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Abstract

This article follows the previous works [HKN] by Helffer-Klein-
Nier and [HeNi1] by Helffer-Nier about the metastability in reversible
diffusion processes via a Witten complex approach. Again, expo-

nentially small eigenvalues of some self-adjoint realization of ∆
(0)
f,h =

−h2∆ + |∇f(x)|2 − h∆f(x) , are considered as the small parameter
h > 0 goes to 0. The function f is assumed to be a Morse function on
some bounded domain Ω with boundary ∂Ω. Neumann type bound-
ary conditions are considered. With these boundary conditions, some
simplifications possible in the Dirichlet problem studied in [HeNi1] are
no more possible. A finer treatment of the three geometries involved
in the boundary problem (boundary, metric, Morse function) is carried
out.

MSC 2000: 58J37 (58J10 58J32 60J60 81Q10 81Q20)
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1 Introduction and result

In this text, we are interested in the exponentially small eigenvalues of the

Neumann realization of the semiclassical Witten Laplacian ∆
(0)
f,h (acting on

0-forms) on a connected compact Riemannian manifold with regular bound-
ary.
Our purpose is to derive with the same accuracy as in [HKN] and in [HeNi1]
asymptotic formulas for the smallest non zero eigenvalues of the Neumann

realization of ∆
(0)
f,h.

A similar problem was considered by many authors via a probabilistic ap-
proach in [FrWe], [HKS], [Mic], and [Kol]. More recently, in the case of
R
n , accurate asymptotic forms of the exponentially small eigenvalues were

obtained in [BEGK] and [BGK].
These results were improved and extended to the cases of boundaryless com-
pact manifolds in [HKN] and of compact manifolds with boundaries for the
Dirichlet realization of the Witten Laplacian in [HeNi1].
We want here to extend these last results to the case of compact manifolds
with boundaries for the Neumann realization of the Witten Laplacian, that
is with coherently deformed Neumann boundary conditions.

The function f is assumed to be a Morse function on Ω = Ω ∪ ∂Ω with no
critical points at the boundary. Furthermore, its restriction to the boundary
f |∂Ω is also assumed to be a Morse function.
From [ChLi], which completed results yet obtained in the boundaryless case
(see [Sim2][Wit][CFKS][Hen][HeSj4][Hel3]), the number mp of eigenvalues of

the Neumann realization of the Witten Laplacian ∆
(p)
f,h (acting on p-forms)

in some interval [0, Ch
3
2 ] (for h > 0 small enough) rely closely on the number

of critical points of f with index p.
In the boundaryless case, these numbers are exactly the numbers of critical
points of f with index p in Ω. Like in [HeNi1], they have to be increased
in the case with boundary, taking into account the structure of the function
f at the boundary, f |∂Ω. Note furthermore that m0 is here the number of
local minima of f in Ω.
Moreover, the first eigenvalue in our case is 0 and the other small eigenvalues

are actually exponentially small as h → 0, i.e. of order e−
C
h , where C is a

positive number independent of the small parameter h > 0.

The point of view of [HKN] and [HeNi1] intensively uses, together with
the techniques of [HeSj4], the two facts that the Witten Laplacian is asso-

ciated with a cohomology complex and that the function x 7→ exp− f(x)
h is

a distributional solution in the kernel of the Witten Laplacian on 0-forms
allowing to construct very efficiently quasimodes.
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Recall that the Witten Laplacian is defined as

∆f,h = df,hd
∗
f,h + d∗f,hdf,h , (1.0.1)

where df,h is the distorted exterior differential

df,h := e−f(x)/h (hd) ef(x)/h , (1.0.2)

and where d∗f,h is its adjoint for the L2-scalar product canonically associ-
ated with the Riemannian structure (see for example [GHL][Gol][Sch]) The

restriction of df,h to p-forms is denoted by d
(p)
f,h. With these notations, the

Witten Laplacian on functions is

∆
(0)
f,h = d

(0)∗
f,h d

(0)
f,h . (1.0.3)

In the Witten complex spirit and due to the relation

d
(0)
f,h∆

(0)
f,h = ∆

(1)
f,hd

(0)
f,h , (1.0.4)

it is more convenient to consider the singular values of the restricted differ-

ential d
(0)
f,h : F (0) → F (1) . The space F (ℓ) is the mℓ-dimensional spectral

subspace of ∆
(ℓ)
f,h, ℓ ∈ {0, 1},

F (ℓ) = Ran 1I(h)(∆
(ℓ)
f,h) , (1.0.5)

with I(h) = [0, Ch
3
2 ] and the property1

1I(h)(∆
(1)
f,h)d

(0)
f,h = d

(0)
f,h1I(h)(∆

(0)
f,h) . (1.0.6)

The restriction df,h
∣∣
F (ℓ) will be more shortly denoted by β

(ℓ)
f,h

β
(ℓ)
f,h := (d

(ℓ)
f,h)/F (ℓ) . (1.0.7)

We will mainly focus on the case ℓ = 0.
In order to exploit all the information which can be extracted from well

chosen quasimodes, working with singular values of β
(0)
f,h appears to be more

efficient than considering their squares, the eigenvalues of ∆
(0)
f,h . Those quan-

tities agree better with the underlying Witten complex structure.
Note that in our case, 0 is the smallest eigenvalue of the (deformed) Neu-
mann realization of the Witten Laplacian on 0-forms due to the belonging
of x 7→ exp− f(x)

h to the domain of this operator (see Proposition 2.3.1 for

1The right end a(h) = Ch
3

2 of the interval I(h) = [0, a(h)] is suitable for technical
reasons. What is important is that a(h) = o(h). The value of C > 0 does not play any
role.
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the exact definition).

Let us now state the main result. Let U (0) and U (1) denote respectively
the set of local minima and the set of generalized critical points with index
1, or generalized saddle points, of the Morse function f on Ω (see Defini-
tion 5.2.1 for the exact meaning of “generalized”). The analysis requires an
assumption which ensures that the exponentially small eigenvalues are sim-
ple with different logarithmic equivalent as h→ 0. Although it is possible to
consider more general cases like in [HKN] and in [HeNi1], we will follow the
point of view presented in [Nie] and work directly in a generic case which
avoids some technical and unnecessary considerations.

Assumption 1.0.1. The critical values of f and f
∣∣
∂Ω

are all distinct and

the quantities f(U (1)) − f(U (0)), with U (1) ∈ U (1) and U (0) ∈ U (0) are dis-
tinct.

After this assumption, a one to one mapping j from U (0) \
{
U

(0)
1

}
when U

(0)
1

is the global minimum, into the set U (1) can be defined. The local minima

are denoted by U
(0)
k , k ∈ {1, . . . ,m0}, and the generalized saddle points by

U
(1)
j , j ∈ {1, . . . ,m1}. The ordering of the local minima as well as the one

to one mapping j will be specified in Subsection 5.3.
The final result will be expressed with the next quantities.

Definition 1.0.2. For k ∈ {2, . . . ,m0}, we define:

γk(h) =





˛̨
˛det Hess f(U

(0)
k )

˛̨
˛
1
4

(πh)
n
4

if U
(0)
k ∈ Ω

(
−2∂nf(U

(0)
k )

h

) 1
2

˛̨
˛det Hess f |∂Ω(U

(0)
k )

˛̨
˛
1
4

(πh)
n−1

4
if U

(0)
k ∈ ∂Ω ,

δj(k)(h) =





˛̨
˛det Hess f(U

(1)
j(k)

)
˛̨
˛
1
4

(πh)
n
4

if U
(1)
j(k) ∈ Ω

(
−2∂nf(U

(1)
j(k)

)

h

)1
2

˛̨
˛detHess f |∂Ω(U

(1)
j(k)

)
˛̨
˛
1
4

(πh)
n−1

4
if U

(1)
j(k) ∈ ∂Ω ,

and,

θj(k)(h) =





h
1
2

π
1
2

(πh)
n
2 |bλΩ

1 |
1
2

˛̨
˛det Hess f(U

(1)
j(k)

)
˛̨
˛
1
2

if U
(1)
j(k)

∈ Ω

h2

−2∂nf(U
(1)
j(k)

)

(πh)
n−2

2 |bλ∂Ω1 |
1
2

˛̨
˛det Hess f |∂Ω(U

(1)
j(k)

)
˛̨
˛
1
2

if U
(1)
j(k) ∈ ∂Ω ,

where λ̂W1 is the negative eigenvalue of Hess f |W (U
(1)
j(k)) for W = Ω or W =

∂Ω.
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Theorem 1.0.3.
Under Assumption 1.0.1 and after the ordering specified in Subsection 5.3,
there exists h0 such that, for h ∈ (0, h0] , the spectrum in [0, h

3
2 ) of the

Neumann realization of ∆
(0)
f,h in Ω consists of m0 eigenvalues 0 = λ1(h) <

. . . < λm0(h) of multiplicity 1.
Moreover, the above m0−1 non zero eigenvalues are exponentially small and
admit the following asymptotic expansions:

λk(h) = γ2
k(h) δ

2
j(k)(h) θ

2
j(k)(h) e

−2
f(U

(1)
j(k)

)−f(U
(0)
k

)

h

(
1 + hc1k(h)

)

where γk(h), δj(k)(h), and θj(k)(h) are defined in the above definition and
c1k(h) admits a complete expansion: c1k(h) ∼

∑∞
m=0 h

mck,m.

This theorem extends to the case with Neumann boundary conditions the
previous result of [BGK] and its improvements in [HKN] and [HeNi1] (see
also non-rigorous formal computations of [KoMa], who look also at cases
with symmetry and the books [FrWe] and [Kol] and references therein).

To prove this theorem, we will follow the same strategy as in [HKN] and in
[HeNi1] and some intermediary results will be reused without demonstra-
tion (what will be indicated in the article). Moreover, some proofs will be
improved (see for example the final proof reduced now to a simple Gaussian
elimination explained in [Lep]).
At least, the geometry of the Neumann case is different from the geometry of
the above references. This leads to different results (compare Theorem 1.0.3
and the main theorem of [HeNi1]) and some proofs have to be entirely re-
considered. In fact, the study of the Dirichlet realization of the Witten
Laplacian done in [HeNi1] agreed better with the local geometry near the
boundary, which led to simpler computations (see the local WKB construc-
tion in Section 4 for example).

The article is organized as follows.
In the second section, we analyze in detail the boundary complex adapted
to our analysis in order to keep the commutation relation (1.0.4) (a part of
the answer already existed in the literature (see [Sch], [Duf], [DuSp], [Gue],
and [ChLi]) in connection with the analysis of the relative or absolute coho-
mology as defined in [Gil]).
The third section is devoted to the proof of rough estimates (to get a pre-
cise localization of the spectrum of the Laplacian) replacing the harmonic
oscillator approximation in the case without boundary.
These two sections bring no additional difficulties in comparison with what
was done in [HeNi1].
In the fourth section, we give the WKB construction for an eigenform of the
Witten Laplacian on 1-forms localized near a critical point of the boundary.

6



For this, we cannot use the same strategy as in [HeNi1]. Their WKB con-
struction relied on some specific trick which does not work anymore here.
Moreover, it was possible in the Dirichlet case to use only a single coordinate
system in order to approximate an eigenform by a WKB construction while
different coordinate systems arise naturally here. Lemma 3.3.1 will play a
crucial role to juggle with these different coordinate systems.
In the first part of the fifth section we label the local minima and we con-
struct the above injective map j under Assumption 1.0.1.
In its second part, after having constructed adapted quasimodes to our anal-
ysis, we make some scalar estimates - using the Laplace method - which lead
directly to the final proof of the theorem, using the result of [Lep], in the
sixth section. Again, we cannot use like in [HeNi1] a single coordinate sys-
tem and we must again call on Lemma 3.3.1 to be able to use the Laplace
method. It is due to the local geometry near a generalized critical point
with index 1 which is rather more complicated than in [HeNi1].

2 Witten Laplacian with Neumann boundary con-

dition

2.1 Introduction and notations

This section is analogous to the second section of [HeNi1] and we will use
the same notations that we recall here.

Let Ω be a C∞ connected compact oriented Riemannian n-dimensional man-
ifold. We will denote by g0 the given Riemannian metric on Ω ; Ω and ∂Ω
will denote respectively its interior and its boundary.
The cotangent (resp. tangent) bundle on Ω is denoted by T ∗Ω (resp. TΩ)
and the exterior fiber bundle by ΛT ∗Ω = ⊕n

p=0Λ
pT ∗Ω (resp. ΛTΩ =

⊕n
p=0Λ

pTΩ).

The fiber bundles ΛT∂Ω = ⊕n−1
p=0ΛpT∂Ω and ΛT ∗∂Ω = ⊕n−1

p=0ΛpT ∗∂Ω are
defined similarly.
The space of C∞, C∞

0 , L2, Hs , etc. sections in any of these fiber bundles, E,
on O = Ω or O = ∂Ω, will be denoted respectively by C∞(O;E), C∞

0 (O;E),
L2(O;E), Hs(O;E), etc.
When no confusion is possible we will simply use the short notations ΛpC∞,
ΛpC∞

0 , ΛpL2 and ΛpHs for E = ΛpT ∗Ω or E = ΛpT ∗∂Ω.
Note that the L2 spaces are those associated with the unit volume form for
the Riemannian structure on Ω or ∂Ω (Ω and ∂Ω are oriented).
The notation C∞(Ω;E) is used for the set of C∞ sections up to the boundary.
Finally since ∂Ω is C∞, C∞(Ω;E) is dense in Hs(Ω;E) for s ≥ 0 and the
trace operator ω → ω|∂Ω extends to a surjective operator from Hs(Ω;E)
onto Hs−1/2(∂Ω;E) as soon as s > 1/2.
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Let d be the exterior differential on C∞
0 (Ω;ΛT ∗Ω)

(
d(p) : C∞

0 (Ω;ΛpT ∗Ω) → C∞
0 (Ω;Λp+1T ∗Ω)

)

and d∗ its formal adjoint with respect to the L2-scalar product inherited
from the Riemannian structure

(
d(p),∗ : C∞

0 (Ω;Λp+1T ∗Ω) → C∞
0 (Ω;ΛpT ∗Ω)

)
.

Remark 2.1.1. Note that d and d∗ are both well defined on C∞(Ω;ΛT ∗Ω) .

We set, for a function f ∈ C∞(Ω; R) and h > 0, the distorted operators
defined on C∞(Ω;ΛT ∗Ω):

df,h = e−f(x)/h (hd) ef(x)/h and d∗f,h = ef(x)/h (hd∗) e−f(x)/h ,

The Witten Laplacian is the differential operator defined on C∞(Ω;ΛT ∗Ω)
by:

∆f,h = d∗f,hdf,h + df,hd
∗
f,h = (df,h + d∗f,h)

2 . (2.1.1)

Remark 2.1.2. The last equality becomes from the property dd = d∗d∗ = 0
which implies:

df,hdf,h = d∗f,hd
∗
f,h = 0. (2.1.2)

It means, by restriction to the p-forms in C∞(Ω;ΛpT ∗Ω):

∆
(p)
f,h = d

(p),∗
f,h d

(p)
f,h + d

(p−1)
f,h d

(p−1),∗
f,h .

Note that (2.1.2) imply that, for all u in C∞(Ω;ΛpT ∗Ω),

∆
(p+1)
f,h d

(p)
f,hu = d

(p)
f,h∆

(p)
f,hu (2.1.3)

and

∆
(p−1)
f,h d

(p−1),∗
f,h u = d

(p−1),∗
f,h ∆

(p)
f,hu . (2.1.4)

We end up this section by a few relations with exterior and interior prod-
ucts (respectively denoted by ∧ and i), gradients (denoted by ∇) and Lie
derivatives (denoted by L) which will be very useful:

(df∧)∗ = i∇f (in L2(Ω;ΛpT ∗Ω )) , (2.1.5)

df,h = hd+ df∧ , (2.1.6)

d∗f,h = hd∗ + i∇f , (2.1.7)

d ◦ iX + iX ◦ d = LX , (2.1.8)

∆f,h = h2(d+ d∗)2 + |∇f |2 + h
(
L∇f + L∗

∇f

)
, (2.1.9)

where X denotes a vector field on Ω or Ω.
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Remark 2.1.3. We work here on a Riemannian manifold and the opera-
tors introduced depend on the Riemannian metric g0. Nevertheless, we have
omitted here this dependence for conciseness.

2.2 Stokes and Green formulas

In order to define suitably the self-adjoint Neumann realization of the Wit-
ten Laplacian ∆f,h that we will study in the rest of this work, we need
variants from the Stokes and the Green formulas.
For that, we use some notations and properties which are very convenient
for boundary problems and which are introduced for example in [Sch] and
recalled in [HeNi1].

Definition 2.2.1. We denote by ~nσ the outgoing normal at σ ∈ ∂Ω and by
~n∗σ the 1-form dual to ~nσ for the Riemannian scalar product.

For any ω ∈ C∞(Ω;ΛpT ∗Ω), the form tω is the element of C∞(∂Ω;ΛpT ∗Ω)
defined by:

(tω)σ(X1, . . . ,Xp) = ωσ(X
T
1 , . . . ,X

T
p ) , ∀σ ∈ ∂Ω ,

with the decomposition into the tangential and normal components to ∂Ω
at σ: Xi = XT

i ⊕ x⊥i ~nσ.
Moreover,

(tω)σ = i~nσ(~n
∗
σ ∧ ωσ) .

The projected form tω, which depends on the choice of ~nσ (i.e. on g0), can
be compared with the canonical pull-back j∗ω associated with the imbedding
j : ∂Ω → Ω. Actually the exact relationship is j∗ω = j∗(tω). With an abuse
of notation, the form j∗(tω) will be simply written tω for example in Stokes
formula without any possible confusion.
The normal part of ω on ∂Ω is defined by:

nω = ω|∂Ω − tω ∈ C∞(∂Ω;ΛpT ∗Ω).

If necessary tω and nω can be considered as elements of C∞(Ω;ΛpT ∗Ω) by
a variant of the collar theorem (see [HeNi1] or [Sch] for details).
The Hodge operator ⋆ is locally defined in a pointwise orthonormal frame
(E1, . . . , En) by:

(⋆ωx)(Eσ(p+1), . . . , Eσ(n)) = ε(σ) ωx(Eσ(1), . . . , Eσ(p)) ,

for ωx ∈ ΛpT ∗
xΩ and with any permutation σ ∈ Σ(n) of {1, . . . , n} preserving

{1, . . . , p} (ε(σ) denotes the signature of σ).
We recall the formulas:

⋆(⋆ωx) = (−1)p(n−p)ωx , ∀ωx ∈ ΛpT ∗
xΩ , (2.2.1)

〈ω1 |ω2〉ΛpL2 =
∫
Ω ω1 ∧ ⋆ω2 , ∀ω1, ω2 ∈ ΛpL2 , (2.2.2)
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and:

⋆d∗,(p−1) = (−1)pd(n−p)⋆ , ⋆d(p) = (−1)p+1d∗,(n−p−1)⋆ , (2.2.3)

⋆ n = t ⋆ , ⋆ t = n ⋆ , (2.2.4)

t d = d t , n d∗ = d∗ n . (2.2.5)

With the previous convention j∗(tω) = tω, the Stokes formula writes:

∀ω ∈ C∞(Ω;ΛpT ∗Ω),

∫

Ω
dω =

∫

∂Ω
j∗ω =

∫

∂Ω
tω , (2.2.6)

and a first deformed Green formula given in [HeNi1] states that

〈df,hω | df,hη〉Λp+1L2 + 〈d∗f,hω | d∗f,hη〉Λp−1L2

= 〈∆f,hω | η〉ΛpL2 + h

∫

∂Ω
(tη) ∧ (⋆ndf,hω) − h

∫

∂Ω
(td∗f,hω) ∧ (⋆nη) (2.2.7)

holds for all ω ∈ ΛpH2 and η ∈ ΛpH1 . This formulation of (2.2.7) does not
depend on the choice of an orientation. If µ and µ∂Ω denote the volume forms
in Ω and ∂Ω, the orientation is chosen such that (µ∂Ω)σ(X1, . . . ,Xn−1) =
µσ(~nσ,X1, . . . ,Xn−1). A simple computation in normal frames (see [Sch],
prop. 1.2.6) leads to:

tω1 ∧ ⋆nω2 = 〈ω1 | i~nσω2〉ΛpT ∗
σΩ dµ∂Ω , (2.2.8)

for ω1 ∈ C∞(Ω;ΛpT ∗Ω) and ω2 ∈ C∞(Ω;Λp+1T ∗Ω).

Definition 2.2.2. We denote by ∂f
∂n(σ) or ∂nf(σ) the normal derivative of

f at σ:
∂f

∂n
(σ) = ∂nf(σ) := 〈∇f(σ) |~nσ〉 .

As a consequence of (2.2.8) we get the following useful decomposition for-
mula.

Lemma 2.2.3. (Normal Green Formula)
The identity

‖df,hω‖
2
Λp+1L2 +

∥∥d∗f,hω
∥∥2

Λp−1L2 = h2 ‖dω‖2
Λp+1L2 + h2 ‖d∗ω‖2

Λp−1L2

+ ‖ |∇f |ω‖2
ΛpL2 + h〈(L∇f + L∗

∇f )ω |ω〉ΛpL2

+ h

∫

∂Ω
〈ω |ω〉ΛpT ∗

σΩ

(
∂f

∂n

)
(σ) dµ∂Ω (2.2.9)

holds for any ω ∈ ΛpH1 such that nω = 0.
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Proof.
Since C∞(Ω;ΛpT ∗Ω) is dense in ΛpH1, while both terms of the identity are
continuous on ΛpH1, the form ω can be assumed to be in C∞(Ω;ΛpT ∗Ω).
We use the relation (2.2.7) with both f = 0 (d0,h = hd and d∗0,h = hd∗) and

a general f ∈ C∞(Ω; R). We obtain:

‖df,hω‖
2
Λp+1L2 +

∥∥d∗f,hω
∥∥2

Λp−1L2 − h2‖dω‖2
Λp+1L2 − h2‖d∗ω‖2

Λp−1L2 =

〈(∆f,h − ∆0,h)ω |ω〉ΛpL2 + h

∫

∂Ω
(tω) ∧ ⋆n(df ∧ ω) − h

∫

∂Ω
(ti∇fω) ∧ (⋆nω)

= 〈(∆f,h − ∆0,h)ω |ω〉ΛpL2 + h

∫

∂Ω
〈ω | i~nσ(df ∧ ω)〉ΛT ∗

σΩ dµ∂Ω .

