

# Potential impacts of CF3I on ozone as a replacement for CF3Br in aircraft applications

Y. Li, K.O. Patten, D. Youn, D.J. Wuebbles

### ▶ To cite this version:

Y. Li, K.O. Patten, D. Youn, D.J. Wuebbles. Potential impacts of CF3I on ozone as a replacement for CF3Br in aircraft applications. Atmospheric Chemistry and Physics, 2006, 6 (12), pp.4559-4568. hal-00297185

HAL Id: hal-00297185

https://hal.science/hal-00297185

Submitted on 18 Jun 2008

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Atmos. Chem. Phys., 6, 4559–4568, 2006 www.atmos-chem-phys.net/6/4559/2006/
© Author(s) 2006. This work is licensed under a Creative Commons License.



# Potential impacts of $CF_3I$ on ozone as a replacement for $CF_3Br$ in aircraft applications

Y. Li, K. O. Patten, D. Youn, and D. J. Wuebbles

Department of Atmospheric Sciences, University of Illinois, Urbana, IL 61801, USA

Received: 20 April 2006 – Published in Atmos. Chem. Phys. Discuss.: 26 June 2006 Revised: 29 September 2006 – Accepted: 1 October 2006 – Published: 10 October 2006

**Abstract.** Iodotrifluoromethane (CF<sub>3</sub>I) has been considered to be a candidate replacement for bromotrifluoromethane (CF<sub>3</sub>Br), which is used in aircraft for fuel inerting and for fire fighting. In this study, the chemical effects of aircraftreleased CF<sub>3</sub>I on atmospheric ozone were examined with the University of Illinois at Urbana-Champaign two-dimensional chemical-radiative-transport (UIUC 2-D CRT) model. Using an earlier estimate of the aircraft emission profile for tank inerting in military aircraft, the resulting equivalent Ozone Depletion Potentials (ODPs) for CF<sub>3</sub>I were in the range of 0.07 to 0.25. As a sensitivity study, we also analyzed CF<sub>3</sub>I emissions associated with fuel inerting if it were to occur at lower altitudes using an alternative estimate. The model calculations of resulting effects on ozone for this case gave ODPs<0.05. Furthermore, through interactions with the National Institute of Standards and Technology (NIST), we analyzed the potential effects on ozone resulting from using CF<sub>3</sub>I in fire fighting connected with engine nacelle and auxiliary power unit applications. The scenarios evaluated using the NIST estimate suggested that the ODPs obtained by assuming aircraft flights occurring in several different latitude regions of the Northern Hemisphere are extremely low. According to the model calculation, the altitude where CF<sub>3</sub>I is released from aircraft is a dominant factor in its ozone depletion effects. On the assumption that the CF<sub>3</sub>I emission profile is representative of actual release characteristics, aircraftreleased CF<sub>3</sub>I has much lower impacts than CF<sub>3</sub>Br.

1 Introduction

Bromotrifluoromethane (CF<sub>3</sub>Br), also referred to as Halon 1311 or H-1311, has been used for aircraft fire extinguishing systems because of its high fire suppression efficiency, low cost, and low toxicity. However, CF<sub>3</sub>Br is known as an ozone

Correspondence to: D. J. Wuebbles (wuebbles@atmos.uiuc.edu)

depletion chemical with a lifetime of about 65 years (WMO, 1999) so that tropospheric release will make its way into the stratosphere. For this reason, substitute chemicals must be considered for replacing CF<sub>3</sub>Br usage in aircraft uses. H-1311 has been used both as a fuel inerting agent in military aircraft and as a fire-fighting agent in a number of military and commercial aircraft. Iodotrifluoromethane (CF<sub>3</sub>I), a close chemical cousin of CF<sub>3</sub>Br, has been considered to be a potential replacement, even though iodine is extremely reactive with oxygen because it is photolytically reactive and easily degraded by solar radiation in the atmosphere, resulting in an atmospheric lifetime of CF<sub>3</sub>I that is extremely short, approximately on the order of hours to days.

