0, ε 0 ] may have to be adapted during the proof. We shall denote by α a generic positive constant which is independent of ε ∈ (0, ε 0 ] . Introduce the next notation which will be very useful: Definition 5.5.2. The notation g(h) = O ε (e -α h ) means that, for all ε ∈ (0, ε 0 ], there exists a constant C ε > 0 such that:

∀h ∈ (0, h 0 ] , |g(h)| ≤ C ε e -α h .
From Proposition 5.3.6-d) and the good localization of ∇χ k,ε , we deduce the following estimates for ψ The exponential decay of the first eigenvector u j , associated with an exponentially small eigenvalue, of the Dirichlet realization of ∆

(1) f,h around U

(1) j , provides the next estimates for ψ

(1) j . We refer the reader to [HKN] or [START_REF] Helffer | Puits multiples en limite semi-classique IV -Etude du complexe de Witten[END_REF] for U

(1) j ∈ Ω and to Subsection 4.6 for U . (5.5.4) For some constants η > 0 and δ η > 0,

χ k,ε e - f (x)-f (U (0) k ) h 2 = Ω χ 2 k,ε e -2 f (x)-f (U (0) k ) h V g 0 (dx) = B(0,η)
e 2 xn h e -2 ϕ(x ) h ν(x , x n )dx ∧ dx n + O(e -δη h ) .

According to (5.5.1), χ k,ε e - Taylor Series (of arbitrary order), we can obtain, using the Laplace method, an asymptotic expansion (of arbitrary order) for ψ 
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  The real-valued function f ∈ C ∞ (Ω) is a Morse function on Ω with no critical points in ∂Ω . In addition its restriction f | ∂Ω is a Morse function on ∂Ω.Remark 3.1.2.

  in a neighborhood Ω U 1 ,ρ with mixed boundary conditions: Neumann boundary conditions on ∂Ω U 1 ,ρ ∩ ∂Ω and full Dirichlet boundary conditions on ∂Ω U 1 ,ρ \ ∂Ω .

|

  ∂Ω = n, the outgoing normal at the boundary. Moreover, ∂ ∂x n is unitary and normal to {x n = Constant}.

  to the relation Φ| xn=0 = ϕ . From (4.3.3) used like in Step 1 (see (4.4.3)) we get the existence of C 1 > 0 such that:

=

  min x∈Ω f , z 1 = ∞, f (z 1 ) = z 1 = ∞ and we consider H 0 ({f < λ}) for λ decreasing from f (z 1 ) = +∞.Definition 5.4.3. For cut-off χ k,ε satisfying the properties of Proposition 5.4.2 like χk,ε , introduce the following quasimodes. For any k ∈ {1, . . . , m 0 }, the (ε, h)-dependent function ψ) = χ k,ε (x)e -(f (x)-f (U (0) k ))/h -1 χ k,ε (x)e -(f (x)-f (U (0) k ))/h .

  We will show in the next section that the λ app k (ε, h)'s are approximated values of the small eigenvalues of ∆ N,(0) f,h . By Remark 5.4.1, this definition is coherent for k = 1 and ψ (0) 1 is the normalized eigenvector associate with the eigenvalue 0. d) Due to the condition ∂θ j ∂n ∂Ω ≡ 0, ψ (1) j belongs to D(∆ N,(1) f,h ) and this, even if U

  is in ∂Ω .Remark 5.5.1. In this subsection, we make computations with different coordinate systems v = (v 1 , . . . , v n ) (around U = U j(k) ) all given given by Lemma 3.3.1.

  The system of (ε, h)-dependent functions (ψ(0) k ) k∈{1,...,m 0 } of Definition 5.4∈{1,...,m 0 } = Id C m 0 + O ε (e -α h ) ,and there exists α > 0 and, for any ε ∈ (0, ε 0 ], C(ε) and h 0 (ε) such that, for any h ∈ (0, h 0 (ε)] , There exists ε 0 > 0 and α > 0 such that, for any choice of ε in (0, ε 0 ] and for all k ∈ {1, . . . , m 0 } , the (ε, h)-dependent quasimodes ψ

  x n )dx ∧ dx n + O(e -δη h ) .with b(x, h) defined in Proposition 5.5.7. Using the coordinate system x, with the choice ofχ k,ε , h) | dx 1 χ k,ε (x 1 )e xn-ϕ(x )-(f (x ,0)-f (is a cylinder |x | < c ε , -c ε < xn < 0. Expanding b(x, h) | dx 1 to a

  first term in the expansion of b(x, h) | d x1 equals at x = 0, b k,0 (x) | d x1 (0) = 1. After recalling (5.5.5) which says that the exponent f (x , 0)+ϕ(x ) does not depend on x1 , the first term of the wanted expression is then given by r(h) e xn h dx n e -ϕ(x )+(f (x ,0)-f (U (1) j(k) )) h dx 2 . . . dx n-1 χ k,ε (x 1 )dx 1 .Using the Laplace method and R χ k,ε (x 1 ) dx 1 = -1 ,

  and U k is a critical point of f | ∂Ω with index p k = p and

	∂f ∂n (U k ) < 0, then according to Proposition 3.2.11-iii) there exists a (p) fixed 1-dimensional space F k