By (2.1.9):

〈(∆f,h − ∆0,h)ω |ω〉ΛpL2 = ‖|∇f |ω‖2
ΛpL2 + h〈(L∇f + L∗

∇f )ω |ω〉ΛpL2 .

For the integral term, we write:

i~nσ(df ∧ ω)(X1, . . . ,Xp) = (df ∧ ω) (~nσ, X1, . . . ,Xp)

= df(~nσ).ω(X1, . . . ,Xp) because nω = 0

= 〈∇f(σ) |~nσ〉.ω(X1, . . . ,Xp)

=

(
∂f

∂n
(σ)

)
ω(X1, . . . ,Xp) ,

which proves the lemma.

2.3 Normal Neumann realization

In this subsection, we specify the self-adjoint realization of ∆
(0)
f,h in which

we are interested. Like in [HeNi1], we want this self-adjoint realization
(denoted by ∆N

f,h) to coincide with the Neumann realization on 0-forms and
to preserve the complex structure:

(1 + ∆
N,(p+1)
f,h )−1d

(p)
f,h = d

(p)
f,h(1 + ∆

N,(p)
f,h )−1

and

(1 + ∆
N,(p−1)
f,h )−1d

(p−1),∗
f,h = d

(p−1),∗
f,h (1 + ∆

N,(p)
f,h )−1

on the form domain of ∆
N,(p)
f,h .

Having in mind the works [Sch] and [ChLi] about cohomology complexes
and boundary problems, we introduce the space:

ΛpH1
0,n = H1

0,n (Ω;ΛpT ∗Ω) =
{
ω ∈ H1 (Ω;ΛpT ∗Ω) ; nω = 0

}
. (2.3.1)
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In the case p = 0, it coincides with the space H1(Ω), while for p ≥ 1
the condition says only that the form vanishes on ∂Ω when applied to non
tangential p-vectors. Since the boundary ∂Ω is assumed to be regular, the
space

ΛpC∞
0,n = C∞

0,n(Ω;ΛpT ∗Ω) =
{
ω ∈ C∞

(
Ω,ΛpT ∗Ω

)
; nω = 0

}

is dense in ΛpH1
0,n. The next construction is a variant of known results in

the case f = 0 (see [Sch]). We will use the notations:

Df,h(ω, η) = 〈df,hω | df,hη〉Λp+1L2 + 〈d∗f,hω | d∗f,hη〉Λp−1L2

and

Df,h(ω) = Df,h(ω, ω) = ‖df,hω‖
2
Λp+1L2 +

∥∥d∗f,hω
∥∥2

Λp−1L2 .

Proposition 2.3.1.
The non negative quadratic form ω → Df,h(ω) is closed on ΛpH1

0,n. The as-

sociated (self-adjoint) Friedrichs extension is denoted by ∆
N,(p)
f,h . Its domain

is:
D(∆

N,(p)
f,h ) =

{
u ∈ ΛpH2; nω = 0 and ndf,hω = 0

}
,

and we have:

∀ω ∈ D(∆
N,(p)
f,h ), ∆

N,(p)
f,h ω = ∆

(p)
f,hω in Ω .

Proof.
By the same argument as in the proof of Proposition 2.4 of [HeNi1], the
space ΛpH1

0,n is isomorphic to the direct sum:

ΛpH1
0 ⊕ tΛpH1/2(∂Ω;ΛpT ∗Ω)

with continuous embedding. Hence, since ∂Ω is a regular boundaryless man-
ifold, its dual is the direct sum of ΛpH−1 and tΛpH−1/2(∂Ω;ΛpT ∗Ω):

(
ΛpH1

0,n

)′
= ΛpH−1 ⊕ tΛpH−1/2(∂Ω;ΛpT ∗Ω) .

We have to check that ω 7→ D
(p)
f,h(ω) +C ‖ω‖2

ΛpL2 is equivalent to the square

of the ΛpH1 norm on ΛpH1
0,n. By (2.1.6)-(2.1.9) this is equivalent to the

same result for f = 0 and h = 1. This last case is known as Gaffney’s
inequality which is a consequence of the Weitzenböck formula (see [Sch],
Theorem 2.1.7).
Hence the quadratic form ω → Df,h(ω) is closed on ΛpH1

0,n and the identity

∀η ∈ ΛpH1
0,n, D

(p)
f,h(ω, η) = 〈A(p)ω, η〉

defines an isomorphism A(p) : ΛpH1
0,n → (ΛpH1

0,n)′.

The self-adjoint Friedrichs extension ∆
N,(p)
f,h is then defined as the operator:

D(∆
N,(p)
f,h ) =

{
ω ∈ ΛpH1

0,n, A
(p)ω ∈ ΛpL2

}
, ∆

N,(p)
f,h ω = A(p)ω .

12



It remains to identify this domain and the explicit action of A(p).

If ω belongs to D(∆
N,(p)
f,h ), by the first Green formula (2.2.7) we get:

∀η ∈ ΛpC∞
0 , 〈ω |A(p)η〉 = D

(p)
f,h(ω, η) = 〈ω |∆

(p)
f,hη〉 .

The inequality:

|D
(p)
f,h(ω, η)| ≤ C ‖ω‖ΛpH1 ‖η‖ΛpH1 ,

together with the density of ΛpC∞
0 in ΛpH1

0 implies that the current ∆
(p)
f,hω ∈

D′(Ω;ΛpT ∗Ω) is indeed the ΛpH−1 component of A(p)ω.
Assume that ω belongs to ΛpH1

0,n ∩ ΛpH2; then the Green formula (2.2.7)
gives:

h

∫

∂Ω
(tη) ∧ (⋆ndf,hω) = D

(p)
f,h(ω, η) − 〈∆

(p)
f,hω | η〉ΛpL2 , ∀η ∈ ΛpH1

0,n .

By density, one can define, for any ω in ΛpH1
0,n such that ∆

(p)
f,hω ∈ ΛpL2, a

trace of ndf,hω by the previous identity, observing that the r.h.s. defines an
antilinear continuous form with respect to η. With this generalized definition

of nd
(p)
f,hω we claim that:

D(∆
N,(p)
f,h ) =

{
ω ∈ ΛpH1

0,n, ∆
(p)
f,hω ∈ ΛpL2 and nd

(p)
f,hω = 0

}
.

The last point consists in observing that the boundary value problem

∆
(p)
f,hu = g, nu = g1, nd

(p)
f,hu = g2 (2.3.2)

satisfies the Lopatinski-Shapiro conditions. At the principal symbol level
(h > 0 fixed), these conditions are indeed the same as for

(dd∗ + d∗d)(p)u = g, nu = g1, nd(p)u = g2.

This is checked in [Sch]. Hence any solution to (2.3.2) with g ∈ ΛpL2,
g1 = g2 = 0 belongs to ΛpH2.

Proposition 2.3.2.

For any p ∈ {0, . . . , n}, the self-adjoint unbounded operator ∆
N,(p)
f,h introduced

in Proposition 2.3.1 has a compact resolvent.
Moreover, if z ∈ C \ R+, the commutation relations

(z − ∆
N,(p+1)
f,h )−1d

(p)
f,hv = d

(p)
f,h(z − ∆

N,(p)
f,h )−1v ,

and

(z − ∆
N,(p−1)
f,h )−1d

(p−1),∗
f,h v = d

(p−1),∗
f,h (z − ∆

N,(p)
f,h )−1v ,

hold for any v ∈ ΛpH1
0,n .

13



Proof.
The domain of the operator is contained in ΛpH2, which is compactly em-
bedded in ΛpL2, by the Sobolev injections. This yields the first statement.
Since ΛpC∞

0,n is dense in ΛpH1
0,n, it is sufficient to consider the case when

v ∈ ΛpC∞
0,n. For such a v and for z ∈ C \ R+, we set:

u = (z − ∆
N,(p)
f,h )−1v.

Due to the ellipticity of the associated boundary problem (the Lopatinski-
Shapiro conditions are verified) u belongs to C∞(Ω;ΛpT ∗Ω). The commu-
tation relations (2.1.3) and (2.1.4) can be applied since here f ∈ C∞(Ω; R):

(z − ∆
(p+1)
f,h )d

(p)
f,hu = d

(p)
f,h(z − ∆

(p)
f,h)u = d

(p)
f,hv (2.3.3)

and

(z − ∆
(p−1)
f,h )d

(p−1),∗
f,h u = d

(p−1),∗
f,h (z − ∆

(p)
f,h)u = d

(p−1),∗
f,h v .(2.3.4)

Since u ∈ D(∆
N,(p)
f,h ) , we have nu = 0 and nd

(p)
f,hu = 0.

Then, ndf,hu = 0 and ndf,hdf,hu = 0 imply df,hu ∈ D(∆
N,(p+1)
f,h ). So by

(2.3.3) we have:

d
(p)
f,h(z − ∆

N,(p)
f,h )−1v = df,hu = (z − ∆

N,(p+1)
f,h )−1d

(p)
f,hv .

In order to show the second commutation relation, we first use the relation
(2.2.5) which implies:

nd∗f,hu = hd∗nu+ n(i∇fu) = 0.

For the normal trace of the differential, we write (∆f,hu = zu− v):

ndf,h(d
∗
f,hu) = znu− nv − nd∗f,hdf,hu = −d∗f,hndf,hu = 0 .

Hence d
(p−1),∗
f,h u belongs to D(∆

N,(p−1)
f,h ) and the identity (2.3.4) yields the

last commutation relation to show.

Definition 2.3.3. For any Borel subset E ⊂ R and p ∈ {0, . . . , n}, we will

denote by 1E(∆
N,(p)
f,h ) the spectral projection of ∆

N,(p)
f,h on E.

From Proposition 2.3.2 and Stone’s Formula we deduce:

Corollary 2.3.4.
For any Borel subset E ⊂ R, the identities

1E(∆
N,(p+1)
f,h )d

(p)
f,hv = d

(p)
f,h1E(∆

N,(p)
f,h )v

and

1E(∆
N,(p−1)
f,h )d

(p−1),∗
f,h v = d

(p−1),∗
f,h 1E(∆

N,(p)
f,h )v
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hold for all v ∈ ΛpH1
0,n.

In the particular case when v is an eigenvector of ∆
N,(p)
f,h corresponding to

the eigenvalue λ, then d
(p)
f,hv (resp. d

(p−1),∗
f,h v) belongs to the spectral subspace

Ran 1{λ}(∆
N,(p+1)
f,h ) (resp. Ran 1{λ}(∆

N,(p−1)
f,h )).

Proposition 2.3.2 and Corollary 2.3.4 were stated for p-forms v ∈ ΛpH1
0,n(Ω),

belonging to the form domain of ∆
N,(p)
f,h . It is convenient to work in this

framework because the multiplication by any cut-off function preserves the
form domain ΛH1

0,n(Ω):

(
ω ∈ ΛH1

0,n(Ω), χ ∈ C∞(Ω)
)
⇒ (χω ∈ ΛH1

0,n(Ω)) ,

while this property is no more true for D(∆N
f,h). In this spirit, we will often

refer to the next easy consequence of the spectral theorem.

Lemma 2.3.5.
Let A be a non negative self-adjoint operator on a Hilbert space H with
associated quadratic form qA(x) = (x |Ax) and with form domain Q(A).
Then for any a, b ∈ (0,+∞), the implication

(qA(u) ≤ a) ⇒
(∥∥1[b,+∞)(A)u

∥∥2
≤
a

b

)

holds for any u ∈ Q(A).

3 First localization of the spectrum

3.1 Introduction and result

Let us first recall that we are working with the fixed Riemannian metric
g0 on Ω. Like in the third section of [HeNi1] for their tangential Dirichlet
realization of the Witten Laplacian, we check here that the number of eigen-

values of ∆
N,(p)
f,h smaller than h3/2 equals a Morse index which involves in

its definition the boundary conditions. To this end, we will adapt [HeNi1]
which uses techniques yet presented in [Sim2], [CFKS], [ChLi], [Bis], [Bur],
and in [Hel1].

In order to make the connection between the normal Neumann realization
of the Witten Laplacian ∆N

f,h and the Morse theory, we assume additional
properties for the function f up to the boundary ∂Ω.

Assumption 3.1.1.
The real-valued function f ∈ C∞(Ω) is a Morse function on Ω with no critical
points in ∂Ω . In addition its restriction f |∂Ω is a Morse function on ∂Ω.
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Remark 3.1.2.
With this assumption, the function f has a finite number of critical points
with index p in Ω. Note furthermore that the assumption ensures that there
is no critical point on ∂Ω, which implies that the outgoing normal derivative
∂f
∂n(U) is not 0 when U is a critical point of f |∂Ω.

Definition 3.1.3.
For ℓ ∈ {0, . . . , n}, the integer m∂Ω

ℓ,− is the number of critical points U of f |∂Ω

with index ℓ such that ∂f
∂n(U) < 0 (with the additional convention m∂Ω

n,− = 0).
For p ∈ {0, . . . , n}, let

mΩ
p = mΩ

p +m∂Ω
p,− .

Remark 3.1.4.
In [HeNi1], the authors worked with the tangential Dirichlet conditions
(tω = 0 and td∗f,hω = 0) and the corresponding definition was similar with

m∂Ω
ℓ,− and ∂f

∂n(U) < 0 replaced respectively by m∂Ω
ℓ−1,− and ∂f

∂n(U) > 0.

The aim of this section is to prove the following theorem:

Theorem 3.1.5.
Under Assumption 3.1.1, there exists h0 > 0, such that the normal Neumann
realization of the Witten Laplacian ∆N

f,h introduced in Subsection 2.3 has,
for h ∈ (0, h0] , the following property:

For any p ∈ {0, . . . , n}, the spectral subspace F (p) = Ran1[0,h3/2)(∆
N,(p)
f,h ) has

rank: dim F (p) = mΩ
p .

To prove this theorem, we will adapt for the normal Neumann realization of
the Witten Laplacian the proof given in [HeNi1] for the tangential Dirichlet
realization. Many points of this demonstration do not require any modifica-
tion, so we will only recall these results without any demonstration.
The theorem will be proved in the Subsection 3.3.

3.2 A few preliminary lemmas

In this subsection, we recall some results of [HeNi1] that we need to prove
Theorem 3.1.5.

3.2.1 Variationnal results for the Witten Laplacian on R
k

Let g be a C∞ metric on R
k which equals the Euclidean metric outside a

compact set K.

Assumption 3.2.1 (g).
The function f is a Morse C∞ real-valued function and there exist C1 > 0
and a compact K such that, for the metric g:

∀x ∈ R
k \K, |∇f(x)| ≥ C−1

1 and |Hess f(x)| ≤ C1 |∇f(x)|2 . (3.2.1)

16



Note that the above assumption ensures that f has a finite number of criti-
cal points and mp will denote the number of critical points with index p .
Let us recall the Propositions 3.6 and 3.7 of [HeNi1]. They gather conse-
quences of Simader’s Theorem in [Sima] about the essential self-adjointness
of non negative Schrödinger operators, of Persson’s Lemma in [Per] about
the localization of the essential spectrum and of the semiclassical analysis a
la Witten in [Wit] leading to Morse inequalities. We refer the reader also to
[CFKS][Hen] [Hel3] or [Zha] for the Witten approach to Morse inequalities in
the boundaryless case and to [Mil1] and [Lau] for a topological presentation
of Morse theory.

Proposition 3.2.2.
Under Assumption 3.2.1, there exist h0 > 0, c0 > 0 and c1 > 0 such that
the following properties are satisfied for any h ∈ (0, h0]:
i) The Witten Laplacian ∆f,h as an unbounded operator on L2(Rk; ΛT ∗

R
k)

is essentially self-adjoint on C∞
0 (Rk; ΛT ∗

R
k) .

ii) For any Borel subset E in R, the identities

1E(∆
(p+1)
f,h )d

(p)
f,hu = d

(p)
f,h1E(∆

(p)
f,h)u

and

1E(∆
(p−1)
f,h )d

(p−1),∗
f,h u = d

(p−1),∗
f,h 1E(∆

(p)
f,h)u

(3.2.2)

hold for any u belonging to the form domain of ∆
(p)
f,h .

In particular, if v is an eigenvector of ∆
(p)
f,h associated with the eigenvalue λ,

then d
(p)
f,hv (resp. d

(p−1),∗
f,h v) belongs to the spectral subspace Ran 1{λ}(∆

(p+1)
f,h )

(resp. Ran 1{λ}(∆
(p−1)
f,h )).

iii) The essential spectrum σess(∆
(p)
f,h) is contained in [c1,+∞).

iv) The range of 1[0,c0h)(∆
(p)
f,h) has dimension mp , for all h ∈ (0, h0] .

Proposition 3.2.3.
If the Morse function f satisfies Assumption 3.2.1 and admits a unique crit-
ical point at x = 0 with index p0 , so mp = δp,p0, then there exist h0 > 0 and
c0 > 0 , such that the following properties hold for h ∈ (0, h0]:

i) For p 6= p0, ∆
(p)
f,h ≥ c0hId .

ii) If ψhp0 is a normalized eigenvector of the one dimensional spectral sub-

space Ran 1[0,c0h)(∆
(p0)
f,h ) , it satisfies

df,hψ
h
p0 = 0 , d

(p0−1),∗
f,h ψhp0 = 0 and ∆

(p0)
f,h ψ

h
p0 = 0 ,

so that Ran 1[0,c0h)(∆
(p0)
f,h ) = Ker ∆

(p0)
f,h . Moreover

σ(∆
(p0)
f,h ) \ {0} ⊂ [c0h,∞) .
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iii) If χ ∈ C∞
0 (Rk) satisfies χ = 1 in a neighborhood of 0, then there exists

Cχ ≥ 1 , such that, for all h ∈ (0, h0/Cχ) , the inequality,

(1 − χ)∆
(p)
f,h(1 − χ) ≥ C−1

χ [1 − χ]2 ,

holds in the sense of quadratic form on ΛpH1(Rk).

3.2.2 The model half-space problem

We work here on R
n
− = R

n−1 × (−∞, 0) with a Riemannian metric g̃0.
Assume furthermore that there are coordinates x = (x′, xn) such that g̃0 =∑n

i,j=1 g̃
0
ij(x)dxidxj satisfies

g̃0
i,n = g̃0

n,i = 0 for i < n (3.2.3)

and

∀x ∈ Rn
− \K1, ∂xg̃

0
ij(x) = 0 , (3.2.4)

for some compact set K1 ⊂ Rn
−.

In this paragraph, the coordinates (x′, xn) are fixed while different metrics
on Rn

− are considered. The notation G(·) will be used for the matrix valued
map x 7→ G(x) = tG(x) = (gij(x))i,j ∈ GLn(R), which is assumed to be a
C∞ function. According to the standard notation, the coefficients of G(x)−1

are written gij(x).

Consider also a function f which has a specific form in the same coordi-
nates (x′, xn).

Assumption 3.2.4.
The function f ∈ C∞(Rn

−) satisfies:

i) The estimates |∇f(x)| ≥ C−1 and |∂αx f(x)| ≤ Cα hold, for all x ∈
Rn
− and all α ∈ N

n, α 6= 0.

ii) The function f is the sum f(x′, xn) = −1
2f+(xn) + 1

2f−(x′) . Moreover,
there exists C1 > 0 such that

∀xn ∈ (−∞, 0) , C−1
1 ≤ |∂xnf+(xn)| ≤ C1 ,

and f− is a Morse function on R
n−1 which satisfies Assumption 3.2.1

for the metric
∑n−1

i,j=1 g̃
0
ij(x

′, 0)dxidxj and admits a unique critical point
at x′ = 0 with index p0 .

The boundedness of |∂αx f |, 1 ≤ |α| ≤ 2, avoids any subtle questions about
the domains.
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Proposition 3.2.5.
Under Assumption 3.2.4-i), the unbounded operator ∆N

f,h on L2(Rn
−; ΛT ∗

R
n
−) ,

with domain

D(∆N
f,h) =

{
ω ∈ ΛH2(Rn

−) , nω = 0 , ndf,hω = 0
}
,

is self-adjoint.
If E is any Borel subset of R, the relations

1E(∆
N,(p+1)
f,h ) d

(p)
f,hu = d

(p)
f,h 1E(∆

N,(p)
f,h )u ,

and

1E(∆
N,(p−1)
f,h ) d

(p−1),∗
f,h u = d

(p−1),∗
f,h 1E(∆

N,(p)
f,h )u ,

(3.2.5)

hold for any u ∈ ΛpH1
0,n(Rn

−) .

Proof.
The uniform estimate on ∇f allows the same proof as for Proposition 2.3.2
and Corollary 2.3.4 (here C∞

0,n denotes the space of C∞ compactly supported

functions in Rn
− with a vanishing normal component on {xn = 0}).

We are looking for a result similar to Proposition 3.2.2 and Proposition 3.2.3
for the case with normal boundary condition on R

n
− (this result will be

stated in Subsection 3.2.3). One difficulty here comes from the metric which,
although diagonal in the coordinates (x′, xn), is not constant. The general
case can be reduced to a simpler situation where gij(x) = gij(x

′) with gnn =
1 after several steps.
We need some notations.