CF<sub>3</sub>I photolyzes rapidly to form reactive iodine atoms even under visible light conditions. Therefore, it could be treated as a potential significant source of atmospheric iodine and its effects on atmospheric ozone depend strongly on iodine chemistry related to ozone destruction processes (e.g., Solomon, 1994a). CF<sub>3</sub>I emissions from aircraft can occur both in the troposphere and lower stratosphere. Since the emissions, even in the troposphere, can be transported upwards by convection in the tropics and mid latitudes and spread over the stratosphere globally, both tropospheric and stratospheric chemistry and physics need to be considered for the purpose of evaluating the effects of aircraft-released CF<sub>3</sub>I on atmospheric ozone. The possible role of iodine species in tropospheric chemistry has been previously discussed in several papers (e.g., Chameides and Davis, 1980; Davis et al., 1996). In the troposphere, iodine species generated from photolysis of many sources deplete tropospheric ozone through complex chemical cycles and are finally removed through the relatively inactive reservoir species by dry and wet depositions. Several studies have shown that iodine reaching the stratosphere can be potentially effective at destroying stratospheric ozone. Solomon et al. (1994a) first postulated the possibility that iodine-containing compounds could be transported to the stratosphere by convective transport in the tropics. Once these gases and their reaction by-products reach the stratosphere, they can release iodine atoms rapidly via photolysis. Because the reservoir species of iodine are much more photolytically unstable, iodinecontaining compounds in the stratosphere are almost entirely in reactive forms (I, IO) and thus their reactions with BrO, ClO, and HO<sub>2</sub> can contribute significantly to the ozone depletion via chemical catalytic cycles in the lower stratosphere. However, iodine chemistry was not well understood and rate coefficients of several key reactions were not known and assumed to be quite large values at the time of the Solomon et al. (1994a) study. As a consequence, these results may have been inaccurate in estimating the impact of iodine on the ozone depletion. Recently, numerous kinetic studies on iodine compounds have been carried out and the understanding of iodine chemistry has improved considerably (e.g., Turnipseed et al., 1997; Gilles et al., 2000). As a result, in this study, we have attempted to reevaluate the role of iodine chemicals on the ozone depletion using the updated evaluations of iodine chemistry.

Several estimates of aircraft release of fire extinguishing agents with altitude have been considered. A previous study of surface CF<sub>3</sub>I emissions (Solomon et al., 1994b) suggested that iodine compounds should not impact ozone significantly. However, as the laboratory results on iodine reactions keep being updated and the understanding of chemical processes of iodine chemistry improves, reevaluation of CF<sub>3</sub>I emissions is a necessity. In addition, emissions from aircraft may have a larger impact than emissions from the Earth surface, because iodine species have much longer lifetimes at the higher altitudes. Moreover, the role that CF<sub>3</sub>I emissions from aircraft play in the ozone depletion is not known yet and needs to be studied carefully using the newest available chemistry.

In this study, we have used the University of Illinois at Urbana Champaign two-dimensional chemical-radiative-transport model. This model has the benefit of being computationally efficient and past studies have demonstrated its usefulness in studies of interactions of physical and chemical processes in the troposphere and stratosphere. However, at the same time, we recognize the limitations of two-dimensional models, particular in representing tropospheric processes. The next stage for further analysis of CF<sub>3</sub>I impacts on ozone would be to perform similar studies with a three-dimensional chemistry-transport model of the troposphere and stratosphere.

### 2 Model description and updates

The University of Illinois at Urbana-Champaign twodimensional chemical-radiative-transport (UIUC 2-D CRT) model is a zonally-averaged model of the chemistry and physics of the global atmosphere (e.g., Wuebbles et al., 2001). The model has been used extensively to study human related and natural forcings on the troposphere and stratosphere. However, the analysis of tropospheric processes is limited due to its zonally-averaged nature.

In Rupnik et al. (2002), an earlier 2002 version of the UIUC 2-D CRT model was used to evaluate the effects from potential using CF<sub>3</sub>I as an fuel inerting agent. In this study, the model has been updated, referred to as the 2004 version with the latest improvements of atmospheric chemistry and dynamics. The current version of the model determines the atmospheric distribution of 89 chemically active atmospheric trace constituents with 70 photolytic reactions, 189 thermal reactions, and heterogeneous reactions. Reaction-rate constants and photochemical data in the model are primarily based on the recommendations compiled by the NASA Panel for Data Evaluation (DeMore et al., 1997; Sander et al., 2003). The model domain extends from pole to pole and from the ground to 84 km in altitude. A grid box is 5 degrees of latitude and 1.5 km in log-pressure altitude.