] (for h > 0 small enough) rely closely on the number of critical points of f with index p. In the boundaryless case, these numbers are exactly the numbers of critical points of f with index p in Ω. Like in[START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF], they have to be increased in the case with boundary, taking into account the structure of the function f at the boundary, f | ∂Ω . Note furthermore that m 0 is here the number of local minima of f in Ω. Moreover, the first eigenvalue in our case is 0 and the other small eigenvalues are actually exponentially small as h → 0, i.e. of order e -C h , where C is a positive number independent of the small parameter h > 0.

of the interval I(h) = [0, a(h)] is suitable for technical reasons. What is important is that a(h) = o(h). The value of C > 0 does not play any role.

E (∆ N,(p) f,h )v

In[START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF], at this level of the proof, one should read "D g,f,h (ω)≥ 1 c R n-1 • • • " instead of "D g,f,h (ω) equals R n-1 • • • " accordingly to 2.

The existence of such a labelling is an assumption which is generically satisfied. After this, it is possible to construct accurately quasimodes leading, with the help of the Witten complex structure, to accurate asymptotic expansions of the low lying eigenvalues.

Acknowledgement: The author would like to thank T. Jecko and F. Nier for profitable discussions.

2) When U (0) k and z k are defined for k = 1, . . . , K -1, decrease λ from f (z K-1 ) until H 0 ({f < λ}) increases by 1. Denote by λ K this value.

3) By Assumption 1.0.1 and by the previous discussion, there exists a unique point in U (1) , that we denote by z K , satisfying f (z K ) = λ K . Then we denote by U (0)

K the global minimum of the new connected component.

4)

We iterate 2) and 3) until all the local minima have been considered.

5) At least we permute the k's to make the sequence f (z k ) -f (U (1) j , j = 1, . . . , m 1 , we set U

(1) 1

= z 1 = ∞ and we define the application k → j(k) from {1, . . . , m 0 } to {0, 1, . . . , m 1 } by: j(1) = 0 and U

(1) b) E 1 = Ω is compact and for any k > 1 the set E k is a relatively compact subset of f -1 ((-∞, f (U

e) The application j : {1, . . . , m 0 } → {0, 1, . . . , m 1 } is injective.

Proof.

By Assumption 1.0.1 and by construction, the points a), b) and e) are obvious. c) Assume now U

(1)

Moreover, by definition of E k and by Assumption 1.0.1, we have the inequality f (U

(1)

and there are two possible cases:

In the second case, let us look at E k . E k is connected and 

Construction of the quasimodes

Like in [HKN] and in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF], we associate with every

which is approximately supported in E k , while the quasimodes for ∆ N,(1) f,h will be supported in the balls B(U (1) j , 2 ε 1 ) (j ∈ {1, . . . , m 1 }). A ball B(U, ρ) , with U ∈ Ω and ρ > 0 , is a geodesic ball and the geodesic distance is denoted by d Ω . The parameter ε 1 > 0 is fixed so that:

• The construction of the WKB approximation of Subsection 4.6 is possible in the ball B(U

(1) j is a boundary point, this means the introduction of the coordinates (x , x n ) used in Section 4.3 and the existence of Φ. Recall that in these coordinates, Φ and g 0 have the form:

g ij (x) dx i dx j . (5.4.1)

The parameter ε 1 > 0 will be kept fixed, while we need another parameter ε ∈ (0, ε 0 ) which will be fixed in the final step of the proof.

Like in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF], the construction presented in [HKN] has to be adapted when U

(1)

k ∈ ∂Ω (recall that in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF], the case U (0) k ∈ ∂Ω did not occur) and we focus on these changes. However, note that in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] the set E k intersected ∂Ω at most at one point (E k ∩ ∂Ω ⊂ U

(1) j(k) ). It is not the case here and we cannot use the same construction when U

(1)

For every k ∈ {1, . . . , m 0 } and ε > 0, we introduce the set:

Around U

(1) j(k) , the cut-off function χk,ε is chosen (more accurately below when U

(1)

∈ Ω. This case provides directly the eigenvector e

f,h ) with the eigenvalue 0.

Like in [HKN] and in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF], we deduce from Proposition 5.3.6 the following properties for χk,ε .