Definition 3.2.6.
For a metric g which satisfies (3.2.4), the corresponding Hs-norm on the
space ΛpHs(Rn

−) is denoted by ‖ ‖ΛpHs,g and the notation ‖ ‖ΛpHs is kept

for the Euclidean metric ge =
∑n

i=1 dx
2
i .

Similarly, the quadratic form associated with ∆
N,(p)
f,h is written

Dg,f,h(ω) =
∥∥d∗g,f,hω

∥∥2

Λp−1L2,g
+ ‖df,hω‖

2
Λp+1L2,g , ∀ω ∈ ΛpH1

0,n(Rn
−) ,

where the codifferential d∗g,f,h also depends on g .

Remark 3.2.7. The considered metrics satisfying (3.2.4), the different
(L2, g)-norms are equivalent.

The required accuracy while comparing the quadratic forms Dg,f,h needs
some care.
We will work further with partitions of unity and the next proposition,
similar to the standard IMS localization formula (see [CFKS]), but in the
case with boundary, will be useful.
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Proposition 3.2.8. (IMS Localization Formula)
For W = Ω or W = R

n
−, consider {χk}1,...,N a partition of unity of W (i.e.

satisfying
∑N

k=1 χ
2
k = 1 on W ).

Let g and f be respectively a Riemannian metric and a C∞ function (satis-
fying Assumption 3.2.4-i) in the case R

n
−) on W .

The next IMS localization formula is then valid:

∀ω ∈ ΛH1
0,n , Dg,f,h(ω) =

N∑

k=1

Dg,f,h(χkω) − h2 ‖|∇χk|ω‖
2
ΛL2,g . (3.2.6)

Proof. For clarity, we omit the dependence on g in the proof.
Recall, from

∑N
k=1 χ

2
k = 1, than for any η ∈ ΛH1:

N∑

k=1

χkdχk ∧ η = 0 , and by duality (2.1.5),

N∑

k=1

χki∇χkη = 0 . (3.2.7)

Now, for any ω ∈ ΛH1
0,n and k ∈ {1, . . . , N},

Df,h(χkω) = ‖df,h(χkω)‖ +
∥∥d∗f,h(χkω)

∥∥ .

From (2.1.6) and (2.1.7),

df,h(χkω) = hdχk ∧ ω + χkdf,hω and d∗f,h(χkω) = hi∇χkω + χkd
∗
f,hω .

Hence, from
∑N

k=1 χ
2
k = 1, (2.1.6), and (2.1.7), for any ω ∈ ΛH1

0,n,

N∑

k=1

Df,h(χkω) = Df,h(ω) +
N∑

k=1

h2 (〈dχk ∧ ω | dχk ∧ ω〉 + 〈i∇χkω | i∇χkω〉)

+

N∑

k=1

2Re (〈hdχk ∧ ω |hχkdω + χkdf ∧ ω〉 + 〈hi∇χkω |hχkd
∗ω + χki∇fω〉) .

Using (3.2.7),

N∑

k=1

Df,h(χkω) = Df,h(ω) + h2
N∑

k=1

(〈dχk ∧ ω | dχk ∧ ω〉 + 〈i∇χkω | i∇χkω〉) .

At least, the identity

iX(α ∧ β) = (iXα) ∧ β + (−1)deg αα ∧ (iXβ)

implies

〈dχk ∧ ω | dχk ∧ ω〉+〈i∇χkω | i∇χkω〉 = 〈i∇χk(dχk ∧ ω) + dχk ∧ (i∇χkω) |ω〉

= 〈(i∇χkdχk)ω |ω〉 =
〈
|∇χk|

2 ω |ω
〉
,

which proves the proposition.
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Let us give now two lemmas whose proofs are the same than the proofs of
Lemmas 3.11 and 3.12 of [HeNi1].
The first lemma provides a reduction to the case ∂xnG = 0 and the second
allows us to consider again a simpler metric with gnn = 1.

Lemma 3.2.9.
Let g1 and g2 be two metrics which satisfy (3.2.4) and coincide on {xn = 0}.
Let f be a function satisfying Assumption 3.2.4. There exist constants C12 ≥
1 and h0 > 0 such that the inequality,

Dg2,f,h(ω) ≥ (1 − C12h
2/5)Dg1,f,h(ω) − C12h

7/5 ‖ω‖2
ΛpL2,g1

, (3.2.8)

holds for ω ∈ ΛpH1
0,n(Rn

−) , with p ∈ {0, . . . , n} and h ∈ (0, h0), as soon as

suppω ⊂
{
xn ≥ −C0h

2/5
}

.

Lemma 3.2.10.
Let g1 and g2 be two conformal metrics (which satisfy (3.2.4)) in the sense:

g2 = eϕ(x)g1 .

Let f be a function satisfying Assumption 3.2.4. Then there exist constants
C12 ≥ 1 and h0 > 0 , such that the inequality,

∀ω ∈ ΛpH1
0,n(Rn

−), Dg2,f,h(ω) ≥ C−1
12 Dg1,f,h(ω) − C12h

2 ‖ω‖2
ΛpL2,g1

,
(3.2.9)

holds, for all p ∈ {0, . . . , n} and all h ∈ (0, h0) .

3.2.3 Small eigenvalues for the model half-space problem

Before giving the proof of Theorem 3.1.5, we state the main result for the
model half-space problem which is similar to Proposition 3.2.2 and Propo-
sition 3.2.3.

Proposition 3.2.11.
Assume that the metric g̃0 satisfies (3.2.3) and (3.2.4) and let f be a Morse
function satisfying Assumption 3.2.4 for some p0 ∈ {0, . . . , n}. Then there
exist constants h0 > 0, c0 > 0 and c1 > 0, such that the self-adjoint operator
∆N
f,h satisfies the following properties for h ∈ (0, h0]:

i) For p ∈ {0, . . . , n} , the essential spectrum σess(∆
N,(p)
f,h ) is contained in

[c1,+∞).

ii) For p ∈ {0, . . . , n} , the range of 1[0,c0h)(∆
N,(p)
f,h ) has dimension

{
δp,p0 if ∂xnf(0) = −1

2∂xnf+(0) < 0 ,
0 if ∂xnf(0) = −1

2∂xnf+(0) > 0 .

iii) In the first case,

Ran 1[0,c0h)(∆
N,(p0)
f,h ) = Ker ∆

N,(p0)
f,h = Cϕh ,
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where
‖ϕh −

(
ef+(xn)/2h

)
ψhp0‖ΛpL2 = O(h1/10) ,

and ψhp0 belongs to the kernel of a (n − 1)-dimensional Witten Laplacian

∆
(p0)
g′,f−/2,h

in a metric g′, which is conformal to g̃′0 =
∑n−1

i,j=1 g̃
0
ij(x

′, 0)dxidxj

on Rn−1.
iv) For any χ ∈ C∞

0 (Rn
−) such that χ = 1 in a neighborhood of 0, there exists

Cχ > 0 such that the lower bounds

(1 − χ)∆
N,(p)
f,h (1 − χ) ≥ C−1

χ [1 − χ]2 , 0 ≤ p ≤ n ,

hold, for any h ∈ (0, h0/Cχ), in the sense of quadratic forms on ΛpH1
0,n(Rn

−) .

Remark 3.2.12.
This proposition is an adaptation of Proposition 3.13 of [HeNi1] in the
case with normal boundary conditions: we have mainly replaced f+(xn) by
−f+(xn) and p0 + 1 by p0 and the proof is similar.

Proof.
The clue of this result is an accurate lower bound for the quadratic form
Dg̃0,f,h(η) , when evaluated for η such that supp η ⊂

{
xn ≥ −C0h

2/5
}

. By
Lemmas 3.2.9 and 3.2.10, one can find a metric g, which satisfies (3.2.3) and
(3.2.4), with G(x) = G(x′) independent of the xn-coordinate, gnn = 1 and a
constant C > 1 such that

Dg̃0,f,h(η) ≥ C−1Dg,f,h(η) − Ch7/5 ‖η‖2
ΛL2,g . (3.2.10)

Take two cut-off functions χ̃i ∈ C∞(R) , such that χ̃1 ∈ C∞
0 (R) , χ̃1 = 1 in a

neighborhood of 0 such that χ̃2
1 + χ̃2

2 = 1 .
By the IMS localization formula (3.2.6), for any ω ∈ ΛH1

0,n(Rn
−) ,

Dg̃0,f,h(ω) ≥ Dg̃0,f,h(χ̃1(h
−2/5xn)ω) + Dg̃0,f,h(χ̃2(h

−2/5xn)ω)

− Ch6/5 ‖ω‖2
ΛL2,g̃0

.

By (2.2.9), since |∇f(x)|2 ≥ C−1 on R
n
− , the second term of the r.h.s. is

bounded from below by a constant times
∥∥χ̃2(h

−2/5xn))ω
∥∥2

ΛL2,g̃0
and we get:

Dg̃0,f,h(ω) ≥ Dg̃0,f,h(χ̃1(h
−2/5xn)ω) − Ch6/5

∥∥∥χ̃1(h
−2/5xn)ω

∥∥∥
2

ΛL2,g̃0

+
C−1

2

∥∥∥χ̃2(h
−2/5xn)ω

∥∥∥
2

ΛL2,g̃0
.
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Finally after changing the constant C ≥ 1, the inequality (3.2.10) yields

Dg̃0,f,h(ω) ≥ C−1Dg,f,h(χ̃1(h
−2/5xn)ω) −Ch6/5

∥∥∥χ̃1(h
−2/5xn)ω

∥∥∥
2

+ C−1
∥∥∥χ̃2(h

−2/5xn)ω
∥∥∥

2
, (3.2.11)

where the L2-norms in the r.h.s. can be computed with the metric g or g̃0
while possibly adapting the constant C, owing to Remark 3.2.7. Here and
in the sequel, we omit the subscript (ΛL2, g) for L2-norms.
Now the problem is reduced to the analysis of Dg,f,h with the metric g. The
product structure of the metric g allows an explicit analysis of the spectrum.

(a) The case n = 1.

We have x = xn ∈ R−, f(x) = −1
2f+(xn) . Here the metric is g = dx2

n.
We keep the reference to the index n for the later application.
The spaces Λ0H1

0,n(R−) and Λ1H1
0,n(R−) are respectively H1(R−) and{

β(xn) dxn , β ∈ H1
0 (R−)

}
.

By identity (2.2.9), for any 1-form β dxn with β ∈ H1
0 (R−):

Dg,−f+/2,h(β dxn) = h2 ‖∂xnβ‖
2 +

1

4
‖∂xnf+β‖

2 −
h

2
〈∂2
xnf+(xn)β | β〉 .

(3.2.12)
From (3.2.12), we get:

Dg,−f+/2,h(β dxn) ≥ (C−2 − hC) ‖β‖2 ,

and deduce that there exist c1(∂xnf+, ∂
2
xnf+) = c1 > 0 and h0 > 0 such

that, for all h ∈ (0, h0] ,

∆
N,(1)
g,−f+/2,h

≥ c1Id . (3.2.13)

Again by identity (2.2.9), we have for any 0-form α ∈ H1(R−):

Dg,−f+/2,h(α) = h2 ‖∂xnα‖
2 +

1

4
‖∂xnf+ α‖

2 +
h

2
〈∂2
xnf+(xn)α | α〉

−
h

2
∂xnf+(0) |α(0)|2 , (3.2.14)

and there are two subcases:

(a1) Subcase ∂xnf+(0) < 0:

In this case, identity (3.2.14) implies:

∀α ∈ Λ0H1
0,n, Dg,−f+/2,h(α) ≥ (C−2 − hC) ‖α‖2 ,
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which provides the existence of c1(∂xnf+, ∂
2
xnf+) = c1 > 0 and h0 > 0 such

that:
∆
N,(0)
−f+/2,h

≥ c1Id , ∀h ∈ (0, h0] . (3.2.15)

(a2) Subcase ∂xnf+(0) > 0:

If ∆
N,(0)
−f+/2,h

(α) = λhα , with λh < c1 , we have by Proposition 3.2.5(3.2.5):

∆
N,(1)
−f+/2,h

(d−f+/2,hα) = λhd−f+/2,hα ,

which implies, by (2.1.6):

d−f+/2,hα = h∂xnα−
1

2
(∂xnf+)α = 0 .

Hence:
α(xn) = C ef+(xn)/2h .

The 0-form ef+(xn)/2h belongs to Ker (∆
N,(0)
−f+/2,h

) , so λh = 0 .

(b) The case n > 1.

First note that any ω ∈ ΛpH1
0,n(Rn

−) is a sum

ω =
∑

#I=p−1

αI(x)dx
′I ∧ dxn +

∑

#J=p

βJ(x)dx
′J =: α ∧ dxn + β ,

with αI , βJ ∈ H1(Rn
−) , αI(x

′, 0) = 0 , while dx′I = dx′i1 ∧ · · · ∧ dx′i#I ,

I = {i1 < . . . < i#I} ⊂ {1, . . . , n− 1} and J = {j1 < . . . < j#J} ⊂
{1, . . . , n − 1} .
If in addition ω ∈ ΛpH2(Rn

−), the condition ndω = 0 reads, with the metric
g, ∂xnβJ(x

′, 0) = 0.
Secondly, we remind the reader that with the product metric g the Rieman-
nian connection, the Riemann tensor and therefore the Hodge Laplacian,
owing to the Weitzenböck formula, split like direct sums:

∇XY = ∇n
XnYn + ∇′

X′Y ′ ,

Riem(x, y, z, t) = Riemn(xn, yn, zn, tn) +Riem′(x′, y′, z′, t′) ,

R(4) =
∑

ijkl

Riemijkl(dxi∧) ◦ i∇xj ◦ (dxk∧) ◦ i∇xℓ = Rn(4) +R′
(4) ,

(d+ d∗)2 = (dxn + d∗xn)
2 + (dx′ + d∗x′)

2 .

We refer the reader to [GHL] (p. 110 and p. 70) for details and more general
statements.
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Thirdly, the decomposition f(x) = −1
2f+(xn) + 1

2f−(x′) with the product
metric g gives

|∇f |2 = |∇xnf |
2 + |∇x′f |

2

L∇f + L∗
∇f = −

1

2

(
L∇f+ + L∗

∇f+

)
+

1

2

(
L∇f− + L∗

∇f−

)
.

For ω = α ∧ dxn + β ∈ D(∆N
f,h) (with the product metric g), we have

Dg,f,h(ω) = 〈ω |∆f,hω〉 =
〈
ω |∆n

−f+/2,h
ω
〉

+
〈
ω |∆′

f−/2,h
ω
〉
.

Since the two operators ∆n
−f+/2,h

(acting only in the variable xn) and ∆′
f−/2,h

(acting only in the variable x′) preserve the partial degree in dxn, we get

Dg,f,h(ω) =
〈
α ∧ dxn |∆

n
−f+/2,h

(α ∧ dxn)
〉

+
〈
β |∆n

−f+/2,h
β
〉

+
〈
α ∧ dxn |∆

′
f−/2,h

(α ∧ dxn)
〉

+
〈
β |∆′

f−/2,h
β
〉

(3.2.16)

Hence the variables (x′, xn) can be separated. The equivalence between the

norms
∥∥∥
∑

J γJ(x
′) dx′J

∥∥∥ and
∑

J ‖γJ(x
′)‖ on ΛpT ∗

R
n
−, where

J = {j1 < . . . < j#J} ⊂ {1, . . . , n − 1}, leads to 2:

Dg,f,h(ω) ≥

1

c

∫

Rn−1

[ ∑

#I=p−1

Dn
−f+/2,h

(αI(x
′, .) dxn) +

∑

#J=p

Dn
−f+/2,h

(βJ (x′, .))
]
dλ(x′)

+

∫ 0

−∞
D′
f−/2,h

(α(., xn)) + D′
f−/2,h

(β(., xn)) dxn , (3.2.17)

where we used the notations D′
f−/2,h

for the quadratic form of the Witten

Laplacian on R
n−1 and Dn

−f+/2,h
for the quadratic form of the 1-dimensional

Witten Laplacian on R− with boundary conditions. The measure dλ(x′) sim-
ply equals (detG(x′))1/2 dx′. The absence of α − β cross product term is
due to (3.2.16).

Again there are two subcases.

(b1) Subcase ∂xnf+(0) < 0:

2 In [HeNi1], at this level of the proof, one should read“Dg̃,f,h(ω) ≥ 1
c

R

Rn−1 · · · ” instead
of “Dg̃,f,h(ω) equals

R

Rn−1 · · · ” accordingly to 2.
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The analysis of the one dimensional problem implies the existence of c1 > 0
independent of x′ such that:

Dn
−f+/2,h

(αI(x
′, .) dxn) ≥ c1

∥∥αI(x′, .)
∥∥2

and

Dn
−f+/2,h

(βJ (x′, .)) ≥ c1
∥∥βJ (x′, .)

∥∥2
.

Hence there exists c2 > 0 such that:

∀ω ∈ ΛpH1
0,n , Dg,f,h(ω) ≥ c2 ‖ω‖

2

and
∆
N,(p)
f,h ≥ c2Id , ∀p ∈ {0, . . . , n} .

(b2) Subcase ∂xnf+(0) > 0:

Then there exists c1 > 0 such that

Dg,f,h(ω) ≥
1

c

∫

Rn−1

∑

#J=p

Dn
−f+/2,h

(βJ (x′, .)) dλ(x′)

+

∫ 0

−∞
D′
f−/2,h

(β(., xn)) + c1 ‖α‖
2 . (3.2.18)

If ω is a p-form with p 6= p0 (deg β = degω), the lower bound

D′
f−/2,h

(β) ≥ C−1
1 h ‖β‖2 ,

which was given in Proposition 3.2.3, yields:

Dg,f,h(ω) ≥ C−1h ‖ω‖2 ,

while the equality Dg,f,h(ω) = 0 implies that p = p0 and that
ω = c

(
ef+(xn)/2h

)
ψhp0 , where ψp0 belongs to the kernel of the (n − 1)-

dimensional Witten Laplacian associated with the metric

g′ =

n−1∑

i,j=1

gi,j(x
′, 0)dxidxi .

We have now all the ingredients to check every statement for the metric g̃0.

We focus on the subcase ∂xnf+(0) > 0, which covers all possibilities.

Statements i) and iv)
Statement i) is a consequence of iv) together with Persson’s Lemma in [Per].
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It is sufficient to check that, for all R > 0, there exists cR > 0, such that,
for all ω ∈ ΛpH1

0,n(Rn
−) supported in {min(|x′|, |xn|) > R}, one has

Dg̃0,f,h(ω) ≥ cR ‖ω‖2 .

The inequalities (3.2.11) and (3.2.18), together with the estimate

D′
f−/2,h

(β(·, xn)) ≥ c′R ‖β(·, xn)‖
2 if suppω ⊂ {|x′| > R} ,

provided by Proposition 3.2.3-iii), yield the result.

Statements ii) and iii)
If p 6= p0 the inequalities (3.2.11), (3.2.18) and the inequality

D′
f−/2,h

(β(., xn)) ≥ C−1h ‖β(., xn)‖
2 ,

imply
Dg̃0,f,h(ω) ≥ c0h ‖ω‖

2 ,

and
∆
N,(p)
f,h ≥ c0h Id . (3.2.19)

If p = p0, by Proposition 3.2.5, the only possibility for λh ∈ [0, c0h) to be

an eigenvalue of ∆
N,(p0)
f,h is λh = 0 .

Assume indeed ∆
N,(p0)
f,h uh = λhuh with λh ∈ [0, c0h) and ‖uh‖ = 1.

By Proposition 3.2.5(3.2.5) and (3.2.19), d
(p0)
f,h uh = d

(p0−1),∗
f,h uh = 0. Thus:

λh =
〈
∆
N,(p0)
f,h uh |uh

〉
= Dg̃0,f,h(uh) = 0 .

When the metric is g, the corresponding spectral subspace is one dimensional
and equals C

(
ef+(xn)/2h

)
ψhp0 .

For the metric g̃0, the equation ∆
N,(p0)
g̃0,f,h

ω = 0 with ‖ω‖ = 1 (which implies
Dg̃0,f,h(ω) = 0 ) and the inequality (3.2.11) lead to:

C2h6/5
∥∥∥χ̃1(h

−2/5xn)ω
∥∥∥

2
≥ Dg,f,h(χ̃1(h

−2/5xn)ω) +
∥∥∥χ̃2(h

−2/5xn)ω
∥∥∥

2
.

Without the last term, Lemma 2.3.5 implies:

dist L2(χ̃1(h
−2/5xn)ω,C

(
ef+(xn)/2h

)
ψhp0) ≤ Ch1/10 .

The upper bound of the last term,

∥∥∥χ̃2(h
−2/5xn)ω

∥∥∥
2
≤ C2h6/5 ,

implies:

dist L2(ω,C
(
ef+(xn)/2h

)
ψhp0) = O(h1/10) .
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It remains to check that Ker ∆
N,(p0)
f,h is not reduced to {0} . The statements

of Lemma 3.2.9 and Lemma 3.2.10 are symmetric with respect to the choice
of the metric. Hence the reverse inequality of (3.2.11) (with exchange of g
and g̃0),

Dg,f,h(ω) ≥ C−1Dg̃0,f,h(χ̃1(h
−2/5xn)ω) −Ch6/5

∥∥∥χ̃1(h
−2/5xn)ω

∥∥∥
2

+ C−1
∥∥∥χ̃2(h

−2/5xn)ω
∥∥∥

2
, (3.2.20)

also holds for any ω ∈ ΛH1
0,n(Rn

−). We apply it with ω =
(
ef+(xn)/2h

)
ψhp0

and this leads to:

Dg̃0,f,h(χ̃1(h
−2/5xn)ω

h) ≤ Ch6/5
∥∥∥χ̃1(h

−2/5xn)ω
∥∥∥

2
.