Recent laboratory studies have improved the understanding of atmospheric chemical processes of iodine chemistry. Table 1 summarizes chemical reactions and rate coefficients related to iodine chemistry being used in the 2004 version of the UIUC 2-D CRT model. The complete list of references for this chemistry is found also in Table 1. It should be noted that many iodine-related chemical reactions are still highly debatable (e.g., OIO photolysis). This is discussed in detail later. Reactive iodine species generated from photo dissociation of CF<sub>3</sub>I should react with atmospheric ozone. Major chemistry updates of the 2-D model that could impact effects of CF<sub>3</sub>I on atmospheric ozone concentrations include: CF<sub>3</sub>I and CH<sub>3</sub>I absorption cross-sections for photochemical reactions, thermal reaction-rate coefficients of  $CH_3I+OH \rightarrow I+H_2O+CH_2O$ , and of reactions of IO with ClO or BrO and I with O3, HO2 or O. Section 3 will further describe the effects of this chemistry on ozone.

The UIUC 2-D CRT model uses the Transformed Eulerian- Mean (TEM) formulation in log-pressure coordinates (Garcia et al., 1992) for investigations of tracer transport. The latest version of the model has some key improvements incorporated in it. Major upgrades were made through better representation of the effects of planetary waves and a more accurate method for determining residual mean meridional circulation. Planetary waves for wave numbers 1 and 2 are parameterized with better data-based boundary topography and boundary winds and stratospheric values of horizontal diffusion coefficient Kyy are calculated using the planetary wave dissipation rate and vorticity for both wave number 1 and 2 (Nathan et al., 2000). Values of vertical diffusion coefficient  $K_{zz}$  due to gravity waves are evaluated. Larger diffusion coefficients are specified to the troposphere to mimic fast tropospheric mixing. The model uses a seasonally varying tropospheric  $K_{yy}$ . Convective transport in the model is based on the climatology of Languer et al. (1990). Climatological latent heating and the sensible heat flux are specified based on more physically meaningful analyses. An accurate and fast longwave radiation code (Olaguer et al.,