Proposition 5.4.2.

By taking δ = δ ε with ε ∈ (0, ε 0 ] , 0 < ε 0 ≤ ε 1 small enough, the cut-off functions χk,ε (k ∈ {1, . . . , m 0 }) satisfy the following properties:

The quasimodes for ∆ N,(1) f,h associated with the U

(1) j

∈ Ω are constructed like in [HKN] and in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF] (and rely on the approximation by the Dirichlet problem in small balls B(U (1) j , 2ε 1 )). We will not recall the complete construction here. In the same spirit as in [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF], the quasimodes associated with the U

(1) j ∈ ∂Ω will rely on the approximation by the Neumann realization associated with the neighborhood Ω U (1) j ,ρ (ρ > 0 small enough) which was studied in Subsection 4.6. Once ρ > 0 is fixed uniformly for all U

(1) j ∈ ∂Ω , the parameter ε 1 > 0 is reduced so that B(U

For all j ∈ {1, . . . , m 1 }, u j denotes a normalized eigenvector associated with the first (exponentially small) eigenvalue of this Dirichlet or Neumann realization. The cut-off function

j , ε 1 ) and ∂θ j ∂n ∂Ω ≡ 0 for boundary points U

(1) j ∈ ∂Ω. Note that the function χk,ε depends on ε ∈ (0, ε 0 ], while θ j is kept fixed like ε 1 > 0.

Proposition 5.5.5. The system of h-dependent 1-forms, ψ

(1) j j∈{1,...,m 1 } given in Definition 5.4.3 is orthonormal and there exists α > 0 independent of ε such that

for all j ∈ {1, . . . , m 1 } .

Let us now compute some asymptotic expansions.

Proposition 5.5.6. For k in {2, . . . , m 0 } and x in Ω , ψ

Proof. In the case U

k ∈ Ω, we refer the reader to [HKN].

k , the coordinate system (x , x n ) introduced in the second part of the Section 3.3 (with x(U (0) k ) = 0). In this coordinate system, f and g 0 equal:

(5.5.2)

where

k ) is the Agmon distance to U (0) k on the boundary. We denote by V g 0 (dx) the normalized volume form:

From (5.5.2),

By expanding ν(x , x n ) to a Taylor Series of arbitrary order k ∈ N * , we can separate the variables x and x n in the last integral term. Hence, using the Laplace Method for each term, we obtain an asymptotic expansion of arbitrary order of χ k,ε e -

Moreover, from (5.5.4), the first term is:

Proposition 5.5.7. In B(U

(1) j(k) , ε 1 ), choose the coordinate system x which satisfies (5.4.1) and (5.5.1) with λ 1 < 0. For k in {2, . . . , m 0 }, the equality

h , holds up to a phase factor, when

Proof. In Section 4, we found a WKB approximation u wkb 1 of an eigenvector u h 1 such that, e Φ(x)

and

The WKB approximation u wkb 1 was initially constructed in another coordinate system (x 1 , . . . , x n ). Remark 5.5.1 recalls that the tangential coordinates x 1 , . . . , x n-1 and x 1 , . . . , x n-1 can coincide in ∂Ω with different deformations as entering into Ω.

The normalized eigenvector that we take here is

Let us first compute accurately:

where the integral is over x n ≤ 0. Note furthermore that,

.

Proceeding like in the proof of Proposition 5.5.6, we obtain, using the Laplace method, a full asymptotic expansion of θ j(k) u wkb 1 2 . The first term is given by the first term of

and from a 0 (x) | a 0 (x) (0) = 1, we conclude like in the proof of Proposition 5.5.6.

Before stating the next result, let us specify the choice of χ k,ε when U

(1) j(k) ∈ ∂Ω. We assume ε ∈ (0, ε 0 ), with 0 < ε < ε 1 10 . We introduce locally near U 

with an arbitrary choice of x in the boundary. Remark moreover that in this case,

.

We choose the coordinate system x in the boundary like it was chosen in the boundaryless case (see [START_REF] Helffer | Puits multiples en limite semi-classique IV -Etude du complexe de Witten[END_REF][HKN]) according to the geometry of stable and unstable manifolds in order to write (f + Φ)| ∂Ω as a function of n -2 coordinates:

. . , xn-1 ) .

(5.5.5) Definition 5.5.8. For any k ∈ 1, . . . , m 0 we define the cut-off χ k,ε by:

k,ε like it was constructed in the boundaryless case (see [HKN] pp. 26-29).

Then, choosing a cut-off

, for δ ε small enough, satisfies the same properties as χk,ε in Proposition 5.4.2 and we make that choice. Moreover, according to [HKN] p.28, in a neighborhood of {x 1 = 0} ∩ ∂Ω, the cut-off χ k,ε only depends on x1 : χ k,ε = χ k,ε (x 1 ).