The Min-Max principle then says that ∆
N,(p0)
f,h admits an eigenvalue smaller

than Ch6/5 . It has to be 0 due to the above argument.

3.3 Proof of Theorem 3.1.5

We end here the proof of Theorem 3.1.5 by introducing, after a partition of
unity, convenient coordinates which allow the comparison with the model
half-space problem.
That proof is almost the same as the proof of the corresponding theorem in
[HeNi1], but we recall it for completeness.

Proof of Theorem 3.1.5.
Let {Uk , 1 ≤ k ≤ K} denote the union of the critical points of f and
f |Ω. Consider a partition of unity of Ω,

∑N
k=1 χ

2
k = 1, such that the C∞

0 (Ω)
function χk identically equals 1 in a neighborhood of Uk when 1 ≤ k ≤ K.
A refinement of this partition of unity will be specified later by the local
construction of adapted coordinates.
We recall that the operator ∆N

f,h is the Friedrichs extension associated with
the quadratic form:

Dg0,f,h(ω) = ‖df,hω‖
2
ΛL2,g0

+
∥∥∥d∗,g0f,h ω

∥∥∥
2

ΛL2,g0
,

on ΛH1
0,n(Ω) . The IMS localization formula (3.2.6) gives, for any ω ∈

ΛH1
0,n ,

Dg0,f,h(ω) =

N∑

k=1

Dg0,f,h(χkω) − h2 ‖|∇χk|ω‖
2
ΛL2,g0

.

If suppχk does not meet the boundary, the term Dg0,f,h(χkω) behaves
like in the boundaryless case (see [HKN] for details):
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• If k > K, then we have

∀ω ∈ ΛH1 , Dg0,f,h(χkω) ≥ C−1 ‖χkω‖
2
ΛL2,g0

.

• If k ≤ K and Uk is a critical point of f with index pk 6= p , then

∀ω ∈ ΛH1 , Dg0,f,h(χkω) ≥ C−1h ‖χkω‖
2
ΛL2,g0

.

• If k ≤ K and Uk is a critical point of f with index pk = p , then there

exists a fixed 1-dimensional space F
(p)
k (determined by Hess f(Uk))

such that,

∀ω ∈ ΛH1 , Dg0,f,h(χkω) ≤ C−1h6/5 ‖χkω‖
2
ΛpL2,g0

implies

∀ω ∈ ΛH1 , dist (χkω,F
(p)
k ) ≤ Ch1/10 ‖ω‖ΛpL2,g0

.

Again like in the proof of Proposition 3.2.11-iii), this last statement
refers to Lemma 2.3.5 at the level of quadratic forms.

Consider now the case when suppχk ∩ ∂Ω 6= ∅ , with the support of
χk centered around a point U0 ∈ ∂Ω . There are two cases: U0 is a critical
point of f |∂Ω with ∂f

∂n(U0) < 0 which is equivalent to − ∂f
∂n(U0) = |∇f(U0)|

or U0 is not a critical points of f |∂Ω with ∂f
∂n < 0 which is equivalent to

(− ∂f
∂n)(U0) < |∇f(U0)| . Indeed, U0 is either a critical point of f |∂Ω with

∂f
∂n(U0) > 0, i.e. ∂f

∂n(U0) = |∇f(U0)| or U0 is not a critical point of f |∂Ω, i.e.∣∣∣∂f∂n(U0)
∣∣∣ < |∇f(U0)|.

Case 1) (− ∂f
∂n)(U0) < |∇f(U0)| .

Then the cut-off χk is chosen so that, in a neighborhood V of suppχk ,

∀x ∈ V ∩ ∂Ω, (−
∂f

∂n
)(x) < (1 − δ) |∇f(x)| ,

for some δ > 0. Locally it is possible to construct a function f̂ such that

−∂nf̂ =
∣∣∣∇f̂

∣∣∣ in V ∩ ∂Ω and
∣∣∣∇f̂

∣∣∣ = |∇f | in V . By setting ω̃ = χkω for

ω ∈ ΛH1
0,n, the Green formula (2.2.9) and the inequality Dg0,f̂ ,h

(ω̃) ≥ 0
imply (L∇f + L∗

∇f being a tensor)

−h

∫

∂Ω
〈ω̃ | ω̃〉ΛpT ∗

σΩ

(
∂f

∂n

)
(σ) dσ ≤ −(1−δ)h

∫

∂Ω
〈ω̃ | ω̃〉ΛpT ∗

σΩ

(
∂f̂

∂n

)
(σ) dσ

≤ (1−δ)
[
h2 ‖dω̃‖2

Λp+1L2 + h2 ‖d∗ω̃‖2
Λp−1L2 + ‖|∇f | ω̃‖2

ΛpL2 + C1h ‖ω̃‖
2
ΛpL2

]
.
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• If k > K,

∀ω ∈ ΛH1
0,n , Dg0,f,h(χk ω) = Dg0,f,h(ω̃) ≥

δ

2
‖|∇f | ω̃‖2

ΛpL2

≥ C−1
V ‖χkω‖

2
ΛpL2 .

Case 2) − ∂f
∂n(U0) = |∇f(U0)|.

In this case we will conclude by applying Proposition 3.2.11. We recall
that U0 ∈ ∂Ω is a critical point of f |∂Ω with ∂f

∂n(U0) < 0 and with in-
dex p0. Around U0, we introduce adapted local coordinates, denoted by
x = (x′, xn). This coordinate system is provided by Lemma 3.3.1 below, ap-
plied with f1 = f and α = f |∂Ω∩V0 . Then the function Φ+ of Lemma 3.3.1
is nothing but f and has the form f(x) = −xn + 1

2f−(x′). Moreover, Ω
corresponds locally to {xn ≤ 0}.
In order to apply Proposition 3.2.11, it remains to check that the function
f can be extended to R

n
−, so that it satisfies Assumption 3.2.4 where U0 is

a critical point of f |∂Ω.
We recall that we have not specified the choice of x′ in the boundary. The
function f |∂Ω∩V0 being a Morse function, we can choose in a small neigh-
borhood V ′

0 ⊂ ∂Ω of U0 = (0, . . . , 0) Morse coordinates x′ = (x1, . . . , xn−1)
for f− which are normal at U0 for the metric

∑
i,j<n gij(x

′, 0)dxidxj . With
these coordinates, f has the form, in a small neighborhood V ′′

0 of 0:

f(x) = −xn +

n−1∑

j=1

λjx
2
j + f(U0) . (3.3.1)

We choose χk such that suppχk ⊂ V ′′
0 .

Choosing a cut-off χn−1 ∈ C∞
0 (Rn−1) , χn−1 = 1 near suppχk ∩ ∂Ω, f is

extended to R
n
− by:

f̃(x) = −xn +

[
χn−1(x′) +

1 − χn−1(x′)

|x′|

]

n−1∑

j=1

λjx
2
j


+ f(U0) . (3.3.2)

Moreover, choosing another cut-off χn ∈ C∞
0 (Rn

−) , χn = 1 near suppχk, we
extend g0 to R

n
− by:

g̃ = χn g0 + (1 − χn)ge , (3.3.3)

where ge is the Euclidian metric on R
n
−.

With these coordinates, the quantity Dg̃,f̃ ,h(χkω) = Dg0,f,h(χkω) attains the
form discussed in Proposition 3.2.11.
We can now discuss the lower bound of Dg̃,f̃ ,h(χkω), depending on the lo-
calization by the cut-off χk, such that suppχk ∩ ∂Ω 6= ∅.
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• If k ≤ K, the origin of the coordinate system is U0 = Uk. If Uk is not
a critical point of f |∂Ω with index pk = p and ∂f

∂n(Uk) < 0 , then

∀ω ∈ ΛpH1
0,n , Dg̃,f̃ ,h(χkω) ≥ C−1h ‖χkω‖

2
ΛL2,g .

• If k ≤ K and Uk is a critical point of f |∂Ω with index pk = p and
∂f
∂n(Uk) < 0, then according to Proposition 3.2.11-iii) there exists a

fixed 1-dimensional space F
(p)
k such that the inequality,

∀ω ∈ ΛpH1
0,n , Dg̃,f̃ ,h(χkω) ≤ C−1h6/5 ‖χkω‖

2
ΛpL2,g

implies:

dist (χkω,F
(p)
k ) ≤ C h1/10 ‖χkω‖ΛpL2,g .

We now introduce the set Ap of indices k, 1 ≤ k ≤ K, such that

• either Uk is a critical point of f with index p ,

• or Uk is a critical point of f |∂Ω with index p such that ∂f
∂n(Uk) < 0 .

For ω ∈ ΛpH1
0,n(Ω) with ‖ω‖ΛpL2,g = 1 , we get

(
Dg0,f,h(ω) ≤ C−1h6/5

)
⇒


 dist (ω,

∑

k∈Ap

F
(p)
k ) ≤ Ch1/10


 .

Hence the dimension of the spectral subspace,

F (p) = Ran1[0,h3/2)(∆
N,(p)
f,h ) ⊂ Ran1[0,ch6/5)(∆

N,(p)
f,h ) ,

is at most #Ap = mΩ
p .

We next verify that dim F (p) ≥ #Ap = mΩ
p . According to the Min-Max

principle, it suffices to find an orthonormal set of p-forms ωhk ∈ ΛpH1
0,n(Ω) ,

k ∈ Ap , such that

Dg0,f,h(ω
h
k ) = o(h3/2) .

Indeed it is enough to take a truncated element of the kernel of the local

model for ∆
N,(p)
f,h around Uk , k ∈ Ap . We give the details for the case

Uk ∈ ∂Ω.
Take two cut-off χ1,k ∈ C∞

0 (Rn
−), χ1,k = 1 near 0 (with suppχ1,k ⊂ suppχk)

and χ2,k such that χ2
1,k + χ2

2,k = 1 . With the same coordinate system
as above, we write on R

n
−,using the IMS localization formula (3.2.6) and

Proposition 3.2.11-iv),

Dg̃k,f̃k,h
(ω) ≥ Dg̃k,f̃k,h

(χ1,kω) + C−1 ‖χ2,kω‖
2 − Ch2

∑

i=1,2

‖|∇χi,k|ω‖
2 ,
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where g̃k and f̃k are defined on R
n
− according to the previous construc-

tion and coincide with g0 and f in a neighborhood of suppχk . Accord-
ing to Proposition 3.2.11, there exists ηhk ∈ ΛpH1

0,n(Rn
−) in the domain of

the associated Witten Laplacian, such that Dg̃k,f̃k,h
(ηhk ) = 0 . By taking

ωhk =
∥∥χ1,k η

h
k

∥∥−1
χ1,k η

h
k , we obtain the existence of h0 > 0, C ′ and C ′′ such

that, for h ∈ (0, h0]:

∥∥∥χ2,k η
h
k

∥∥∥
2
≤ C ′h2

∥∥∥ηhk
∥∥∥

2
,

and, consequently,

Dg0,f,h(ω
h
k ) ≤ C ′h2

∥∥ηhk
∥∥2

∥∥χ1,k η
h
k

∥∥2 ≤ C ′′h2 .

The next lemma, which provides in different situations the suitable co-
ordinate systems, simply makes use of the standard solution to Hamilton-
Jacobi equations in the non characteristic case.

Lemma 3.3.1. 1) Let be f1 ∈ C∞(Ω,R) and U0 ∈ ∂Ω a critical point of
f1|∂Ω with ∂f1

∂n (U0) 6= 0 .

Assume furthermore α ∈ C∞(∂Ω,R) be a local solution to |∇Tα|
2 = |∇T f1|

2

around U0.
Then there exists a neighborhood V0 of U0 in Ω such that the eikonal equa-
tion:

|∂nΦ±|
2 + |∇TΦ±|

2 = |∇Φ±|
2 = |∇f1|

2

with the boundary conditions

Φ±|∂Ω∩V0 = α , ∂nΦ±|∂Ω∩V0 = ±
∂f1

∂n
|∂Ω∩V0

admits a unique local smooth real-valued solution.

2) There exists local coordinates (x1, . . . , xn) = (x′, xn) in a neighborhood of
U0 in Ω with (x′, xn)(U0) = 0 where the function Φ± and the metric g0 have
the form:

Φ± = ∓xn + α(x′) and g0 = gnn(x) dx
2
n +

n−1∑

i,j=1

gij(x) dxidxj .

Moreover, the boundary ∂Ω is locally defined by {xn = 0} and Ω corresponds

to
{
sgn

(
∂f1
∂n (U0))

)
xn > 0

}
.
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Proof. 1) The first point is a direct consequence of the local theory of
Hamilton-Jacobi equations starting from a non characteristic hypersurface,
owing to the condition ∂f1

∂n (U0) 6= 0 .
2) Like in [HeSj4], we set:

f+ = Φ+ − Φ− and f− = Φ+ + Φ− .

The next relations are then satisfied:

Φ− = −
1

2
f+ +

1

2
f− , Φ+ =

1

2
f+ +

1

2
f− , (3.3.4)

∇f+ · ∇f− = 0 , (3.3.5)

f+|∂Ω∩V0 = 0 ,
∂f+

∂n
|∂Ω∩V0 = 2

∂f1

∂n
|∂Ω∩V0 6= 0 , (3.3.6)

and f−|∂Ω∩V0 = 2α ,
∂f−
∂n

|∂Ω∩V0 = 0 . (3.3.7)

Let (x1, . . . , xn−1) = x′ denote a set of coordinates on ∂Ω in a neighborhood
of U0 (then contained in V0) and such that xj(U0) = 0 . We extend them in
a neighborhood of U0 in Ω as constant along the integral curve of the vector
field ∇f+. Then we take xn = −1

2f+(x) for the last coordinate.
In these coordinates the function f1 and the metric g0 have the form an-
nounced in the lemma.
Remark furthermore, by (3.3.6) and ∂f1

∂n (U0) 6= 0 , that the boundary ∂Ω is

locally defined by {xn = 0} and Ω corresponds to
{
sgn

(
∂f1
∂n (U0)

)
xn > 0

}
.

Remark 3.3.2. Lemma 3.3.1 will be used with various functions f1 and α
and will provide several coordinate systems:

• We have already introduced the coordinate system x = (x, xn) associ-
ated with f1 = f and α = f

∣∣
∂Ω

.

• The coordinate system denoted simply by x = (x′, xn) will be associated
with f1 = f and α = ϕ, where ϕ is the Agmon distance along the
boundary. This system will be used to give the simple form Φ = Φ+ =
−xn + ϕ(x′) to the Agmon distance Φ, solving |∇Φ|2 = |∇f |2 with
the boundary condition ∂nΦ = ∂nf . Agmon distances are specified in
Section 4 below.

• Finally the coordinate system x̃ = (x̃′, x̃n) will be associated with f1 =
(f + Φ) and α = f

∣∣
∂Ω

+ ϕ and will be used in the final application of
the Laplace method.

33



4 Accurate WKB analysis near the boundary

for ∆
(1)
f,h

4.1 Introduction

We work here under Assumption 3.1.1. Like in [HeNi1], we have shown

that for 0 ≤ p < n, some quasimodes of ∆
N,(p)
f,h being near the spectral

subspace in 1
[0 , h

3
2 )

(∆
N,(p)
f,h ) are localized near the boundary ∂Ω and more

precisely near critical points of f |∂Ω with index p such that ∂f
∂n < 0 . In

the boundaryless case ([HKN]) and in the case with tangential Dirichlet
boundary conditions ([HeNi1]), the WKB analysis done in [HeSj4] and in
[HeNi1] says that the small eigenvalues are of order O(e−C/h) and provides

an accurate approximate basis of Ran1[0,h3/2)(∆
(p)
f,h) .

In order to get a similar result, we need an accurate WKB analysis at the
boundary, and like in [HeNi1], we restrict our attention on the case p = 1
because our motivation is to analyze the Witten Laplacian on 0-forms.
For an accurate comparison between eigenvectors and WKB quasimodes
near a critical point U1 of f |∂Ω with index 1 and ∂f

∂n(U1) < 0 , we introduce

another self-adjoint realization of ∆
(1)
f,h in a neighborhood ΩU1,ρ with mixed

boundary conditions: Neumann boundary conditions on ∂ΩU1,ρ ∩ ∂Ω and
full Dirichlet boundary conditions on ∂ΩU1,ρ \ ∂Ω .

4.2 Local WKB construction

The next construction is done locally around a critical point with index 1
U1 of f |∂Ω with ∂f

∂n(U1) < 0 .
By the collar theorem ([Sch]), we can define a local system of coordinates
(x1, . . . , xn) = (x′, xn) where ∂

∂xn
|∂Ω = ~n, the outgoing normal at the bound-

ary, and x′|∂Ω is a local system of coordinates of ∂Ω .Moreover, we can choose
x such that x(U1) = 0 , ∂Ω corresponds locally to xn = 0, and the interior
of Ω to xn < 0 .

Let ϕ be the Agmon distance to U1 on the boundary (i.e. associated with
the metric |∇x′f(x′, 0)|2 dx′2). We recall that, on the boundary,

|∇T f |
2 = |∇ϕ|2

and that ϕ is smooth near U1 (see [HeSj1]).
We now use the first result of Lemma 3.3.1 with f1 = f and α = ϕ and we
denote by Φ the function Φ+ of the lemma (Φ is the Agmon distance to U1
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i.e. associated with the metric |∇f(x)|2 dx2). Hence we have locally:

|∂nΦ|2 + |∇TΦ|2 = |∇Φ|2 = |∇f |2 ,

Φ|∂Ω = ϕ ,

∂nΦ|∂Ω =
∂f

∂n
|∂Ω .

According to [HeSj4] pp 279-280, there exist Morse coordinates for f
∣∣
∂Ω

around U1, which are normal in U1 and such that

f(x′, 0) =
λ1

2
x2

1 + · · · +
λn−1

2
x2
n−1 + f(U1) (4.2.1)

and ϕ(x′) =
|λ1|

2
x2

1 + · · · +
|λn−1|

2
x2
n−1 . (4.2.2)

Proposition 4.2.1. Consider around U1 the above system of coordinates
x = (x′, xn) which satisfies (4.2.1)(4.2.2) with λ1 < 0. There exists locally,
in a neighborhood of x = 0, a C∞ solution uwkb1 to

∆
(1)
f,hu

wkb
1 = e−

Φ
hO(h∞) (4.2.3)

nuwkb1 = 0 on ∂Ω (4.2.4)

ndf,hu
wkb
1 = 0 on ∂Ω , (4.2.5)

where uwkb1 has the form:

uwkb1 = a(x, h)e−
Φ
h ,

with a(x, h) ∼
∑

k

ak(x)hk and a0(0) = dx1 .

Proof. We shall first consider a WKB-approximation for

(∆
(1)
f,h − E(h))uwkb1 = e−

Φ
hO(h∞) (4.2.6)

with E(h) = O(h2) and the boundary conditions (4.2.4)(4.2.5) and then
check E(h) = O(h∞).
Let us first rewrite the boundary conditions with our coordinate system. The
first boundary condition says only that a(x, h) =

∑n
i=1 ai(x, h) dxi satisfies:

an((x
′, 0), h) ≡ 0 . (4.2.7)

Writing

∀k ∈ N , df,h(e
−Φ
h ak) = e−

Φ
h

[
hdak + d(f − Φ) ∧ ak

]
,
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where ak and d(f −Φ) are tangential forms, the second boundary condition
corresponds to n(dak) = 0 and more precisely it says:

∀k ∈ N , ak(x) =

n∑

i=1

aki (x) dxi

satisfies : ∀i ∈ {1, . . . , n − 1} ,
∂aki
∂xn

(x′, 0) ≡ 0 . (4.2.8)

Let us now recall the following relation which will be very useful (see [HeSj4]
for a demonstration):

e
Φ
h∆f,he

−Φ
h = h2(d+ d∗)2 + h(L∇Φ − L∗

∇Φ + L∇f + L∗
∇f ) (4.2.9)

We write

L∇Φ − L∗
∇Φ + L∇f + L∗

∇f = L∇(f+Φ) + L∗
∇(f−Φ)

= 2L∇Φ + L∇(f−Φ) + L∗
∇(f−Φ) .

Now by [HeSj4] appendix A,

L∗
∇(f−Φ) = −L∇(f−Φ) + R ,

where R is a tensor.
Furthermore, at any σ ∈ ∂Ω, choosing a local coordinate system (x1, . . . , xn)
orthonormal in σ with ~n = ∂

∂xn
, again by [HeSj4] appendix A,

R(σ) = 2Hess (f − Φ)(σ) − Tr(Hess (f − Φ))(σ) Id

= 2Hess (f − Φ)(σ) − Tr(Hess (f − Φ))(σ)t − Tr(Hess (f − Φ))(σ)n

= RT (σ) + [∂2
nn(f − Φ) − Tr(Hess (f − Φ))(σ)]n .

Due to the condition ∂nΦ|∂Ω = ∂f
∂n |∂Ω, RT is tangential. With the chosen

coordinate system, R
∣∣
∂Ω

satisfies

R(x′, 0) = RT (x′, 0) + β(x′)n ,

for some C∞ function β. Further, at the point U1, the tangential part
RT (0) restricted to tangential forms is a symmetric matrix with the one
dimensional kernel Rdx1 (see [HeSj4]).
By looking for E(h) ∼

∑∞
k=1 h

k+1Ek, and by using again ∂nΦ|∂Ω = ∂f
∂n |∂Ω,

the interior equation (4.2.6) reads

e
Φ
h (∆f,h − E(h))e−

Φ
h = h2[(d+ d∗)2 − h−2E(h)] + h

[
L

2 ∂f
∂n
~n

+ LX + R
]

with X|∂Ω = 2∇TΦ and R|∂Ω = RT + βn .