**Table 1.** Major iodine chemical reactions in the UIUC 2-D CRT model.

| Thermal Reactions           |                      | A        | E/R          | 300                        | K        |                         | References            |
|-----------------------------|----------------------|----------|--------------|----------------------------|----------|-------------------------|-----------------------|
| $I + O_3 = IO + O_2$        |                      | 2.30e-11 | 870.         | 1.276                      | e-12     | [S                      | ander et al.,2003]    |
| $I + HO_2 = HI + O_2$       |                      | 1.50e-11 | 1090.        | 3.96e-13 [Sander et        |          | ander et al.,2003]      |                       |
| I + ClO = IO + Cl           |                      | 4.40e-11 | 0.           | 4.40€                      | -11      | [Bed                    | ljanian et al., 1997] |
| I + OCIO = IO + CIO         |                      | 9.70e-12 | 1190.        | 1.846                      | :-13     | [Bedjanian et al.,      |                       |
| I + BrO = Br + IO           |                      | 1.45e-11 | 0.           | 1.456                      | -11      | [Bed                    | djanian et al., 1998] |
| $I_2 + O = IO + I$          |                      | 1.40e-10 | 0.           | 0. 1.40e-10 [Atkinso       |          | Atkinson, 1997]         |                       |
| $I_2 + OH = HOI + I$        |                      | 1.80e-10 | 0.           | 1.806                      | e-10     | [                       | Atkinson, 1997]       |
| $I_2 + NO_3 = I + IONO_2$   |                      | 1.50e-12 | 0.           | 1.506                      | -12      | [                       | Atkinson, 1997]       |
| $I_2 + Cl = I + ICl$        |                      | 2.10e-10 | 0.           | 2.10                       | -10      | [Bed                    | ljanian et al., 1997] |
| $I_2 + Br = I + IBr$        |                      | 1.20e-10 | 0.           | 1.20                       | -10      | [Bed                    | ljanian et al., 1998] |
| $IO + O = I + O_2$          |                      | 1.20e-10 | 0.           | 1.206                      | -10      | [S                      | ander et al.,2003]    |
| $IO + HO_2 = HOI + O_2$     |                      | 8.40e-11 | 0.           | 8.40                       | :-11     | [S                      | ander et al.,2003]    |
| $IO + NO = I + NO_2$        |                      | 9.10e-12 | -240.        | 2.036                      | :-11     | [S                      | ander et al.,2003]    |
| IO + CIO = I + OCIO         |                      | 2.81e-12 | -280         | 7.156                      | :-12     | [Bedjanian et al., 1998 |                       |
| $IO + ClO = I + Cl + O_2$   |                      | 1.28e-12 | -280         | 3.266                      | :-12     | [Bedjanian et al., 1998 |                       |
| $IO + ClO = ICl + O_2$      |                      | 1.02e-12 | -280         | 2.596                      | :-12     | [Bedjanian et al., 199  |                       |
| IO + Br = I + BrO           |                      | 2.30e-11 | 0            | 2.30e-11 [Bedjanian et al. |          | ljanian et al., 1998]   |                       |
| $IO + BrO = I + Br + O_2$   |                      | 8.75e-12 | -260         |                            |          | Filles et al., 1997]    |                       |
| $IO + BrO = IBr + O_2$      |                      | 1.63e-11 | -260         | -                          |          | Silles et al., 1997]    |                       |
| $IO + IO = I_2 + O_2$       |                      | 5.00e-12 | 0            |                            |          | rwood et al., 1997]     |                       |
| OIO + I = OI + OIO          |                      | 3.05e-11 | 0            | 3.056                      | -11      | [Harwood et al., 1997]  |                       |
| $IO + IO = 2I + O_2$        |                      | 6.35e-11 | 0            | 6.356                      | -11      | [Harwood et al., 1997]  |                       |
| $HI + OH = H_2O + I$        |                      | 3.00e-11 | 0.           | 3.006                      | -11      | [S                      | ander et al.,2003]    |
| $INO + INO = I_2 + 2NO$     |                      | 8.40e-11 | 2620.        | 1.356                      | -14      | [Sander et al.,2003]    |                       |
| $INO_2 + INO_2 = I_2 + 2NO$ | $O_2$                | 2.90e-11 | 2600.        | 4.996                      | e-15     | [Sander et al.,2003]    |                       |
| $CH_3I + OH = I + H_2O +$   | CH <sub>2</sub> O    | 2.90e-12 | 1100.        | 7.416                      | :-14     | [S                      | ander et al.,2003]    |
| (Three body Troe            | K <sub>0</sub> [300] | n        | K∞[          | [300]                      | f        | g                       |                       |
| expression)                 |                      |          |              |                            |          | -                       |                       |
| I + NO = INO                | 1.80e-32             | 1.0      | 1.70         | e-11                       | 0.0      | 0.0                     | [Sander et al.,2003]  |
| $I + NO_2 = INO_2$          | 3.00e-31             | 1.0      | 6.60         | e-11                       | 0.0      | 0.0                     | [Sander et al.,2003]  |
| $IO + NO_2 = IONO_2$        | 5.90e-31             | 3.5      | 9.00         | e-12                       | 1.5      | 0.0                     | [Sander et al.,2003]  |
| Photolysis reactions*       | Height-              | -0 km    | Height-20 km | 1                          | Height-5 | 0 km                    |                       |