Proposition 5.5.9. There exist ε 0 and sequences (c k,m ) m∈N * , such that the (ε, h)-dependent and h-dependent quasimodes ψ

where γ k (h), δ j(k) (h), and θ j(k) (h) are defined in Definition 1.0.2 and

The first statement for j = j(k) is a consequence of our choice of ε 1 > 0 and χ k,ε which gives according to Proposition 5.4.2-c) supp ψ

(1)

The second case was completely treated in [HKN] when U

(1)

k ∈ ∂Ω, the proof done in [HKN] remains valid if we take the convenient γ k (h). Show now the cases when U ∈ Ω ∪ ∂Ω by adapting the proofs done in [HKN] and [START_REF] Helffer | Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary[END_REF]. From Proposition 5.5.6, Proposition 5.5.7, and

we obtain the existence, for any ε > 0, of σ ε > 0 such that

6 Final proof

Main result

Recall first some notations.

The generalized critical points with index 0, U

k , k ∈ {1, . . . , m 0 } , are labelled according to Subsection 5.3 and the generalized critical points with index 1, U 

At a generalized critical point U with index i (i ∈ {0, 1}), the Hessians Hess f (U ) or Hess f ∂Ω are computed in orthonormal coordinates for the metric g 0 , while considering only the tangential coordinates x = (x 1 , . . . , x n-1 ) for the second case. At least, for a generalized critical point U ∈ W with index 1 for W = Ω or W = ∂Ω, λ W 1 (U ) denotes the negative eigenvalue of Hess f | W (U ).

With these notations, we have the next theorem, which implies Theorem 1.0.3: Theorem 6.1.1. Under Assumptions 3.1.1 and 1.0.1, the first eigenvalue λ 1 (h) of ∆ N,(0) f,h is 0 and its m 0 -1 first non zero eigenvalues λ 2 (h), . . . , λ m 0 (h) admit the following asymptotic expansion. There exist ε 0 > 0 and α > 0 such that, for any ε ∈ (0, ε 0 ],

Recall also that, from Proposition 5.5.9, for any ε ∈ (0, ε 0 ],

where γ k (h), δ j(k) (h), and θ j(k) (h) are defined in Definition 1.0.2 and c 1 k (h) admits a complete expansion:

Finite dimensional reduction and final proof

Set first, for ∈ {0, 1}:

∀i ∈ {1, . . . , m } , v

where the ψ ( ) i are the (ε, h)-and h-dependent quasimodes introduced in Definition 5.4.3. Remark 6.2.1. Note that here again we omit the (ε, h)-dependence (resp. h-dependence) of the functions v Recall furthermore the definition of the space F ( ) given in introduction ( ∈ {0, 1}),

which has dimension m according to Theorem 3.1.5.

According to Lemma 2.3.5, Corollary 5.5.4 (for = 0) and Proposition 5.5.5 (for = 1), 1

), which implies the two next propositions: Proposition 6.2.2. For ∈ {0, 1}, the -forms (v

is a basis of F ( ) satisfying:

for some α > 0 independent of ε ∈ (0, ε 0 ].

Finally, we can also establish: Proposition 6.2.4. There exist ε 0 > 0 and α > 0 such that, for all ε ∈ (0, ε 0 ], the estimates

and v

(1)

hold for all (k, j) ∈ {1, . . . , m 0 } × {1, . . . , m 1 }.

Proof. Remark first, 1 [0,h 3/2 ) (∆ N,(1) f,h ) being a spectral projector and using Corollary 2.3.4:
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The end of the proof is a straightforward consequence of Proposition 5.5.3, which gives

Propositions 5.5.9 and 6.2.2.

Proof of Theorem 6.1.1. By Propositions 6.2.3 and 6.2.4, the bases (v

i ) i∈{1,...,m } of F ( ) , for ∈ {0, 1}, satisfy Assumptions 2.2 and 2.3 of [Lep]. Theorem 2.4 of [Lep] then implies Theorem 6.1.1 (which immediately implies Theorem 1.0.3). Remark 6.2.5. The conditions of [Lep] are not exactly satisfied here because the one to one map j should act from {1, . . . , m 0 } to {1, . . . , m 1 }, with dim F (i) = m i . We can easily reduce the study to this last case, by setting:

and,

F (0) = F (0) , F (1) = F (1) ⊕ ⊥ Cv

(1)

. Setting in addition j(1) = m 1 + 1 instead of j(1) = 0, the conditions of [Lep] are fulfilled. Note furthermore that the decreasing sequence (α k ) k∈{1,...,m 0 } of [Lep] is then here f (U