We now verify that it is possible to construct a solution uwkb1 to (4.2.3) in Ω
which can be extended to Ω and satisfying the boundary conditions (4.2.4)
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and (4.2.5).
The construction of an interior WKB solution in Ω is standard as an in-
ductive Cauchy problem, once the ak’s are known on ∂Ω (see [DiSj],[Hel2]).
Actually the non characteristic Cauchy problems

[L
2 ∂f
∂n
~n

+ LX + R]ak = −(d+ d∗)2ak−1 +

k∑

ℓ=1

Eℓa
k−ℓ in Ω .

are solved by induction with the convention a−1 = 0.
Hence the problem is reduced to the solving of the system made of the
boundary conditions (4.2.7), (4.2.8) and of the compatibility equation:

[
L

2 ∂f
∂n
~n

+ LX + RT + βn
]
ak = −(d+ d∗)2ak−1 +

k∑

ℓ=1

Eℓa
k−ℓ on ∂Ω .

(4.2.10)
Owing to the Cartan formula, the system (4.2.10), (4.2.7), (4.2.8) is equiv-
alent to the differential system on ∂Ω:





−t(d+ d∗)2ak−1 +

k∑

ℓ=1

Eℓa
k−ℓ = (L2∇TΦ + RT )ak (4.2.11)

−n(d+ d∗)2ak−1 = n

[
2
∂f

∂n
L~na

k + βnak
]

= 2
∂f

∂n

∂akn
∂xn

dxn (4.2.12)

(4.2.7) + (4.2.8) .

Since ak|∂Ω is tangential (due to (4.2.7)) like RT , (4.2.11) can be rewritten
as a tangential system which can be solved according to the analysis of the
boundaryless case in [HeSj4]. Here are the details.
The complete system becomes equivalent to





(L2∇TΦ + RT )ak = −t(d+ d∗)2ak−1 +
∑k−1

ℓ=1 Eℓa
k−ℓ + Eka

0 on ∂Ω

(L
2 ∂f
∂n
~n

+ LX + R + βn)ak = −(d+ d∗)2ak−1 on Ω

an|∂Ω ≡ 0 .

Note that the first line is a degenerate matricial transport equation which
can be solved according to [HeSj4][Hel2]: For k = 0 take a0(0) = dx1 ∈
Ker (RT (0)); for k > 0 choose Ek so that the compatibility condition

−t(d+ d∗)2ak−1(0) +

k−1∑

ℓ=1

Eℓa
k−ℓ(0) + Eka

0(0) ∈ ( Ker (RT (0)))⊥

is satisfied. Thus, at every step k ∈ N, the first and the third line of the
previous system fully determine the Cauchy data ak(x′, 0) and the number
Ek. The second line solves the interior problem with these Cauchy data and
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contains with the two other lines the second trace condition (4.2.8).

Let us check now E(h) = O(h∞). We prove this by comparing with the
half-space problem, for which Proposition 3.2.11 says that the first eigen-
value is 0 with multiplicity one and the second one larger than Ch6/5. Note
that the assumptions of Proposition 3.2.11 on the metric g̃0 and the function
f are fulfilled after choosing around U1 the coordinate system x = (x′, xn)
leading to (3.3.1) and simply extending g0 and f like in (3.3.2) and (3.3.3).
Take a cut-off function χ ∈ C∞

0 (Ω), χ = 1 in a neighborhood of U1 such that
∂χ
∂n

∣∣
∂Ω

= 0 and set

uK1 = χe−
Φ
h

K∑

k=0

akhk = χe−
Φ
hAKh .

From ∂χ
∂n

∣∣
∂Ω

≡ 0 and

df,h(χA
K
h ) = (hd+ df∧)χAKh = hdχ ∧AKh + χdf,hA

K
h ,

the form uK1 ∈ Λ1H2(Rn
−) belongs to the domain of ∆

N,(1)

f̃ ,h
and the approx-

imations uK1 and EK(h) =
∑K

k=1Ekh
k+1 satisfy





[∆
N,(1)

f̃ ,h
− EK(h)]uK1 = hK+2ρKe−

Φ
h − h2 [∆, χ]uK1 = O(hK+2) in Rn

−

nuK1 = 0 on R
n−1 × {0}

ndf,hu
K
1 = 0 on R

n−1 × {0} ,

for some C∞ 1-form ρK defined in a neighborhood of U1 and independent of
h.
From

∥∥uwkb1

∥∥ ∼ ch
n+1

4 (see indeed further the proof of Proposition 5.5.7),

∥∥uK1
∥∥ ∼ ch

n+1
4

and the spectral theorem then implies that there exists an eigenvalue λ(h)

of ∆
N,(1)

f̃ ,h
such that:

|EK(h) − λ(h)| = O(hK+2−n+1
4 ) .

Choosing the integer number K large enough, the inclusion

σ(∆
N,(1)

f̃ ,h
) \ {0} ⊂ [Ch6/5,+∞)

combined with the estimate EK(h) = O(h2) implies λ(h) = 0 . The num-
ber K being arbitrary, the construction of the previous quasimode is then
possible only if

∀k ∈ N
∗ , Ek = 0 .
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4.3 Another local Neumann realization of ∆
(1)
f,h

Let U1 be a critical point of f |∂Ω with index 1 and ∂f
∂n(U1) < 0 and let us

introduce a new system of local coordinates.
We apply Lemma 3.3.1 with f1 = f and α = ϕ , the Agmon distance to
U1 on the boundary. The function Φ+ of the lemma is then Φ, the Agmon
distance to U1 and we have the existence of local coordinates (x′, xn) around
U1 where Φ and the metric g0 have the form:

Φ = −xn + ϕ(x′) and g0 = gnn(x) dx
2
n +

n−1∑

i,j=1

gij(x) dxidxj .

Moreover, the boundary ∂Ω is locally defined by {xn = 0} and Ω corresponds
to {xn < 0}.

We work now with the local coordinate system defined above and x 7→ |x|
is the Euclidean norm in these coordinates.
As in [HeNi1], we consider the domain, for ρ > 0,

ΩU1,ρ =
{
|x− (0, 1)|2 < ρ2 + 1 , xn < 0

}
,

which has the shape of a thin lens stuck on ∂Ω with radius ρ and thickness
O(ρ2). Its boundary splits into

ΓD := ∂ΩU1,ρ ∩ Ω =
{
|x− (0, 1)|2 = ρ2 + 1, xn ≤ 0

}

and

ΓND := ∂ΩU1,ρ ∩ ∂Ω =
{∣∣x′

∣∣ < ρ, xn = 0
}
.

On this domain, we introduce the functional space

Λ1H1
0;0,n(ΩU1,ρ) =

{
u ∈ Λ1H1(ΩU1,ρ); nu|ΓND = 0, u|ΓD = 0

}
.

The Friedrichs extension associated with the quadratic form:

Λ1H1
0;0,n(ΩU1,ρ) ∋ ω 7→ DN

g,f,h(ω) = ‖df,hω‖
2 +

∥∥d∗f,hω
∥∥2

,

is denoted by ∆
N,D,(1)
f,h . The domain of ∆

N,D,(1)
f,h is contained in Λ1H2(ΩU1 , ρ

′)
for any 0 < ρ′ < ρ .

An element ω ∈ D(∆
N,D,(1)
f,h ) satisfies indeed:

〈∆
N,D,(1)
f,h ω | η〉 = 〈df,hω | df,hη〉 + 〈d∗f,hω | d∗f,hη〉 =: DN

g,f,h(ω, η) ,

for all η ∈ Λ1H1
0;0,n . By testing with η ∈ C∞

0 (ΩU1,ρ), this gives ∆f,hω ∈

Λ1L2(ΩU1,ρ) and therefore ω admits a second trace on ΓND . By testing with
any η ∈ C∞

0;0,n(ΩU0,ρ) , we get:

ndf,hω|ΓND = 0 .
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Along ΓND , ω solves an elliptic boundary value problem ∆
(1)
f,hω ∈ Λ1L2 ,

nω = 0 , ndf,hω = 0 , which provides the H2 regularity in ΩU0,ρ′
for any

ρ′ < ρ .
We now prove the

Proposition 4.3.1.
For ρ > 0 small enough, there exist hρ > 0 and Cρ > 0, such that the self-

adjoint operator ∆
N,D,(1)
f,h satisfies the following properties:

a) For h ∈ (0, hρ], the spectral projection 1[0,h3/2)(∆
N,D,(1)
f,h ) has rank 1.

b) Any family of L2-normalized eigenvectors (uh)h∈(0,hρ] of ∆
N,D,(1)
f,h such

that the corresponding eigenvalue E(h) is O(h), satisfies

∀ρ′ < ρ, ∀α ∈ N
n, ∃Nα ∈ N, ∃Cα,ρ′ > 0 such that, ∀x ∈ ΩU1,ρ′ ,∣∣∂αxuh(x)

∣∣ ≤ Cα,ρ′h
−Nα exp

(
−Φ(x)

h

)
.

(4.3.1)

c) There exists ερ > 0 such that the first eigenvalue E1(h) of ∆
N,D,(1)
f,h sat-

isfies
E1(h) = O(e−ερ/h) .

d) If uh1 denotes the eigenvector of ∆
N,D,(1)
f,h associated with eigenvalue E1(h)

and normalized by the condition tuh1(0) = tuwkb1 (0) , then

∀ρ′ < ρ, ∀α ∈ N
n, ∀N ∈ N, ∃CN,α,ρ′ > 0 such that, ∀x ∈ ΩU1,ρ′ ,∣∣∂αx (uh1 − uwkb1 )(x)
∣∣ ≤ CN,α,ρ′h

N exp
(
−Φ(x)

h

)
.

(4.3.2)

Once this is proved, one easily gets rough exponentially small upper bounds

for the mΩ
ℓ first eigenvalues of ∆

N,(ℓ)
f,h (ℓ ∈ {0, 1}) on Ω, by constructing

quasimodes suitably localized near each of the critical points.

The next subsections are devoted to the proof of Proposition 4.3.1. A fon-
damental ingredient for the proof is a variant of the integration by parts
formula of Lemma 2.2.3.

Lemma 4.3.2.
Let ρ > 0 and let ψ be a real-valued Lipschitz function on ΩU1,ρ. The relation

Re DN
g,f,h(ω, e

2ψ
h ω) = h2

∥∥∥de
ψ
h ω
∥∥∥

2

Λ2L2
+ h2

∥∥∥d∗e
ψ
h ω
∥∥∥

2

Λ0L2

+ 〈(|∇f |2 − |∇ψ|2 + hL∇f + hL∗
∇f )e

ψ
hω | e

ψ
h ω〉Λ1L2

+ h

∫

ΓND

〈ω |ω〉Λ1T ∗
σΩ e2

ψ(σ)
h

(
∂f

∂n

)
(σ) dσ (4.3.3)

holds for any ω ∈ Λ1H1
0;0,n(ΩU1,ρ).

Moreover, when ω ∈ D(∆
N,D,(1)
f,h ) , the left-hand side equals Re 〈e2

ψ
h ∆

(1)
f,hω | ω〉.
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Proof.

For ω in Λ1H1
0;0,n(ΩU1,ρ) , we have ω̃ := e2

ψ
h ω in Λ1H1

0;0,n(ΩU1,ρ) and the
same computations as the ones done in [HeNi1] to prove Lemma 4.3 lead to:

DN
g,f,h(ω, e

2ψ
h ω) = DN

g,f,h(ω̃, ω̃) − 〈|∇ψ|2 ω̃ | ω̃〉

−〈dψ ∧ ω̃ | df,hω̃〉 + 〈df,hω̃ | dψ ∧ ω̃〉

+〈i∇ψω̃ | d∗f,hω̃〉 − 〈d∗f,hω̃ | i∇ψω̃〉 .

By taking the real part, we obtain:

Re DN
g,f,h(ω, e

2ψ
h ω) = DN

g,f,h(ω̃, ω̃) − 〈|∇ψ|2 ω̃ | ω̃〉 .

We conclude by applying Lemma 2.2.3 .

4.4 Exponential decay of eigenvectors of ∆
N,D,(1)
f,h

As in [HeNi1], the pointwise estimate, ∂αxu
h(x) = O(h−Nαe−

Φ(x)
h ) , which is

stated in Proposition 4.3.1-b), will be proved in several steps. We will first
consider H1-estimates and deduce afterwards higher order estimates from
elliptic regularity.
Even for H1-estimates we need two steps: we prove first the exponential
decay along the boundary ΓND by applying Lemma 4.3.2 with the function
ψ similar to ϕ introduced above ; then the exponential decay in the interior
of ΩU1,ρ is obtained with ψ similar to Φ once the boundary term is well
controlled.

Proof of a) and b) in Proposition 4.3.1.
Statement a)
Actually it is a simple comparison with the full half-space problem via Min-
Max principle as we did for Theorem 3.1.5. Any ω ∈ Λ1H1

0;0,n(ΩU1,ρ) can in-

deed be viewed as an element of Λ1H1
0,n(Rn

−) by setting ω = 0 on R
n
−\ΩU1,ρ .

Statement b)

Let uh ∈ D(∆
N,D,(1)
f,h ) satisfy

∆
(1)
f,hu

h = E(h)uh , E(h) = O(h) ,
∥∥∥uh

∥∥∥ = 1 .

We will use the notation

ũh = e
ψh

h uh .

The integration by parts formula (4.3.3) will be applied with ψ = ψh where
ψh will be similar to ϕ or similar to Φ .
Let us recall

|∇f |2 = |∇Φ|2 ,
∂f

∂n
=
∂Φ

∂n
and Φ(x′, xn) = −xn + ϕ(x′), (4.4.1)
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where x′ = 0 is a local minimum for ϕ with ϕ(0) = 0 . Moreover we have
∇xn · ∇ϕ(x′) = 0 so that:

|∇f |2 = |∇Φ|2 = |∇xn|
2 + |∇ϕ|2 . (4.4.2)

We will first show the decay along the boundary before we propagate the de-
cay in the normal direction inside Ω (see [HeSj5] and [HeNi1] for references).

Step 1: Decay along ΓND .

We take:

ψh(x′, xn) =

{
ϕ(x′) − Ch log ϕ(x′)

h , if ϕ(x′) > Ch
ϕ(x′) − Ch logC , if ϕ(x′) ≤ Ch ,

where the constant C > 1 will be fixed later.
We associate the sets:

Ωh
− =

{
x = (x′, xn) ∈ ΩU1,ρ ; ϕ(x′) < Ch

}
,

and

Ωh
+ =

{
x = (x′, xn) ∈ ΩU1,ρ ; ϕ(x′) > Ch

}
.

The condition E(h) = O(h) the formula (4.3.3), (4.4.1) and (4.4.2) imply
the existence of C1 > 0 such that:

C1h
∥∥∥ũh

∥∥∥
2

Λ1L2(Ωh−)
≥
∥∥∥hdũh

∥∥∥
2

Λ2L2
+
∥∥∥hd∗ũh

∥∥∥
2

Λ0L2
+ 〈|∇xn|

2ũh | ũh〉Λ1L2

−h

∫

ΓND

〈ũh | ũh〉Λ1T ∗
σΩ

(
∂xn
∂n

)
(σ) dσ + 〈(|∇ϕ|2 − |∇ψh|2)ũh | ũh〉

−C1h〈1Ωh+
(x)ũh | ũh〉 , (4.4.3)

with C1 determined by f and the upper bound of E(h) .
Furthermore,

∇ψh = ∇ϕ− 1Ωh+
(x)

Ch∇ϕ

ϕ
,

so we have:

∣∣∣∇ψh
∣∣∣
2

= |∇ϕ|2 + 1Ωh+
(x)

(
−2Ch

|∇ϕ|2

ϕ
+ C2h2 |∇ϕ|

2

ϕ2

)
.
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Consequently,

C1h
∥∥∥ũh

∥∥∥
2

Λ1L2(Ωh−)
≥
∥∥∥hdũh

∥∥∥
2

Λ2L2
+
∥∥∥hd∗ũh

∥∥∥
2

Λ0L2
+ 〈|∇xn|

2ũh | ũh〉Λ1L2

− h

∫

ΓND

〈ũh | ũh〉Λ1T ∗
σΩ

(
∂xn
∂n

)
(σ) dσ

+ 〈

[
|∇ϕ|2

(
2Ch

ϕ
−
C2h2

ϕ2

)
− C1h

]
1Ωh+

(x)ũh | ũh〉 .

For x ∈ Ωh
+ ,

2Ch

ϕ
−
C2h2

ϕ2
≥
Ch

ϕ
( since 2a− a2 ≥ a ∀ a ∈ [0, 1])

then, ϕ being a positive Morse function, there exists C2 > 0 which is deter-
mined by ϕ such that, for all x ∈ Ωh

+,

C2 ≥
|∇ϕ(x′)|2

ϕ(x′)
≥ C−1

2

and we get:

C1h
∥∥∥ũh

∥∥∥
2

Λ1L2(Ωh−)
≥
∥∥∥hdũh

∥∥∥
2

Λ2L2
+
∥∥∥hd∗ũh

∥∥∥
2

Λ0L2

+〈|∇xn|
2ũh | ũh〉Λ1L2 − h

∫

ΓND

〈ũh | ũh〉Λ1T ∗
σΩ

(
∂xn
∂n

)
(σ) dσ

+
(
CC−1

2 − C1

)
h〈1Ωh+

(x)ũh | ũh〉 .(4.4.4)

Since ∂nf(U1) = ∂nxn(U1) 6= 0, we can choose ρ small enough such that:

C3 ≥ |∇xn|
2 ≥ C−1

3 on ΩU1,ρ ,

where C3 is a stricly positive constant.

Hence we get, by adding the term (CC−1
2 −C1)h〈1Ωh−

(x)ũh |ũh〉 to (4.4.4):

CC−1
2 h

∥∥∥ũh
∥∥∥

2

Λ1L2(Ωh−)
≥
∥∥∥hdũh

∥∥∥
2

Λ2L2
+
∥∥∥hd∗ũh

∥∥∥
2

Λ0L2

+ (1 + 2δ(C)h) 〈|∇xn|
2ũh | ũh〉Λ1L2

− h

∫

ΓND

〈ũh | ũh〉Λ1T ∗
σΩ

(
∂xn
∂n

)
(σ) dσ ,
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where δ(C) = 1
2C

−1
3 (CC−1

2 − C1) → +∞ when C → +∞ .

At least, we have on Ωh
− by the definitions:

∣∣∣ũh
∣∣∣ ≤ eC |uh| a.e.

and the condition
∥∥uh

∥∥ = 1 leads to:

δ̃(C)h ≥
∥∥∥hdũh

∥∥∥
2

Λ2L2
+
∥∥∥hd∗ũh

∥∥∥
2

Λ0L2
+ (1 + 2δ(C)h) 〈|∇xn|

2ũh | ũh〉Λ1L2

− h

∫

ΓND

〈ũh | ũh〉Λ1T ∗
σΩ

(
∂xn
∂n

)
(σ) dσ , (4.4.5)

where δ̃(C) = e2CCC−1
2 .

We now apply (4.3.3) to ũh with ψ = 0, f and h replaced respectively
by −xn and h

1+δ(C)h , in order to get,

(1 + δ(C)h)−1
∥∥∥hdũh

∥∥∥
2

Λ2L2
+ (1 + δ(C)h)−1

∥∥∥hd∗ũh
∥∥∥

2

Λ0L2

+ (1 + δ(C)h)〈|∇xn|
2ũh | ũh〉 − h

∫

ΓND

〈ũh | ũh〉Λ1T ∗
σΩ

(
∂xn
∂n

)
(σ) dσ

+ hC4 ||ũ
h||2Λ1L2 ≥ 0 , (4.4.6)

with C4 > 0 independent of C.

The difference (4.4.5)−(4.4.6) yields:

δ(C)h3

1 + δ(C)h

[∥∥∥dũh
∥∥∥

2

Λ2L2
+
∥∥∥d∗ũh

∥∥∥
2

Λ0L2

]
− hC4 ||ũ

h||2Λ1L2

+ δ(C)h〈|∇xn|
2ũh | ũh〉 ≤ δ̃(C)h .

We choose C > 1 large enough such that δ(C)C−1
3 − C4 > 0.

This leads, after choosing h0 > 0 small enough, to the existence of a constant
C5 > 0 such that, for all h ∈ (0, h0],

C5h ≥ h3
∥∥∥ũh

∥∥∥
2

Λ1H1
.

Since ψh ≥ ϕ + C̃h log h (for all C̃ > C), we have proved the existence of
N0 > 0 such that: ∥∥∥e

ϕ
h uh

∥∥∥
Λ1H1

≤ C6h
−N0 . (4.4.7)
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Remember that ϕ ≥ 0 vanishes only at x′ = 0 . Using the trace theorem,
this also leads to:

∥∥∥e
ϕ
h uh|ΓND

∥∥∥
Λ1H1/2(ΓND)

≤ C7 h
−N0 . (4.4.8)

Step 2: Normal decay inside Ω .

We follow a very similar approach by working with the function Φ .
We take:

ψh(x′, xn) =

{
Φ − Ch log Φ

h , if Φ > Ch
Φ − Ch logC , if Φ ≤ Ch ,

where the constant C > 1 will be fixed later.
We associate the sets:

Ωh
− =

{
x = (x′, xn) ∈ ΩU1,ρ ; Φ < Ch

}

and

Ωh
+ =

{
x = (x′, xn) ∈ ΩU1,ρ ; Φ > Ch

}
.