| Photolysis reactions*                    | Heigh                 | t=0 km                | 0 km Height=20 km     |                       | Height=50 km          |                       |                       |
|------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                                          | Jun                   | Dec                   | Jun                   | Dec                   | Jun                   | Dec                   |                       |
| IO + hv = I + O                          | 1.87*10 <sup>-1</sup> | 1.57*10 <sup>-1</sup> | 2.47*10 <sup>-1</sup> | 2.33*10 <sup>-1</sup> | 1.01*10 <sup>-1</sup> | 7.89*10 <sup>-2</sup> | [Atkinson, 1997]      |
| HOI + hv = I + OH                        | 3.10*10 <sup>-3</sup> | 1.59*10 <sup>-3</sup> | 8.32*10 <sup>-4</sup> | $3.19*10^{-4}$        | 3.72*10 <sup>-4</sup> | $2.03*10^{-4}$        | [Atkinson, 1997]      |
| INO + hv = I + NO                        | 1.20*10-1             | 9.79*10 <sup>-2</sup> | 8.46*10-2             | $6.53*10^{-2}$        | 3.42*10-3             | $2.32*10^{-3}$        | [Atkinson, 1997]      |
| $INO_2 + hv = I + NO_2$                  | 3.07*10-2             | $2.57*10^{-2}$        | 2.17*10-2             | $1.67*10^{-2}$        | 8.23*10-4             | $5.59*10^{-4}$        | [Atkinson, 1997]      |
| $IONO_2 + hv = I + NO_3$                 | 1.04*10 <sup>-3</sup> | 7.83*10 <sup>-4</sup> | 7.65*10 <sup>-4</sup> | $5.74*10^{-4}$        | 4.25*10 <sup>-5</sup> | $2.93*10^{-5}$        | [Atkinson, 1997]      |
| IONO <sub>2</sub> +hv=IO+NO <sub>2</sub> | 2.54*10 <sup>-3</sup> | 1.92*10 <sup>-3</sup> | 1.87*10 <sup>-3</sup> | $1.41*10^{-3}$        | 1.04*10 <sup>-4</sup> | $7.18*10^{-5}$        | [Atkinson, 1997]      |
| OIO + hv = O + IO                        | 4.74*10 <sup>-2</sup> | 1.90*10 <sup>-2</sup> | 2.54*10 <sup>-1</sup> | $2.11*10^{-1}$        | 1.65*10 <sup>-4</sup> | $1.01*10^{-4}$        | [DeMore et al., 1997] |
| ICl + hv = I + Cl                        | 1.82*10-4             | 9.35*10 <sup>-5</sup> | 2.09*10 <sup>-2</sup> | $1.27*10^{-2}$        | 1.17*10 <sup>-4</sup> | $7.26*10^{-5}$        | [DeMore et al., 1997] |
| IBr + hv = I + Br                        | 2.45*10-4             | $1.28*10^{-4}$        | 2.79*10-2             | $1.69*10^{-2}$        | 1.56*10-4             | 9.64*10 <sup>-5</sup> | [DeMore et al., 1997] |
| $I_2 + hv = I + I$                       | 6.80*10-4             | 3.63*10 <sup>-4</sup> | 7.71*10 <sup>-2</sup> | $4.66*10^{-2}$        | 4.31*10-4             | $2.66*10^{-4}$        | [Tellinghuisen, 1973] |
| $CH_3I + hv = CH_3 + I$                  | 3.01*10-6             | 1.24*10-6             | 2.43*10-6             | 1.67*10 <sup>-6</sup> | 1.36*10-4             | $8.78*10^{-5}$        | [Sander et al.,2003]  |
| $CF_3I + hv = CF_3 + I$                  | 1.34*10 <sup>-5</sup> | 5.74*10 <sup>-6</sup> | 1.82*10 <sup>-5</sup> | $1.26*10^{-5}$        | 1.81*10-4             | $1.24*10^{-4}$        | [Sander et al.,2003]  |

<sup>\*</sup> Photochemical rates (s<sup>-1</sup>) are provided at 30°N assuming evenly distributed surface CF<sub>3</sub>I emissions at NH.

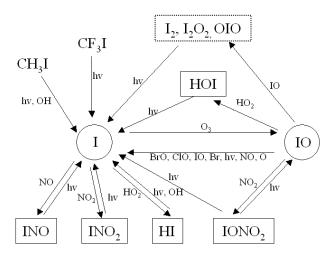
1992) for the height of surface to 60 km is adopted in the radiation part of the model. The net heating rates are thus obtained from specified latent heating and calculated longwave and shortwave heating with the temperature and chemical species distributions. Wet deposition is incorporated for water-soluble species including the inorganic bromine/iodine species BrO/IO, HBr/HI, HOBr/HOI, and BrNO<sub>2</sub>/IONO<sub>2</sub> based on the rainout rate of nitric acid. The zonally averaged temperature and wind fields are specified based on 6-year climatology of the United Kingdom meteorological Office (UKMO) reanalysis data (Swinbank and O'Neill, 1994; Coy

and Swinbank, 1997). In addition, background diffusion coefficients, which cannot be explicitly obtained in the model, are also tuned for the "leaky pipe" model in the tropics and the model barrier between mid-latitude and polar regions.

#### 3 Atmospheric chemistry related to CF<sub>3</sub>I

#### 3.1 Degradation of CF<sub>3</sub>I

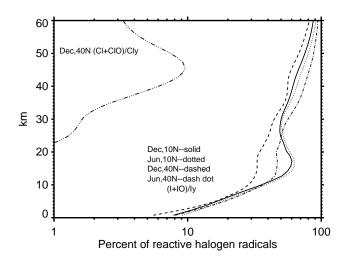
CF<sub>3</sub>I has been considered to be a potential substitute for the replacement of halon fire extinguishing agents because


Table 2. Iodine catalytic cycles.