The formula (4.3.3) is used like in Step 1, with ũh = e
ψh

h uh and E(h) =
O(h). The difference comes from the fact that the boundary term is already
estimated with (4.4.8).

We have indeed on the boundary xn = 0 the inequality: e
ψh

h ≤ e
ϕ
h , due to

the relation Φ|xn=0 = ϕ .
From (4.3.3) used like in Step 1 (see (4.4.3)) we get the existence of C1 > 0
such that:

C1h
∥∥∥ũh

∥∥∥
2

Λ1L2(Ωh−)
+C1h

∥∥∥e
ϕ
h u
∥∥∥

2

H1/2(ΓND ;Λ1T ∗ΩU1,ρ
)
≥
∥∥∥hdũh

∥∥∥
2

Λ2L2
+
∥∥∥hd∗ũh

∥∥∥
2

Λ0L2

+ 〈(|∇f |2 − |∇ψh|2)ũh | ũh〉 − C1h〈1Ωh+
(x)ũh | ũh〉 .

Moreover, from (4.4.8) and the inequality

|ũh(x)| ≤ eC |uh(x)| a.e. in Ωh
− ,

we get, for any C > 1, the existence of δ̃(C) > 0 such that the following
estimate is satisfied:

δ̃(C)h1−2N0 ≥ C1h
∥∥∥ũh

∥∥∥
2

Λ1L2(Ωh−)
+ C1h

∥∥∥e
ϕ
h u
∥∥∥

2

H1/2(ΓND ;Λ1T ∗ΩU1,ρ
)

≥
∥∥∥hdũh

∥∥∥
2

Λ2L2
+
∥∥∥hd∗ũh

∥∥∥
2

Λ0L2
+ 〈(|∇f |2 − |∇ψh|2)ũh | ũh〉

−C1h〈1Ωh+
(x)ũh | ũh〉 . (4.4.9)
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Since |∇f |2 = |∇Φ|2 and Φ is a positive function without critical points, we
can use the same computations as the ones done in Step 1 with ϕ replaced
by Φ to get:

|∇f |2 − |∇ψh|2 = 1Ωh+
(x)

(
2Ch

|∇Φ|2

Φ
− C2h2 |∇Φ|2

Φ2

)

≥
Ch|∇Φ|2

Φ
≥ C−1

2 Ch ,

with C2 > 0 independent of C.

We take C ≥ 2C1C2. By adding the estimated term (C−1
2 C−C1)h〈1Ωh−

(x)ũh |ũh〉

to (4.4.9) we get:

δ̃2(C)h1−2N0 ≥
∥∥∥hdũh

∥∥∥
2

Λ2L2
+
∥∥∥hd∗ũh

∥∥∥
2

Λ0L2
+ (C−1

2 C − C1)h
∥∥∥ũh

∥∥∥
Λ1L2

,

which gives, by analogy with Step 1, the existence of C3 > 0 and N1 > 0
such that: ∥∥∥e

Φ
h uh

∥∥∥
Λ1H1(ΩU1

,ρ)
≤ C3 h

−N1 . (4.4.10)

Step 3: Elliptic regularity.

We now set ũh = e
Φ
h uh. For ρ′ < ρ, we take a cut-off χ ∈ C∞(ΩU1,ρ) with

compact support in ΩU1,ρ ∪ ΓND and such that χ = 1 on a neighborhood of
ΩU1,ρ′ . The form vh = χũh satisfies the boundary value problem:

{
vh − ∆vh = rh0 in R

n
− ,

nvh = 0 and ndvh = rh1 on {xn = 0} ,

with
∥∥∥rh0
∥∥∥

Λ1L2(Rn−)
= O(h−N1) and

∥∥∥rh1
∥∥∥

Λ2H1/2(Rn−1)
= O(h−N1) .

This implies, by [Sch], the existence of N2 > 0 such that:
∥∥∥vh
∥∥∥

Λ1H2
= O(h−N2) .

We conclude by induction for any finite decreasing sequence (ρk)0≤k≤K with
ρK > ρ′ and associated cut-offs χk , with χk = 1 in a neighborhood of ΩU1,ρk

and suppχk ⊂ {χk−1 = 1} , using the Sobolev injections.

4.5 Small eigenvalues are exponentially small

We now check that the eigenvalue E1(h) of ∆
N,D,(1)
f,h lying in [0, h3/2) is

actually of order O(e−ερ/h) for some ερ > 0. We prove this again by com-
parison with the half-space problem as we did at the end of the proof of
Proposition 4.2.1.
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Proof of Proposition 4.3.1-c).
Again we introduce in a neighborhood of U1, the coordinate system x =
(x′, xn) leading to (3.3.1). The function f and the metric g0 are extended
according to (3.3.2) and (3.3.3) so that Proposition 3.2.11 can be applied.

Consequently, the half-space Witten Laplacian, ∆
N,(1)

f̃ ,h
, has a one dimension

kernel and its second eigenvalue is larger than Ch6/5.

Let uh be a normalized eigenvector of ∆
N,D,(1)
f,h associated with the first

eigenvalue E1(h), which belongs to the interval (0, h3/2] . Let χ ∈ C∞(ΩU1,ρ)
be a cut-off function with compact support in ΩU1,ρ ∪ ΓND and such that

χ = 1 in a neighborhood of 0 with ∂χ
∂n

∣∣
∂Ω

≡ 0.

The form vh = χuh ∈ Λ1H2(Rn
−) belongs to the domain of ∆

N,(1)

f̃ ,h
, i.e.

nvh = ndf̃ ,hv
h = 0. Moreover, vh satisfies

(∆
(1)

f̃ ,h
− E1(h))v

h = −h2[∆, χ]uh in R
n
−

and the 1-form rh = −h2[∆, χ]uh vanishes in a neighborhood V1 of x = 0 .
Due to the exponential decay of uh stated in Proposition 4.3.1-b), there exist
C and N0, such that rh also satisfies

∣∣∣rh(x)
∣∣∣ ≤ Ch−N0



∑

1≤|β|≤2

|∂βxχ(x)|


 e−

Φ(x)
h ≤ e−

cχ
h .

With
∥∥vh
∥∥

Λ1L2 = 1 + O(e−c/h),
∥∥rh
∥∥

Λ1L2 = O(e−c/h) and the a priori esti-

mate E1(h) = O(h3/2), the spectral theorem implies |E1(h)− 0| = O(e−c/h)
like in the proof of Proposition 4.2.1 .

4.6 Accurate comparison with the WKB solution

We now compare the eigenvector associated with an exponentially small
eigenvalue with its WKB approximation. We adapt the method presented
in [Hel2, HeSj2] and in [HeNi1] by following the same strategy as in Sub-
section 4.4. The H1-estimates are done in two steps with ψh similar to ϕ
and then with ψh similar to Φ . Finally the elliptic regularity is used for the
C∞-estimates.

Proof of Proposition 4.3.1-d).

Let uh1 ∈ D(∆
N,D,(1)
f,h ) be an eigenvector associated with the first eigenvalue

E1(h) of ∆
N,D,(1)
f,h :

∆
N,D,(1)
f,h uh1 = E1(h)u

h
1 ,
∥∥∥uh1

∥∥∥ = 1 .
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According to Proposition 4.3.1-c), we know that E1(h) = O(e−
ερ
h ), with

ερ > 0, while the second eigenvalue of ∆
N,D,(1)
f,h is larger than h3/2.

By taking ρ > 0 small enough, the WKB approximation uwkb1 presented in
Subsection 4.2 satisfies





∆
(1)
f,hu

wkb
1 = O(h∞) e−

Φ(x)
h in ΩU1,ρ ,

nuwkb1 |ΓND = 0 ,
ndf,hu

wkb
1 |ΓND = 0 ,

and there exists c > 0, such that for any ρ′ > 0, we have

∥∥∥uwkb1

∥∥∥
Λ1L2(ΩU1,ρ

′ )
∼ ch

n+1
4

(see indeed further the proof of Proposition 5.5.7).
The cut-off function χ ∈ C∞(ΩU1,ρ) is supported in ΩU1,ρ/2 ∪ ΓND and sat-

isfies χ = 1 on ΩU1,ρ′ with 0 < ρ′ < ρ/2, ∂χ
∂n

∣∣
∂Ω

≡ 0. Later, we will take
ρ′ > 0 small enough, so that χ can be taken in the form

χ(x′, xn) = χ1(x
′)χn(xn) .

Like in Lemma 2.3.5 (replace 1[b,+∞)(A) by A1/21[b,+∞)(A) and a
b by a =

O(h∞) here), the real constant factor c(h) in the truncated WKB approxi-
mation vwkb1 = c(h)χuwkb1 can be chosen so that

∥∥∥vwkb1 − uh1

∥∥∥
Λ1H1

= O(h∞)

and, due to the exponential decay of uh1 and uwkb1 ,

∥∥∥χ(uh1 − c(h)uwkb1 )
∥∥∥

Λ1H1
= O(h∞) .

Set
wh = χ(uh1 − c(h)uwkb1 ) .

The 1-form wh satisfies in ΩU1,ρ

(∆
(1)
f,h − E1(h))w

h = χ(x)(∆
(1)
f,h − E1(h))(u

h
1 − c(h)uwkb1 )

+[∆
(1)
f,h, χ](uh1 − c(h)uwkb1 )

= r̃h e−
Φ(x)
h + rh ,

(4.6.1)

where r̃h and rh satisfy, according to Proposition 4.3.1-b),

r̃h = O(h∞) , supp rh ⊂ supp∇χ and rh = O(h−N0)e−
Φ(x)
h .
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The last estimate can be done for any Ck0-norm, with k0 ∈ N.
On the boundary ∂ΩU1,ρ = ΓND ∪ ΓD , we have simply

nwh|ΓND = 0, wh|ΓD = 0 ,

and ndf,hw
h|ΓND = 0 .

With the different of choices for ψh given below, we will use the notation

w̃h = e
ψh

h wh .

The 1-forms w and w̃ belong to Λ1H2(ΩU1,ρ) and their supports do not meet
ΓD. Hence the integration by parts formula (2.2.7) can be used in addition
to (4.3.3).

Step 1: Comparison along ΓND.

Like in the proof of Proposition 4.3.1-b) presented in Subsection 4.4, we
introduce the sets

Ωh
− =

{
x = (x′, xn) ∈ ΩU1,ρ ; ϕ(x′) < Ch

}
,

and Ωh
+ =

{
x = (x′, xn) ∈ ΩU1,ρ ; ϕ(x′) > Ch

}
.

For any N ∈ N , we take:

ϕhN (x′) = min
{
ϕh(x′) +Nh log h−1 , ψ(x′)

}
,

where ϕh(x′) =

{
ϕ(x′) − Ch log ϕ(x′)

h , if ϕ(x′) > Ch
ϕ(x′) − Ch logC , if ϕ(x′) ≤ Ch ,

and ψ(x′) = min
{
ϕh−(y′) + (1 − ε)|ϕ(x′) − ϕ(y′)| , y′ ∈ supp∇χ1

}
.

We recall that the cut-off χ writes χ(x′, xn) = χ1(x
′)χn(xn) . The constant

C ≥ 1 will be fixed at the end like in the proof of Proposition 4.3.1-b). The
constants ρ′ ∈ (0, ρ/2) and ε > 0 are chosen so that, for h ∈ (0, hN,ρ′,ε) ,

ϕhN (x′) = ϕh(x′) +Nh log h−1 in ΩU1,ρ′ . (4.6.2)

Consequently, ϕ being the Among distance on the boundary,

ϕhN (x′) = ϕh(x′) +Nh log h−1 = ϕ(x′) − Ch logC +Nh log h−1 on Ωh
− .

(4.6.3)
Note furthermore the inequalities:

ϕhN (x) ≤ ϕ(x) +Nh log h−1 in ΩU1,ρ

ϕhN (x) ≤ ϕ(x) ≤ Φ(x) , if x′ ∈ supp∇χ1 ,

and ϕhN (x) ≤ ϕ(x) +Nh log h−1 ≤ Φ(x) , if xn ∈ suppχ′
n .
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In particular, we have for h ∈ (0, hN,ρ′,ε) ,

ϕhN (x) ≤ Φ(x) , for x ∈ supp∇χ ,

which implies ∥∥∥∥e
ϕhN
h rh

∥∥∥∥
Λ1L2

= ON (h−N0) .

We apply the integration by parts formula (4.3.3), where the left-hand side is

computed with (2.2.7), and we obtain for the form w̃h = e
ϕhN
h wh, by analogy

with the proof of Proposition 4.3.1-b), using (4.6.1) and E1(h) = O(h∞) =
O(h):

C1h
∥∥∥w̃h

∥∥∥
Λ1L2(Ωh−)

+

∥∥∥∥r̃
h + e

ϕhN (x)

h rh
∥∥∥∥

Λ1L2

∥∥∥w̃h
∥∥∥

Λ1L2
≥
∥∥∥hdw̃h

∥∥∥
2

Λ2L2
+
∥∥∥hd∗w̃h

∥∥∥
2

Λ0L2

+〈|∇xn|
2w̃h | w̃h〉Λ1L2 + h

∫

ΓND

〈w̃h | w̃h〉Λ1T ∗
σΩ

(
∂xn
∂n

)
(σ) dσ

+〈(|∇ϕ|2 − |∇ϕhN |
2)w̃h | w̃h〉 − C1h〈1Ωh+

(x)w̃h | w̃h〉 ,

where the constant C1 > 0 is determined by f and r̃h = O(h∞).

In Ωh
− the weight e

ϕhN (x)

h is bounded by C2(C)h−N and this provides
∥∥∥w̃h

∥∥∥
Λ1L2(Ωh−)

≤ C2(C)h−N
∥∥∥wh

∥∥∥
Λ1L2(Ωh−)

≤ C3(C,N) ,

due to
∥∥wh

∥∥
Λ1H1 = O(h∞) .

We obtain:

δ̃(C,N)(h−N0

∥∥∥w̃h
∥∥∥

Λ1H1
+ 1) ≥

∥∥∥hdw̃h
∥∥∥

2

Λ2L2
+
∥∥∥hd∗w̃h

∥∥∥
2

Λ0L2

+〈|∇xn|
2w̃h | w̃h〉Λ1L2 + h

∫

ΓND

〈w̃h | w̃h〉Λ1T ∗
σΩ

(
∂xn
∂n

)
(σ) dσ

+〈(|∇ϕ|2 − |∇ϕhN |
2)w̃h | w̃h〉 − C1h〈1Ωh+

(x)w̃h | w̃h〉 .

In Ωh
−, |∇ϕ|2 =

∣∣∇ψhN
∣∣2, using (4.6.3).

In Ωh
+, the point x fulfills almost surely one of the two possibilities:

• Either ∇ϕhN = ∇ψ , and we get

|∇ϕ|2 −
∣∣∣∇ψhN

∣∣∣
2
≥ (2ε− ε2) |∇ϕ|2 ≥ δρ,ε ,

where the last lower bound is due to the fact that ϕN (x) = ψ(x)
cannot occur in a neighborhood of x′ = 0 for ε > 0 small enough and
h ∈ (0, hN,ρ′,ε);
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• or ∇ϕhN = ∇ϕ(1 − Ch
ϕ ) .

So we get, similarly to the proof of Proposition 4.3.1-b), for C big enough
and h ∈ (0, hN,ρ′,ǫ] , with hN,ρ′,ǫ > 0 small enough:

δ̃2(C,N)(h−N0

∥∥∥w̃h
∥∥∥

Λ1H1
+ 1) ≥

∥∥∥hdw̃h
∥∥∥

2

Λ2L2
+
∥∥∥hd∗w̃h

∥∥∥
2

Λ0L2
+ (1 + 2δ(C)h)〈|∇xn|

2w̃h | w̃h〉Λ1L2

+h

∫

ΓND

〈w̃h | w̃h〉Λ1T ∗
σΩ

(
∂xn
∂n

)
(σ) dσ .

After treating the r.h.s. like in the proof of Proposition 4.3.1-b)-Step 1, we
obtain, for a constant N0 > 0 ,

∥∥∥w̃h
∥∥∥

Λ1H1(ΩU1,ρ
)
≤ C4 h

−N0 .

Our choice of (ε, ρ′) imply

∀x ∈ ΩU1,ρ′ , ϕhN ≥ ϕ(x) +Nh log h−1 + C̃h log h .

We have proved the existence of N1 and ρ′0, such that, for any N ∈ N and
ρ′ ∈ (0, ρ′0] , there exists hN,ρ′ > 0 and CN,ρ′ > 0 , such that:

∥∥∥e
ϕ
h (uh1 − c(h)uwkb1 )

∥∥∥
Λ1H1(ΩU1,ρ

′)
≤ CN,ρ′ h

N−N1

holds for any h ∈ (0, hN,ρ′).
This last estimate and Φ|ΓND = ϕ imply

∥∥∥e
Φ
h (uh1 − c(h)uwkb1 )

∥∥∥
Λ1H1/2(ΩU1,ρ

′∩ΓND)
= O(h∞) .

Step 2: Comparison in the normal direction.

After replacing ρ′ by ρ , Step 1 provides the estimate
∥∥∥e

ϕ
h (uh1 − c(h)uwkb1 )

∥∥∥
Λ1H1

= O(h∞) . (4.6.4)

We work in ΩU1,ρ with the above estimate and ρ′ ∈ (0, ρ/2) will be taken
again small enough.

In order to get the interior estimate with the weight e
Φ
h , we modify the

previous analysis like in the proof of Proposition 4.3.1-b). The sets Ωh
± are

now given by

Ωh
− =

{
x = (x′, xn) ∈ ΩU1,ρ ; Φ < Ch

}
,

and Ωh
+ =

{
x = (x′, xn) ∈ ΩU1,ρ ; Φ > Ch

}
.
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The function ϕhN , N ∈ N, is given by

ϕhN (x) = min
{
ϕh(x) +Nh log h−1, ψ(x)

}
,

with ϕh(x) =

{
Φ(x) − Ch log Φ(x)

h , if Φ > Ch ,
Φ(x) − Ch logC , if Φ ≤ Ch ,

and ψ(x) = min
{
ϕh(y) + (1 − ε)dAg(x, y), y ∈ supp∇χ

}
.

We recall that the Agmon distance dAg(x, y) is the distance between x and
y for the metric |∇f |2 dx2 and Φ(x) = dAg(x,U1).
Again, the constant C ≥ 1 will be fixed in the end like in the proof of
Proposition 4.3.1-b), while the constants ρ′ ∈ (0, ρ/2) and ε > 0 are chosen
so that:

ϕhN (x) = ϕh(x) +Nh log h−1 in ΩU1,ρ′ .

Again, this implies:

ϕhN (x) = ϕh(x) +Nh log h−1 on Ωh
−

Now we have the inequalities

ϕhN (x) ≤ Φ(x) +Nh log h−1 in ΩU1,ρ

and ϕhN (x) ≤ Φ(x) in supp∇χ .

Hence the estimate ∥∥∥∥e
ϕhN
h rh

∥∥∥∥
Λ1L2

= O(h−N0)

is still valid.
Inequality (4.6.4) implies that the L2-norm of the trace of w̃h on ΓND is
O(h∞) and we have the next estimate:

∥∥∥w̃h
∥∥∥

Λ1L2(Ωh−)
≤ C2(C)h−N

∥∥∥wh
∥∥∥

Λ1L2(Ωh−)
≤ C3(C,N) .

With these estimates, the integration by parts formula (4.3.3) and (2.2.7)
lead to:

δ̃(C,N)(h−N0

∥∥∥w̃h
∥∥∥

Λ1L2
+ 1) ≥

∥∥∥hdw̃h
∥∥∥

2

Λ2L2
+
∥∥∥hd∗w̃h

∥∥∥
2

Λ0L2

+ 〈(|∇ϕ|2 − |∇ϕhN |
2 −C1h)1Ωh+

(x)w̃h | w̃h〉 .

Finally, for almost all x ∈ Ωh
+ we have:

either: ∇ϕhN (x) = ∇ψ(x)
and

|∇f |2 −
∣∣∣∇ϕhN

∣∣∣
2

= (2ε − ε2) |∇f(x)|2 ≥ δρ,ε > 0 ;
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or: ∇ϕhN (x) = ∇ψh(x)
and we get like in the proof of Proposition 4.3.1-b)

|∇f |2 −
∣∣∣∇ϕh

∣∣∣
2
≥ C4Ch .

By taking C big enough, we get that ||e
ϕhN
h wh|| = O(h−N0) for some N0 > 0.

Like in Step 1, this leads to
∥∥∥e

Φ
h (uh1 − c(h)uwkb1 )

∥∥∥
Λ1H1(ΩU1,ρ

′)
= O(h∞) ,

for ρ′ ∈ (0, ρ/2) small enough.

Step 3:
The estimates in higher order Sobolev spaces are done like in the proof of
Proposition 4.3.1-b) by a bootstrap argument after writing a boundary value
problem for χ(uh1 − c(h)uwkb1 ) in R

n
−.

5 Labelling of local minima and construction of

the quasimodes

5.1 Preliminaries

Here we adapt to our case with Neumann boundary condition the method
of selecting the proper critical points with index 1 which was used in [HKN]
and in [HeNi1]. We recall that the intuition for getting the good labelling
of local minima, which is useful even to state properly the assumptions and
results, comes from the probabilistic approach. The local minima have to be
labelled according to the decreasing order of exit times. We refer to [BGK],
[BEGK] and [FrWe] for details.
Note that a similar strategy has independently been considered in [CoPaYc]
for the spectral analysis on Markov processes on graphs.

The existence of such a labelling is an assumption which is generically sat-
isfied. After this, it is possible to construct accurately quasimodes leading,
with the help of the Witten complex structure, to accurate asymptotic ex-
pansions of the low lying eigenvalues.