| a. Iodine self-catalytic cyc | eles                                                              |  |
|------------------------------|-------------------------------------------------------------------|--|
| Cycle1                       | $I + O_2 \rightarrow IO + O_2$                                    |  |
|                              | $IO + O \rightarrow I + O_{\gamma}$                               |  |
|                              | $O_3 + O \rightarrow 2O_2$                                        |  |
| Cycle 2                      | $I + O_3 \rightarrow IO + O_2$                                    |  |
| ·                            | $IO + IO \rightarrow 2I + O_2$                                    |  |
|                              | $2O_3 \rightarrow 2O_2$                                           |  |
| Cycle 3                      | $I + O_3 \rightarrow IO + O_2$                                    |  |
|                              | $IO + IO \rightarrow I_2 + O_2$                                   |  |
|                              | $\frac{I_2 + hv \to 2I}{2O_3 \to 3O_2}$                           |  |
|                              |                                                                   |  |
| b. Iodine catalytic cycles v | vith HOx                                                          |  |
| Cycle 4                      | $OH + O_3 \rightarrow HO_2 + O_3$                                 |  |
|                              | $I + O_3 \rightarrow IO + O_2$ $I + O_3 \rightarrow IO + O_3$     |  |
|                              | $IO + HO_2 \rightarrow HOI + O_2$                                 |  |
|                              | $HOI + hv \rightarrow OH + I$                                     |  |
|                              | $2O_3 \rightarrow 3O_2$                                           |  |
| c. Iodine catalytic cycles w | with NOx                                                          |  |
| Cycle 5                      | $NO + O_3 \rightarrow NO_2 + O_2$                                 |  |
|                              | $I + O_3 \rightarrow IO + O_2$                                    |  |
|                              | $IO + NO_2 \rightarrow IONO_2$                                    |  |
|                              | $IONO_2 + hv \rightarrow I + NO_3$                                |  |
|                              | $NO_3 + hv \rightarrow NO + O_2$                                  |  |
|                              | $2O_3 \rightarrow 3O_2$                                           |  |
| d. Iodine catalytic cycles w |                                                                   |  |
| Cycle 6                      | $I + O_3 \rightarrow IO + O_2$                                    |  |
|                              | $Cl + O_3 \rightarrow ClO + O_2$                                  |  |
|                              | $\frac{IO + CIO \rightarrow I + CI + O_2}{2O_3 \rightarrow 3O_2}$ |  |
| Cyalo 7                      |                                                                   |  |
| Cycle 7                      | $I + O_3 \rightarrow IO + O_2$                                    |  |
|                              | $Cl + O_3 \rightarrow ClO + O_2$                                  |  |
|                              | $IO + CIO \rightarrow ICI + O_2$                                  |  |
|                              | $\underline{ICl + hv \rightarrow I + Cl}$                         |  |
|                              | $2O_3 \rightarrow 3O_2$                                           |  |
| Cycle 8                      | $I+O_3 \rightarrow IO+O_2$                                        |  |
|                              | $Br + O_3 \rightarrow BrO + O_2$                                  |  |
|                              | $IO + BrO \rightarrow I + Br + O_2$                               |  |
|                              | $2O_3 \rightarrow 3O_7$                                           |  |

of its short atmospheric lifetime; CF<sub>3</sub>I absorbs solar radiation efficiently in the wavelength range from 220 to 340 nm (Solomon et al., 1994b) and thus can be photodissociated rapidly in the troposphere. As a consequence, the photolysis lifetime of CF<sub>3</sub>I is extremely short, on the order of hours to days. However, photolysis of CF<sub>3</sub>I produces iodine atoms that can destroy ozone. We, therefore, need to further examine the products of the photodegradation process to evaluate the total impact of CF<sub>3</sub>I release. Other chemical pathways of CF<sub>3</sub>I degradation, such as reactions with O and OH, could further decrease its lifetime. The newest kinetics study on the reaction of CF<sub>3</sub>I with OH has been carried out by Gilles et al. (2000). Their results showed a very small rate coefficient value and a negligible role in the atmospheric removal of CF<sub>3</sub>I. Similarly, for the reaction of CF<sub>3</sub>I with O, Teruel et al. (2004) showed that the rate coefficient of this reaction was quite small and would not impact the lifetime of CF<sub>3</sub>I. As a result, only photolysis has been considered to be the degradation mechanism of CF<sub>3</sub>I for this study.

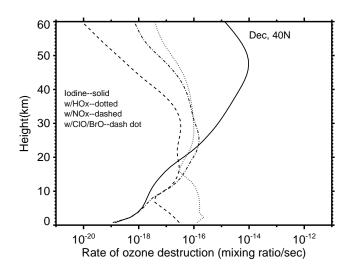
#### 3.2 Relevant chemical processes


Previous studies on iodine chemistry are quite limited. Most of them have concentrated on tropospheric iodine species originated from a marine environment where the major nat-



**Fig. 1.** Chemical processes of iodine compounds in the UIUC 2-D CRT model. Circles represent reactive iodine species, solid boxes represent reservoir species, dotted boxes represent iodine species that photolyze rapidly after formation.

ural iodine emissions occur (Alicke et al., 1999; Chameides et al., 1980; Chatfield et al., 1990; Davis et al., 1996). In the troposphere, iodine atoms generated from photolysis of iodine-containing compounds react with ozone to form iodine oxides, which are further involved in complex catalytic cycles to destroy tropospheric ozone. Iodine is removed from the troposphere through reservoir species such as IONO<sub>2</sub>, HI and HOI by rainout and dry deposition. Due to the incomplete understanding of iodine chemistry, the study on the impact of iodine compounds in the atmosphere is still in the initial stage, especially for the stratosphere. Solomon et al. (1994b) postulated that iodine chemicals transported to the upper atmosphere are almost entirely in reactive forms I and IO, therefore impacting stratospheric ozone via chemical catalytic cycles. Since iodine reservoir species photolyze rapidly in the stratosphere, reactive iodine compounds are much more effective on ozone destruction than in the troposphere. Therefore, iodine reaching the stratosphere has the potential to impact ozone significantly. In order to evaluate the effects of CF<sub>3</sub>I emissions from aircraft on atmospheric ozone, detailed and updated atmospheric chemistry needs to be considered and driving mechanisms of ozone depletion need to be investigated.

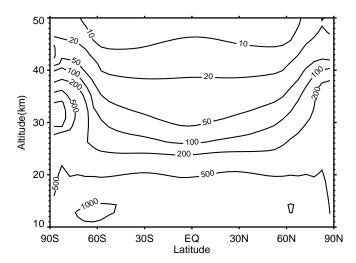

Figure 1 shows the current understanding of the main features of iodine chemistry. In the modeling studies presented here, chemical compounds and free radicals generated from CF<sub>3</sub>I emissions are considered to be I, I<sub>2</sub>, IO, OIO, HI, HOI, INO, INO<sub>2</sub>, IONO<sub>2</sub>, ICl, and IBr. Among these, I and IO are the reactive iodine radicals that can potentially destroy ozone and HOI, HI, INO, IONO<sub>2</sub> and INO<sub>2</sub> are the major reservoir species. The extensive cycling of these species can be evident by noting the reactions listed in Table 1. In general,



**Fig. 2.** The fraction of reactive free radicals (I+IO, Cl+ClO) among total iodine or chlorine species ( $I_y$ ,  $Cl_y$ ) based on the calculation with the UIUC 2-D CRT model for background atmosphere for the current model year (the same for Fig. 3 and 4). Results are shown for  $10^{\circ}$  N and  $40^{\circ}$  N in June and December to illustrate the latitudinal and seasonal impact.

iodine atoms released from the photodissociation of CF<sub>3</sub>I and CH<sub>3</sub>I as well as the reaction of CH<sub>3</sub>I with OH act as the starting point of iodine chemistry, which in turn leads to reactions of I with oxides (O3, ClO, BrO) to form IO and with HO<sub>2</sub> to form HI. IO reacts with various compounds, such as ClO/BrO/IO/Br, NO, and O, as well as photolyzes to produce O<sub>2</sub> and iodine atoms, which completes the chemical catalytic cycles. As a consequence, IO and I are reactants in several catalytic cycles with other species, such as HO<sub>x</sub>, NO<sub>x</sub> and halogen (Cl/Br/I). This is discussed in detail in Sect. 3.3. At night, I and IO react with HO<sub>2</sub> or NO<sub>2</sub> to form reservoir species, but most reservoir species of iodine are photodissociated rapidly when exposed to solar radiation. The reservoir species are then scavenged out of the atmosphere by rain or dry deposition, which is the essential sink of iodine compounds.