5.2 Generalized critical points and local structure of the level

sets of a Morse function

We recall that we work here on a compact connected oriented Rieman-
nian manifold Ω = Ω ∪ ∂Ω with boundary and that the function f satis-
fies Assumption 3.1.1. According to our preliminary results on the Witten
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Laplacian ∆N
f,h in Theorem 3.1.5, we introduce the following definition of

generalized critical points with index p .

Definition 5.2.1.
A point U ∈ Ω will be called a generalized critical point of f with index p if:

• either U ∈ Ω and U is a critical point of f with index p ,

• or U ∈ ∂Ω and U is a critical point with index p of f |∂Ω such that
∂f
∂n(U) > 0 (n being the outgoing normal vector).

Remark 5.2.2. In particular, for p = 0, we get that the generalized minima
are simply the local minima.

The set of generalized critical points with index p is denoted by U (p) . We
recall that we want to analyze the Witten Laplacian on 0-forms so we restrict
our attention to the cases p = 0 and p = 1. From now on, we will use the
notation:

mp = #U (p) for p = 0, 1 (5.2.1)

instead of mΩ
p .

Finally it is convenient to call U the union of all critical points of f and f |∂Ω.

Before labelling the local minima, let us recall a few remarks coming from
the local analysis of a Morse function which satisfies Assumption 3.1.1 (we
refer to [Mil1], [HKN], and [HeNi1]).

Local structure of the level sets of a Morse function.
In order to analyze the local situation near a point x0 of Ω, let us introduce:

A<f (x0) :=
{
x ∈ Ω ; f(x) < f(x0)

}
∩Bx0 ,

where Bx0 is a ball centered at x0. Similarly, we can introduce

A≤
f (x0) :=

{
x ∈ Ω ; f(x) ≤ f(x0)

}
∩Bx0 .

Interior points:
First we observe that, near a non critical point x0 ∈ Ω of f , one can find
Bx0 and a set of local coordinates such that

A<f (x0) = {y1 < 0} ∩Bx0 .

Secondly, if x0 is a critical point with index p, then there exists a ball Bx0

around x0 and a set of local coordinates centered at x0 such that

A<f (x0) =



−

p∑

ℓ=1

y2
ℓ +

n∑

ℓ=p+1

y2
ℓ < 0



 ∩Bx0 ,
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and

A≤
f (x0) =



−

p∑

ℓ=1

y2
ℓ +

n∑

ℓ=p+1

y2
ℓ ≤ 0



 ∩Bx0 .

We now observe that

1. When p = 0 (local minimum), A<f (x0) is empty and A≤
f (x0) is reduced

to {x0} .

2. When p = 1 , A<f (x0) has two connected components and x0 belongs
to the closure of each of the two components. This property will be
crucial in the discussion.

3. When p ≥ 2, A<f (x0) is (arcwise) connected.

Points on the boundary:
If x0 belongs to ∂Ω, Assumption 3.1.1 leads to two cases:
First case.
If x0 is not a critical point of f |∂Ω, then the hypersurfaces {x | f(x) = f(x0)}
and ∂Ω intersect transversally in a neighborhood of x0. Hence there is a ball
Bx0 around x0 and a set of local coordinates such that

A<f (x0) = {y1 < 0, yn ≤ 0} ∩Bx0 ,

and
A≤
f (x0) = {y1 ≤ 0, yn ≤ 0} ∩Bx0 ,

with Ω ∩Bx0 = {yn < 0} ∩Bx0 .
Second case.
If x0 is a critical point of f |∂Ω with index p and with ± ∂f

∂n(x0) > 0, there are
local coordinates (y1, . . . , yn−1, yn), constructed from the relations (3.3.4)–
(3.3.7), such that (y1, . . . , yn−1) are Morse coordinates for f |∂Ω and such
that

A<f (x0) =



±yn −

p∑

i=1

y2
i +

n−1∑

i=p+1

y2
i < 0 , yn ≤ 0



 ∩Bx0 ,

and

A≤
f (x0) =



±yn −

p∑

i=1

y2
i +

n−1∑

i=p+1

y2
i ≤ 0 , yn ≤ 0



 ∩Bx0 .

These local models allow to see that

1. If x0 is a local minimum of f |∂Ω such that ∂f
∂n(x0) < 0 , then

A<f (x0) = ∅ and A≤
f (x0) = {x0} .
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2. If x0 is a local minimum of f |∂Ω such that ∂f
∂n(x0) > 0 , then

A<f (x0) ∩ ∂Ω = ∅ and A≤
f (x0) ∩ ∂Ω = {x0} . Moreover, A<f (x0) is

connected.

3. If p = 1 and ∂f
∂n(x0) < 0 (i.e. if x0 ∈ U (1) ∩ ∂Ω), A<f (x0) has two

connected components with a non-empty intersection with ∂Ω and x0

belongs to the closure of each of the two components. Again, this
property will be crucial in the discussion.

4. In all other cases, A<f (x0) is connected with a non-empty intersection
with ∂Ω.

5.3 Labelling of local minima and first consequence

Remember our main Assumption 1.0.1:
The function f has #U distinct critical values and the quantities f(U (1)) −
f(U (0)), with U (1) ∈ U (1) and U (0) ∈ U (0) are distinct.

Definition 5.3.1. For λ ∈ R, we define H0({f < λ}) as the number of
connected components of the level set L(λ) = f−1((−∞, λ)) .

Due to local structure of the level sets of a Morse function and to Assump-
tion 1.0.1, the function H0({f < λ}) of λ ∈ R is a step function which
satisfies, with λ decreasing from +∞:

• H0({f < λ}) decreases by 1 around every λ = f(U (0)) with U (0) ∈
U (0).

• wherever H0({f < λ}) increases by 1, it is around a λ = f(U (1)) with
U (1) ∈ U (1).

• H0({f < λ}) is locally constant away from those points.

Remark 5.3.2. Ω is connected and compact so H0({f < λ}) equals respec-
tively 1 or 0 for λ ≥ λf or λ ≤ −λf for some λf > 0.
Consequently, the previous discussion implies that the number of critical val-
ues of f with index 1 where H0({f < λ}) increases (by 1) is equal to m0 − 1
and so that m1 + 1 ≥ m0 .

We now label the local minima of f as follow:

1) We set U
(0)
1 = minx∈Ω f , z1 = ∞, f(z1) = z1 = ∞ and we consider

H0({f < λ}) for λ decreasing from f(z1) = +∞.

2) When U
(0)
k and zk are defined for k = 1, . . . ,K − 1, decrease λ from

f(zK−1) until H0({f < λ}) increases by 1. Denote by λK this value.
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3) By Assumption 1.0.1 and by the previous discussion, there exists a unique
point in U (1), that we denote by zK , satisfying f(zK) = λK . Then we

denote by U
(0)
K the global minimum of the new connected component.

4) We iterate 2) and 3) until all the local minima have been considered.

5) At least we permute the k’s to make the sequence
(
f(zk) − f(U

(0)
k )
)
k∈{1,...,m0}

strictly decreasing, which is possible by Assumption 1.0.1.

Definition 5.3.3. (The map j)

If the generalized critical points with index 1 are numbered U
(1)
j , j = 1, . . . ,m1 ,

we set U
(1)
1 = z1 = ∞ and we define the application k 7→ j(k) from

{1, . . . ,m0} to {0, 1, . . . ,m1} by:

{
j(1) = 0 and U

(1)
j(1) = z1

∀ k ≥ 2 , U
(1)
j(k) = zk .

Definition 5.3.4.
For k ∈ {1, . . . ,m0}, we denote by Ek the connected component of U

(0)
k in

f−1((−∞, f(U
(1)
j(k))]) \ {U

(1)
j(k)} .

Remark 5.3.5.
By the previous construction, U

(0)
k is the global minimum of Ek.

Proposition 5.3.6.
Under Assumption 1.0.1, the following properties are satisfied:

a) The sequence
(
f(U

(1)
j(k)) − f(U

(0)
k )
)
k∈{1,...,m0}

is strictly decreasing.

b) E1 = Ω is compact and for any k > 1 the set Ek is a relatively compact

subset of f−1((−∞, f(U
(1)
j(k))]) satisfying Ek = Ek ∪

{
U

(1)
j(k)

}
.

c) For any (k, j) ∈ {1, . . . ,m0} × {0, 1, . . . ,m1}, the relation U
(1)
j ∈ Ek

implies:

either (j = j(k′) for some k′ > k) or j 6∈ j({1, . . . ,m0}) .

d) For any k 6= k′ ∈ {1, . . . ,m0} , the relation U
(0)
k′ ∈ Ek implies:

(
k′ > k and f(U

(0)
k′ ) > f(U

(0)
k )
)
.

e) The application j : {1, . . . ,m0} → {0, 1, . . . ,m1} is injective.
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Proof.
By Assumption 1.0.1 and by construction, the points a), b) and e) are ob-
vious.
c) Assume now U

(1)
j(k′) ∈ Ek .

Since U
(1)
j(k) /∈ Ek, one has k 6= k′. Moreover, by definition of Ek and by

Assumption 1.0.1, we have the inequality f(U
(1)
j(k′)) < f(U

(1)
j(k)) which implies

that Ek′ is contained in Ek, by connectedness of Ek and Ek′ .

Consequently, U
(0)
k′ ∈ Ek and by Assumption 1.0.1, f(U

(0)
k′ ) > f(U

(0)
k ) (be-

cause U
(0)
k is the global minimum of f on Ek) which yields:

f(U
(1)
j(k′)) − f(U

(0)
k′ ) < f(U

(1)
j(k)) − f(U

(0)
k )

and the point a) gives k′ > k .

d) Assume U
(0)
k′ ∈ Ek for k 6= k′.

Again one has f(U
(0)
k′ ) > f(U

(0)
k ) which implies k′ 6= 1 (then U

(1)
j(k′)

∈ Ω) and
there are two possible cases:

U
(1)
j(k′) ∈ Ek or U

(1)
j(k′) /∈ Ek .

In the second case, let us look at Ek′ . Ek′ is connected and U
(0)
k′ is the global

minimum of f on Ek′ . Moreover, U
(0)
k′ ∈ Ek′∩Ek and U

(1)
j(k′) ∈ Ek′ \Ek imply,

by connectedness, that ∂Ek ∩Ek′ 6= ∅.

Ek is then contained in Ek′ and U
(0)
k ∈ Ek′ , which cannot occur.

Consequently, U
(1)
j(k′) ∈ Ek and the points b) and c) imply k′ > k .

5.4 Construction of the quasimodes

Like in [HKN] and in [HeNi1], we associate with every U
(0)
k (k ∈ {1, . . . ,m0})

a quasimode for ∆
N,(0)
f,h which is approximately supported in Ek , while the

quasimodes for ∆
N,(1)
f,h will be supported in the balls B(U

(1)
j , 2 ε1) (j ∈

{1, . . . ,m1}). A ball B(U, ρ) , with U ∈ Ω and ρ > 0 , is a geodesic ball
and the geodesic distance is denoted by dΩ . The parameter ε1 > 0 is fixed
so that:

• dΩ(U,U ′) ≥ 10 ε1 for U , U ′ ∈ U , U 6= U ′ .

• For all U ∈ U and all k ∈ {1, . . . ,m0} , U 6∈ Ek implies

dΩ(U,Ek) ≥ 10 ε1 .

• The construction of the WKB approximation of Subsection 4.6 is pos-

sible in the ball B(U
(1)
j , 2 ε1). If U

(1)
j is a boundary point, this means
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the introduction of the coordinates (x′, xn) used in Section 4.3 and the
existence of Φ. Recall that in these coordinates, Φ and g0 have the
form:

Φ = −xn+ϕ(x′) and g0 = gnn(x) dx
2
n+

n−1∑

i,j=1

gij(x) dxidxj . (5.4.1)

The parameter ε1 > 0 will be kept fixed, while we need another parameter
ε ∈ (0, ε0) which will be fixed in the final step of the proof.

Like in [HeNi1], the construction presented in [HKN] has to be adapted

when U
(1)
j(k) ∈ ∂Ω or U

(0)
k ∈ ∂Ω (recall that in [HeNi1], the case U

(0)
k ∈ ∂Ω

did not occur) and we focus on these changes.
However, note that in [HeNi1] the set Ek intersected ∂Ω at most at one

point (Ek ∩ ∂Ω ⊂
{
U

(1)
j(k)

}
). It is not the case here and we cannot use the

same construction when U
(1)
j(k) ∈ ∂Ω.

For every k ∈ {1, . . . ,m0} and ε > 0, we introduce the set:

Ω̃k(ε, δ) =
{
x ∈ Ω, dΩ

(
x,Ek \B(U

(1)
j(k), ε)

)
< δ
}
∪B(U

(1)
j(k), ε) ,

with δ ∈ (0, δε) , δε > 0 small enough.

The cut-off function χ̃k,ε ∈ C∞
0 (Ω) , 0 ≤ χ̃k,ε ≤ 1 is chosen so that:

supp χ̃k,ε ⊂ Ω̃k(ε, δε) and χ̃k,ε|eΩk(ε,δε/2)\B(U
(1)
j(k)

,ε)
= 1 .

Around U
(1)
j(k)

, the cut-off function χ̃k,ε is chosen (more accurately below

when U
(1)
j(k) ∈ ∂Ω) so that U

(1)
j(k) 6∈ supp χ̃k,ε and

∀x ∈ B(U
(1)
j(k), ε) ,

(
χ̃k,ε(x) 6= 0 , and f(x) < f(U

(1)
j(k))

)
⇒ x ∈ Ek . (5.4.2)

Remark 5.4.1. The cut-off functions χ̃k,ε are used in the construction of

quasimodes for ∆
N,(0)
f,h .

Moreover, in the case k = 1, we have by construction χ̃k,ε ≡ 1 in Ω because

U
(1)
j(1) /∈ Ω. This case provides directly the eigenvector

∥∥e−f(x)/h
∥∥−1

e−f(x)/h

(of ∆
N,(0)
f,h ) with the eigenvalue 0.

Like in [HKN] and in [HeNi1], we deduce from Proposition 5.3.6 the following
properties for χ̃k,ε .
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Proposition 5.4.2.
By taking δ = δε with ε ∈ (0, ε0] , 0 < ε0 ≤ ε1 small enough, the cut-off
functions χ̃k,ε (k ∈ {1, . . . ,m0}) satisfy the following properties:

a) If x belongs to supp χ̃k,ε and f(x) < f(U
(1)
j(k)) , then x ∈ Ek.

b) There exist C > 0 and, for any ε ∈ (0, ε0] , a constant Kε > 0 , such
that, for x ∈ supp∇χ̃k,ε ,

either x 6∈ B(U
(1)
j(k), ε) and f(U

(1)
j(k)) +K−1

ε ≤ f(x) ≤ f(U
(1)
j(k)) +Kε ,

or x ∈ B(U
(1)
j(k)

, ε) and
∣∣∣f(x) − f(U

(1)
j(k)

)
∣∣∣ ≤ Cε .

c) For any U ∈ U , U 6= U
(1)
j(k), the distance dΩ(U, supp∇χ̃k,ε) is bounded

from below by 3ε1 > 0 . If in addition U ∈ supp χ̃k,ε, then U ∈ Ek .

d) If, for some k′ ∈ {1, . . . ,m0}, U
(0)
k′ belongs to supp χ̃k,ε , then k′ ≥ k and

f(U
(0)
k′ ) > f(U

(0)
k ), f(U

(1)
j(k′)) ≤ f(U1

j(k)) , if k 6= k′ .

e) For any j ∈ {1, . . . ,m1} , such that U
(1)
j ∈ supp χ̃k,ε ,

either j 6∈ j ({1, . . . ,m0}) ,

or j = j(k′) , for some k′ ≥ k and U
(0)
k′ ∈ supp χ̃k,ε .

The quasimodes for ∆
N,(1)
f,h associated with the U

(1)
j ∈ Ω are constructed like

in [HKN] and in [HeNi1] (and rely on the approximation by the Dirichlet

problem in small balls B(U
(1)
j , 2ε1)). We will not recall the complete con-

struction here.
In the same spirit as in [HeNi1], the quasimodes associated with the U

(1)
j ∈

∂Ω will rely on the approximation by the Neumann realization associated
with the neighborhood Ω

U
(1)
j ,ρ

(ρ > 0 small enough) which was studied in

Subsection 4.6.
Once ρ > 0 is fixed uniformly for all U

(1)
j ∈ ∂Ω , the parameter ε1 > 0 is

reduced so that B(U
(1)
j , 2ε1) ⊂ ΩU1,ρ for all U

(1)
j ∈ ∂Ω.

For all j ∈ {1, . . . ,m1}, uj denotes a normalized eigenvector associated with
the first (exponentially small) eigenvalue of this Dirichlet or Neumann real-

ization. The cut-off function θj ∈ C∞
0 (B(U

(1)
j , 2ε1)) is taken such that θj = 1

on B(U
(1)
j , ε1) and

∂θj
∂n

∣∣
∂Ω

≡ 0 for boundary points U
(1)
j ∈ ∂Ω.

Note that the function χ̃k,ε depends on ε ∈ (0, ε0], while θj is kept fixed like
ε1 > 0.
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Definition 5.4.3. For cut-off χk,ε satisfying the properties of Proposition 5.4.2
like χ̃k,ε, introduce the following quasimodes.

For any k ∈ {1, . . . ,m0}, the (ε, h)-dependent function ψ
(0)
k is defined by

ψ
(0)
k (x) =

∥∥∥χk,ε(x)e−(f(x)−f(U
(0)
k ))/h

∥∥∥
−1

χk,ε(x)e
−(f(x)−f(U

(0)
k ))/h .

For any j ∈ {1, . . . ,m1}, the h-dependent 1-form ψ
(1)
j is defined by

ψ
(1)
j (x) =

(
‖θjuj‖

−1
)
θj(x)uj(x) .

We set λapp1 (ε, h) = 0, and for any k ∈ {2, . . . ,m0} :

λappk (ε, h) =
∣∣∣
〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉∣∣∣
2
.

Remark 5.4.4.
a) In the case U

(1)
j(k)

∈ Ω, χk,ε is χ̃k,ε with additional properties (see [HKN]

for details) and we will still denote it here by χ̃k,ε. In the case U
(1)
j(k) ∈ ∂Ω,

the real choice of χk,ε will be fixed further (see Definition 5.5.8). Moreover,
χk,ε also satisfies the properties of Proposition 5.4.2.
b) For the sake of conciseness, we omit the (ε, h)- and h- dependence in the

notations ψ
(0)
k and ψ

(1)
j .

c) We will show in the next section that the λappk (ε, h)’s are approximated

values of the small eigenvalues of ∆
N,(0)
f,h .

By Remark 5.4.1, this definition is coherent for k = 1 and ψ
(0)
1 is the nor-

malized eigenvector associate with the eigenvalue 0.

d) Due to the condition
∂θj
∂n

∣∣
∂Ω

≡ 0, ψ
(1)
j belongs to D(∆

N,(1)
f,h ) and this, even

if U
(1)
j belongs to ∂Ω.

5.5 Quasimodal estimates

We end this section by reviewing the quasimodal estimates which are derived
from Propositions 5.3.6 and 5.4.2. The asymptotic expansion of the quan-

tity
〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉
has also be done in [HKN] when U

(0)
k and U

(1)
j(k) ∈ Ω

are interior points. Like in [HeNi1], we will simply complete this analysis

by establishing the asymptotic expansion of
〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉
, when U

(0)
k

or U
(1)
j(k) is in ∂Ω .

Remark 5.5.1. In this subsection, we make computations with different

coordinate systems v = (v1, . . . , vn) (around U = U
(0)
k or U = U

(1)
j(k)) all

given given by Lemma 3.3.1.
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Remember that the coordinates (v1, . . . , vn−1) in the boundary can be chosen
freely. According to [HeSj4] pp 279–280, there are Morse coordinates for
f
∣∣
Ω

and such that dv1(U), . . . , dvn−1(U), ~n∗U is orthonormal and positively
oriented. With these coordinates

f(v, 0) =
λ1

2
v2
1+· · ·+

λn−1

2
v2
n−1+f(U) and ϕ(v) =

|λ1|

2
v2
1+· · ·+

|λn−1|

2
v2
n−1 ,

(5.5.1)

with λ1 < 0 when U = U
(1)
j . Hence all the coordinates systems around

U ∈ ∂Ω will coincide on ∂Ω while they may differ in Ω according to the case
when a normal form is used for f , Φ or f + Φ in Ω.

Remind that the parameter ε1 > 0 is fixed, while ε0 and ε ∈ (0, ε0] may
have to be adapted during the proof. We shall denote by α a generic
positive constant which is independent of ε ∈ (0, ε0] .
Introduce the next notation which will be very useful:

Definition 5.5.2. The notation g(h) = Oε(e
−α
h ) means that, for all ε ∈

(0, ε0], there exists a constant Cε > 0 such that:

∀h ∈ (0, h0] , |g(h)| ≤ Cεe
−α
h .

From Proposition 5.3.6-d) and the good localization of ∇χk,ε, we deduce the

following estimates for ψ
(0)
k .

Proposition 5.5.3.

The system of (ε, h)-dependent functions (ψ
(0)
k )k∈{1,...,m0} of Definition 5.4.3

is almost orthogonal with
(
〈ψ

(0)
k | ψ

(0)
k′ 〉
)
k,k′∈{1,...,m0}

= IdCm0 + Oε(e
−α
h ) ,

and there exists α > 0 and, for any ε ∈ (0, ε0], C(ε) and h0(ε) such that,
for any h ∈ (0, h0(ε)] ,

〈∆
N,(0)
f,h ψ

(0)
k | ψ

(0)
k 〉 =

∥∥∥d(0)
f,hψ

(0)
k

∥∥∥
2
≤ C(ε)e−2

f(U
(1)
j(k)

)−f(U
(0)
k

)−αε

h .

Corollary 5.5.4.
There exists ε0 > 0 and α > 0 such that, for any choice of ε in (0, ε0]

and for all k ∈ {1, . . . ,m0} , the (ε, h)-dependent quasimodes ψ
(0)
k satisfy the

estimate
〈∆

N,(0)
f,h ψ

(0)
k | ψ

(0)
k 〉 = Oε(e

−α
h ) .

The exponential decay of the first eigenvector uj, associated with an expo-

nentially small eigenvalue, of the Dirichlet realization of ∆
(1)
f,h around U

(1)
j ,

provides the next estimates for ψ
(1)
j . We refer the reader to [HKN] or [HeSj4]

for U
(1)
j ∈ Ω and to Subsection 4.6 for U

(1)
j ∈ ∂Ω.
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Proposition 5.5.5.

The system of h-dependent 1-forms,
(
ψ

(1)
j

)
j∈{1,...,m1}

given in Definition 5.4.3

is orthonormal and there exists α > 0 independent of ε such that

〈∆
N,(1)
f,h ψ

(1)
j | ψ

(1)
j 〉 = O(e−

α
h ) ,

for all j ∈ {1, . . . ,m1} .

Let us now compute some asymptotic expansions.

Proposition 5.5.6. For k in {2, . . . ,m0} and x in Ω ,

ψ
(0)
k (x) = γk(h)(1 + ak(h))χk,ε(x)e

−
f(x)−f(U

(0)
k

)

h ,

where γk(h) is defined in Definition 1.0.2 and ak(h) ∼
∑∞

ℓ=1 ak,ℓh
ℓ.

Proof. In the case U
(0)
k ∈ Ω, we refer the reader to [HKN].

If U
(0)
k ∈ ∂Ω, we use again, in a neighborhood of U

(0)
k , the coordinate system

(x′, xn) introduced in the second part of the Section 3.3 (with x(U
(0)
k ) = 0).

In this coordinate system, f and g0 equal:

f(x) = −xn + f |∂Ω(x′) = −xn + f(U
(0)
k ) + ϕ(x′) , (5.5.2)

g0 = gnn(x) dx
2
n +

∑n−1
i,j=1 gij(x) dxidxj , (5.5.3)

where ϕ = f |∂Ω − f(U
(0)
k ) is the Agmon distance to U

(0)
k on the boundary.

We denote by Vg0(dx) the normalized volume form:

Vg0(dx) = (detG0(x))
1/2dx′ ∧ dxn =: ν(x′, xn)dx

′ ∧ dxn .

From (5.5.2),

dxn(U
(0)
k ) = −

∂f

∂n
(U

(0)
k ) ~n∗

U
(0)
k

and ν(0, 0) =

(
−
∂f

∂n
(U

(0)
k )

)−1

. (5.5.4)

For some constants η > 0 and δη > 0,

∥∥∥∥∥χk,εe
−
f(x)−f(U

(0)
k

)

h

∥∥∥∥∥

2

=

∫

Ω
χ2
k,εe

−2
f(x)−f(U

(0)
k

)

h Vg0(dx)

=

∫

B(0,η)
e2

xn
h e−2

ϕ(x′)
h ν(x′, xn)dx

′ ∧ dxn + O(e−
δη
h ) .

According to (5.5.1),

∥∥∥∥∥χk,εe
−
f(x)−f(U

(0)
k

)

h

∥∥∥∥∥

2

=

∫

B(0,η)
e2

xn
h e

|λ1|
2 x21+···+

|λn−1|
2 x2n−1

h ν(x′, xn)dx ∧ dxn

+ O(e−
δη
h ) .
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By expanding ν(x′, xn) to a Taylor Series of arbitrary order k ∈ N
∗, we can

separate the variables x′ and xn in the last integral term.
Hence, using the Laplace Method for each term, we obtain an asymptotic

expansion of arbitrary order of

∥∥∥∥∥χk,εe
−
f(x)−f(U

(0)
k

)

h

∥∥∥∥∥

2

.

Moreover, from (5.5.4), the first term is:

(
−
∂f

∂n
(U

(0)
k )

)−1 h

2

(πh)
n−1

2

∣∣∣detHess f |∂Ω(U
(0)
k )
∣∣∣
1
2

= (γk(h))
−2 .

Proposition 5.5.7. In B(U
(1)
j(k), ε1), choose the coordinate system x which

satisfies (5.4.1) and (5.5.1) with λ1 < 0. For k in {2, . . . ,m0}, the equality

ψ
(1)
j(k)(x) = δj(k)(h)b(x, h)e

−
Φ(x)
h ,

holds up to a phase factor, when δj(k)(h) is defined according to Defini-

tion 1.0.2, b(x, h) ∼
∑∞

ℓ=0 bk,ℓ(x)h
ℓ, bk,ℓ(x) =

∑n
i=1 b

i
k,ℓ(x)dxi, and bik,0(0) =

δ1 i.

Proof. In Section 4, we found a WKB approximation uwkb1 of an eigenvector
uh1 such that,

e
Φ(x)
h uwkb1 =

∑n
i=1 a

0
i (x)dxi + ha1(x, h) ,

a0
i (0) = δ1 i , a

1(x, h) ∼
∑

ℓ h
ℓaℓ(x) ,

and

∀x ∈ B(U
(1)
j(k), 2ε1), e

Φ(x)
h

∣∣∣∂αx (uh1(x) − uwkb1 (x))
∣∣∣ ≤ Cα,Nh

N .

The WKB approximation uwkb1 was initially constructed in another coor-
dinate system (x1, . . . , xn). Remark 5.5.1 recalls that the tangential co-
ordinates x1, . . . , xn−1 and x1, . . . , xn−1 can coincide in ∂Ω with different
deformations as entering into Ω.

The normalized eigenvector that we take here is

uj(k) =
uh1∥∥uh1
∥∥ .

Let us first compute accurately:
∥∥∥uh1

∥∥∥ =
∥∥∥θj(k)uh1

∥∥∥+ O(h∞) =
∥∥∥θj(k)uwkb1

∥∥∥+ O(h∞) .

64



Moreover,

∥∥∥θj(k)uwkb1

∥∥∥
2

=

∫
θj(k)(x)

2〈a(x, h) | a(x, h)〉e−
2Φ(x)
h Vg0(dx) ,

where the integral is over xn ≤ 0. Note furthermore that,

dxn(U
(1)
j(k)) = −

∂Φ

∂n
(U

(1)
j(k)) ~n

∗

U
(1)
j(k)

= −
∂f

∂n
(U

(1)
j(k)) ~n

∗

U
(1)
j(k)

.

Proceeding like in the proof of Proposition 5.5.6, we obtain, using the

Laplace method, a full asymptotic expansion of
∥∥θj(k)uwkb1

∥∥2
. The first term

is given by the first term of

∫
θj(k)(x)

2〈a0(x) | a0(x)〉e
2xn
h e−2ϕ(x′)

h Vg0(dx) ,

and from 〈a0(x) | a0(x)〉(0) = 1, we conclude like in the proof of Proposi-
tion 5.5.6.

Before stating the next result, let us specify the choice of χk,ε when U
(1)
j(k) ∈

∂Ω. We assume ε ∈ (0, ε0), with 0 < ε < ε1
10 . We introduce locally near

U
(1)
j(k) a new coordinate system (x̃1, . . . , x̃n) by application of Lemma 3.3.1

with f1 = f + Φ and α = (f + Φ)|∂Ω.

Hence, we can write in B(U
(1)
j(k), 2ε1), choosing ε1 small enough:

(f + Φ)(x̃) = −x̃n + (f + Φ)|∂Ω(x̃′) = −x̃n + f(x̃′, 0) + ϕ(x̃′)

with an arbitrary choice of x̃′ in the boundary.
Remark moreover that in this case,

dx̃n(U
(1)
j(k)) = −2

∂f

∂n
(U

(1)
j(k)) ~n

∗

U
(1)
j(k)

.

We choose the coordinate system x̃′ in the boundary like it was chosen in the
boundaryless case (see [HeSj4][HKN]) according to the geometry of stable
and unstable manifolds in order to write (f + Φ)|∂Ω as a function of n − 2
coordinates:

(f + Φ)|∂Ω(x̃′) = f(x̃′, 0) + ϕ(x̃′) = (f + Φ)|∂Ω(x̃2, . . . , x̃n−1) . (5.5.5)

Definition 5.5.8. For any k ∈ 1, . . . ,m0 we define the cut-off χk,ε by:

• If U
(1)
j(k) ∈ Ω, χk,ε = χ̃k,ε.

• If U
(1)
j(k) ∈ ∂Ω, we first construct near ∂Ω ∩ Ek the cut-off χ∂Ω

k,ε like it was
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constructed in the boundaryless case (see [HKN]).
Then, choosing a cut-off

χn(x̃n) ∈ C∞
0 (R−), χn = 1 on (−δε, 0]

we take for χk,ε:

χk,ε(x̃) = χn(x̃n)χ
∂Ω
k,ε + (1 − χn(x̃n))χ̃k,ε .

Note that χk,ε, for δε small enough, satisfies the same properties as χ̃k,ε
in Proposition 5.4.2 and we make that choice. Moreover, according to
[HKN] p.28, in a neighborhood of {x̃1 = 0} ∩ ∂Ω, the cut-off χk,ε only de-
pends on x̃1: χk,ε = χk,ε(x̃1).

Proposition 5.5.9.
There exist ε0 and sequences (ck,m)m∈N∗ , such that the (ε, h)-dependent and

h-dependent quasimodes ψ
(0)
k and ψ

(1)
j ( (k, j) ∈ {1, . . . ,m0} × {1, . . . ,m1}

and ε ∈ (0, ε0]) satisfy:

|〈ψ
(1)
j | d

(0)
f,hψ

(0)
k 〉| = 0 if j 6= j(k) ,

|〈ψ
(1)
j(k) | d

(0)
f,hψ

(0)
k 〉| = γk(h)δj(k)(h)θj(k)(h)e

−
f(U

(1)
j(k)

)−f(U
(0)
k

)

h

(
1 + hc1k(h)

)

where γk(h), δj(k)(h), and θj(k)(h) are defined in Definition 1.0.2 and ck(h) ∼∑∞
ℓ=0 ck,ℓh

ℓ.

Proof. The first statement for j 6= j(k) is a consequence of our choice of

ε1 > 0 and χk,ε which gives according to Proposition 5.4.2-c) suppψ
(1)
j ∩

supp∇χk,ε = ∅. We conclude with d
(0)
f,hψ

(0)
k = Cε,h

(
d(0)χk,ε

)
e−f/h.

The second case was completely treated in [HKN] when U
(1)
j(k) ∈ Ω and

U
(0)
k ∈ Ω. Moreover, in the case when U

(1)
j(k) ∈ Ω and U

(0)
k ∈ ∂Ω, the proof

done in [HKN] remains valid if we take the convenient γk(h).

Show now the cases when U
(1)
j(k) ∈ ∂Ω and U

(0)
k ∈ Ω ∪ ∂Ω by adapting the

proofs done in [HKN] and [HeNi1].
From Proposition 5.5.6, Proposition 5.5.7, and

d
(0)
f,h

(
χk,εe

−
f(x)
h

)
= e−

f(x)
h hd(0)χk,ε ,

we obtain the existence, for any ε > 0, of σε > 0 such that
〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉
= hγk(h)δj(k)(h)

×

∫

B(U
(1)
j(k)

,ε)
〈b(x, h) | dχk,ε〉(x)e

−
(Φ(x)+f(x)−f(U

(0)
k

))

h Vg0(dx)

+ Oε

(
e−

f(U
(1)
j(k)

)−f(U
(0)
k

)+σε

h

)
,
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with b(x, h) defined in Proposition 5.5.7.
Using the coordinate system x̃, with the choice of χk,ε,

〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉
= hγk(h)δj(k)(h)

×

∫
˜

B(U
(1)
j(k)

,ε)
〈b(x̃, h) | dχk,ε(x̃)〉(x̃)e−

−x̃n+ϕ(x̃′)+f(x̃′,0)−f(U
(0)
k

)

h Vg0(dx̃)

+ Oε

(
e−

f(U
(1)
j(k)

)−f(U
(0)
k

)+σε

h

)

= r(h)

∫

Cε

〈b(x̃, h) | dx̃1〉χ
′
k,ε(x̃1)e

x̃n−ϕ(x̃′)−(f(x̃′,0)−f(U
(1)
j(k)

))

h Vg0(dx̃)

+ Oε

(
e−

f(U
(1)
j(k)

)−f(U
(0)
k

)+σ′ε

h

)
,

where

r(h) = hγk(h)δj(k)(h)e
f(U

(0)
k

)−f(U
(1)
j(k)

)

h

and Cε is a cylinder |x̃′| < cε, −cε < x̃n < 0. Expanding 〈b(x̃, h) | dx̃1〉 to a
Taylor Series (of arbitrary order), we can obtain, using the Laplace method,

an asymptotic expansion (of arbitrary order) for
〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉
.

Moreover, the first term in the expansion of 〈b(x̃, h) | d x̃1〉 equals at x̃ = 0,
〈bk,0(x̃) | d x̃1〉(0) = 1. After recalling (5.5.5) which says that the exponent
f(x̃′, 0)+ϕ(x′) does not depend on x̃1, the first term of the wanted expression
is then given by

r(h)

∫
e
x̃n
h dx̃n

∫
e−

ϕ(x̃′)+(f(x̃′,0)−f(U
(1)
j(k)

))

h dx̃2 . . . dx̃n−1

∫
χ′
k,ε(x̃1)dx̃1 .

Using the Laplace method and

∫

R

χ′
k,ε(x1) dx1 = −1 ,

we find

r(h)
h

2∂f∂n(U
(1)
j(k))

|λ̂∂Ω
1 (U

(1)
j(k))|

1
2

|det Hess f |∂Ω(U
(1)
j(k))|

1
2

(πh)
n−2

2 .
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6 Final proof

6.1 Main result

Recall first some notations.
The generalized critical points with index 0,

{
U

(0)
k , k ∈ {1, . . . ,m0}

}
, are

labelled according to Subsection 5.3 and the generalized critical points with

index 1,
{
U

(1)
j(k) , k ∈ {2, . . . ,m0}

}
, are those introduced in Definition 5.3.3.

Moreover, the quantity λappk (ε, h) introduced in Definition 5.4.3 is associated

with the quasimodes ψ
(0)
k and ψ

(1)
j(k):

λappk (ε, h) =
∣∣∣
〈
ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k

〉∣∣∣
2
.

At a generalized critical point U with index i (i ∈ {0, 1}), the Hessians
Hess f(U) or Hess f

∣∣
∂Ω

are computed in orthonormal coordinates for the
metric g0, while considering only the tangential coordinates x′ = (x1, . . . , xn−1)
for the second case.
At least, for a generalized critical point U ∈ W with index 1 for W = Ω or
W = ∂Ω, λ̂W1 (U) denotes the negative eigenvalue of Hess f |W (U).

With these notations, we have the next theorem, which implies Theorem 1.0.3:

Theorem 6.1.1. Under Assumptions 3.1.1 and 1.0.1, the first eigenvalue

λ1(h) of ∆
N,(0)
f,h is 0 and its m0−1 first non zero eigenvalues λ2(h), . . . , λm0(h)

admit the following asymptotic expansion. There exist ε0 > 0 and α > 0 such
that, for any ε ∈ (0, ε0],

∀k ∈ {2, . . . ,m0} , λk(h) = λappk (ε, h)
(
1 + Oε(e

−α
h )
)
.

Recall also that, from Proposition 5.5.9, for any ε ∈ (0, ε0],

λappk (ε, h) = γ2
k(h) δ

2
j(k)(h) θ

2
j(k)(h) e

−2
f(U

(1)
j(k)

)−f(U
(0)
k

)

h
(
1 + hc1k(h)

)

where γk(h), δj(k)(h), and θj(k)(h) are defined in Definition 1.0.2 and c1k(h)
admits a complete expansion: c1k(h) ∼

∑∞
m=0 h

mck,m.

6.2 Finite dimensional reduction and final proof

Set first, for ℓ ∈ {0, 1}:

∀i ∈ {1, . . . ,mℓ} , v
(ℓ)
i = 1[0,h3/2)(∆

N,(ℓ)
f,h )ψ

(ℓ)
i , (6.2.1)

where the ψ
(ℓ)
i are the (ε, h)- and h- dependent quasimodes introduced in

Definition 5.4.3.
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Remark 6.2.1.
Note that here again we omit the (ε, h)-dependence (resp. h-dependence) of

the functions v
(0)
k (resp. 1-forms v

(1)
j ) in the notation.

Recall furthermore the definition of the space F (ℓ) given in introduction
(ℓ ∈ {0, 1}),

F (ℓ) = Ran 1
[0,h

3
2 )

(∆
(ℓ)
f,h) ,

which has dimension mℓ according to Theorem 3.1.5.
According to Lemma 2.3.5, Corollary 5.5.4 (for ℓ = 0) and Proposition 5.5.5

(for ℓ = 1),
∥∥∥1[h3/2,+∞)(∆

N,(ℓ)
f,h )ψ

(ℓ)
i

∥∥∥ is estimated from above by Oε(e
−α
h ),

which implies the two next propositions:

Proposition 6.2.2. For ℓ ∈ {0, 1}, the ℓ-forms (v
(ℓ)
i )i∈{1,...,mℓ} satisfy:

∥∥∥v(ℓ)
i − ψ

(ℓ)
i

∥∥∥ = Oε(e
−α
h )

for some α > 0 independent of ε ∈ (0, ε0].

Proposition 6.2.3.

For ℓ ∈ {0, 1}, the system
(
v
(ℓ)
i

)

i∈{1,...,mℓ}
is a basis of F (ℓ) satisfying:

V (ℓ) :=
(
〈v

(ℓ)
i |v

(ℓ)
i′ 〉
)
i,i′∈{1,...,mℓ}

= IdCmℓ + Oε(e
−α′

h ) ,

for some α > 0 independent of ε ∈ (0, ε0].

Finally, we can also establish:

Proposition 6.2.4.
There exist ε′0 > 0 and α′ > 0 such that, for all ε ∈ (0, ε′0], the estimates

∣∣∣〈v(1)
j | d

(0)
f,hv

(0)
k 〉
∣∣∣ ≤ Cεe

−
f(U

(1)
j(k)

)−f(U
(0)
k

)+α′

h , if j 6= j(k) ,

and

〈v
(1)
j(k) | d

(0)
f,hv

(0)
k 〉 = 〈ψ

(1)
j(k) | d

(0)
f,hψ

(0)
k 〉

(
1 + Oε(e

−α′

h )
)
,

hold for all (k, j) ∈ {1, . . . ,m0} × {1, . . . ,m1}.

Proof. Remark first, 1[0,h3/2)(∆
N,(1)
f,h ) being a spectral projector and using

Corollary 2.3.4:

〈v
(1)
j | d

(0)
f,hv

(0)
k 〉 = 〈1[0,h3/2)(∆

N,(1)
f,h )v

(1)
j | d

(0)
f,h1[0,h3/2)(∆

N,(0)
f,h )ψ

(0)
k 〉

= 〈1[0,h3/2)(∆
N,(1)
f,h )v

(1)
j | 1[0,h3/2)(∆

N,(1)
f,h )d

(0)
f,hψ

(0)
k 〉 = 〈v

(1)
j | d

(0)
f,hψ

(0)
k 〉 .

69



The end of the proof is a straightforward consequence of Proposition 5.5.3,
which gives

∥∥∥d(0)
f,hψ

(0)
k

∥∥∥ ≤ Cεe
−
f(U

(1)
j(k)

)−f(U
(0)
k

)−α′′ε

h ,

Propositions 5.5.9 and 6.2.2.

Proof of Theorem 6.1.1.

By Propositions 6.2.3 and 6.2.4, the bases (v
(ℓ)
i )i∈{1,...,mℓ} of F (ℓ), for ℓ ∈

{0, 1}, satisfy Assumptions 2.2 and 2.3 of [Lep]. Theorem 2.4 of [Lep] then
implies Theorem 6.1.1 (which immediately implies Theorem 1.0.3).

Remark 6.2.5. The conditions of [Lep] are not exactly satisfied here be-
cause the one to one map j should act from {1, . . . ,m0} to {1, . . . ,m1},
with dim F (i) = mi.
We can easily reduce the study to this last case, by setting:

m0 = m0 , m1 = m1 + 1 ,

and,

F (0) = F (0) , F (1) = F (1) ⊕⊥
Cv

(1)
m1+1 .

Setting in addition j(1) = m1 +1 instead of j(1) = 0, the conditions of [Lep]
are fulfilled.
Note furthermore that the decreasing sequence (αk)k∈{1,...,m0}

of [Lep] is then

here
(
f(U

(1)
j(k)) − f(U

(0)
k )
)
k∈{1,...,m0}

whose first term is by definition +∞.
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Dérivées Partielles”, Exp No VIII, Ecole Polytechnique, 2004.

[Per] A. Persson. Bounds for the discrete part of the spectrum of a semi-
bounded Schrödinger operator. Math. Scandinavica 8, p. 143-153
(1960).

[Sch] G. Schwarz. Hodge decomposition. A method for Solving Boundary
Value Problems. Lecture Notes in Mathematics 1607, Springer Verlag
(1995).

[Sima] C.G. Simader. Essential self-adjointness of Schrödinger operators
bounded from below. Math. Z. 159, p. 47-50 (1978).

[Sim2] B. Simon. Semi-classical analysis of low lying eigenvalues, I. Non-
degenerate minima: Asymptotic expansions. Ann. Inst. H. Poincaré
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