In terms of ozone depletion, reactive free radicals (I, IO) play the most important role among all iodine species. Figure 2 illustrates the ratio of these reactive species to total iodine species (Iy) in comparison with the ratio of reactive chlorine to total chlorine as a function of altitude. It is apparent that reactive iodine radicals are a large fraction of the total iodine in the upper troposphere and above. This is mainly because the iodine reservoir species decompose almost immediately in much of the stratosphere, where photolysis is a much more dominant pathway of degradation of iodine compounds. In the troposphere, reactive iodine species are much lower fraction of total iodine, especially at night when reservoir species could form relatively easily. In contrast, even the lowest fraction of reactive iodine radicals in the tropo-




**Fig. 3.** The rates of ozone destruction for iodine catalytic cycles with different chemical species. In the legend, "Iodine" refers to iodine self-catalytic cycles, "w/HO<sub>x</sub>" refers to catalytic cycles of iodine with HO<sub>x</sub>, "w/NO<sub>x</sub>" refers to catalytic cycles of iodine with NO<sub>x</sub>, and "w/ClO/BrO" refers to catalytic cycles of iodine with ClO and BrO. Results are calculated by the UIUC 2-D CRT model for  $40^{\circ}$  N in December.

sphere is comparable to the highest fraction of reactive chlorine radicals in the stratosphere. The analysis above indicates that iodine is much more effective for ozone destruction than chlorine and the largest impact of iodine species on ozone should be in the stratosphere where the fraction of reactive iodine radicals is extremely high.

#### 3.3 Iodine catalytic cycles

Catalytic cycles refer to cycles that have reactive halogen species in the atmosphere and act as catalysts in a series of reactions that are closely linked with ozone. Catalytic cycles are the primary mechanism for destruction of ozone in the stratosphere. In this section, we focus on the most important catalytic cycles of reactive iodine radicals with themselves, NO<sub>x</sub> and HO<sub>x</sub>, as well as halogens. An explicit list of all the major catalytic cycles related to iodine species is organized in Table 2. We categorized the iodine catalytic cycles into four groups: self-catalytic, with HO<sub>x</sub>, with NO<sub>x</sub>, and with ClO<sub>x</sub>/BrO<sub>x</sub>. This shows the individual effects of cycles with some major atmospheric reactive species. Figure 3 shows the calculated ozone loss rates due to the four groups at 40° N in December with the UIUC 2-D CRT model. For this analysis, we found that the iodine self-catalytic cycles were the dominant cycles in ozone loss from iodine in the middle and upper stratosphere at approximately 30 km and above. In contrast, the catalytic cycles with HO<sub>x</sub> were of most importance in the troposphere, which compares well with the results by Stutz et al. (1999) and Carpenter (2003). Catalytic cycles with Cl and Br halogen were relatively less



**Fig. 4.** Annually averaged ozone destruction efficiency of iodine chemicals relative to chlorine chemicals with latitude and altitude by the UIUC 2-D CRT model.

efficient at the latitudes in Fig. 3 but are important in the upper troposphere and lower stratosphere (UTLS) where the catalytic mechanisms are most complicated due to the competition between several categories of catalytic cycles. Figure 3 further illustrates the significant role of iodine in the stratosphere and the variability with altitude of several catalytic cycles involving iodine. It is worthy to notice that reactions of IO with itself, O, NO<sub>x</sub>, HO<sub>x</sub> and ClO/BrO, are all negatively dependent on temperature or independent of temperature. Therefore, the low temperature in the upper atmosphere would not decelerate the rates of iodine catalytic cycles if these reactions were rate-limiting steps. However, the reaction of I with ozone molecules, which is the initial reaction of all major iodine chemical cycles, is positively dependent on temperature. As a result, in the cold sections of UTLS with relatively low ozone abundance, iodine catalytic cycles are not very effective since IO production is limited. A previous study by Solomon et al. (1994b) suggested that iodine catalytic cycles with CIO/BrO were the dominant ozone depletion mechanism of iodine, but the chemical reactionrate coefficients of ClO+IO and BrO+IO were unavailable at that time and assumed to be  $1 \times 10^{-10}$  cm<sup>3</sup>mole<sup>-1</sup>s<sup>-1</sup> and the self-catalytic cycles discussed in this study were not considered. New laboratory results (Bedjanian et al., 1998; Gilles et al., 1997) showed that the chemical reaction-rate coefficients of these two reactions are an order of magnitude smaller than the assumed values in the work of Solomon et al. (1994b).

# 3.4 Ozone Depletion Efficiency (ODE) and Ozone Depletion Potential (ODP)

CF<sub>3</sub>I is photolytically reactive in the troposphere and can be quickly decomposed by absorption of solar radiation. Products containing iodine are removed via rainout processes if

the iodine resides in lower levels of the troposphere. Thus only about 0.1from surface emissions. On the other hand, when reaching the stratosphere, iodine-containing chemicals can destroy ozone dramatically through catalytic ozone depletion cycles. Figure 4 shows altitude-and-latitude dependent annually averaged Ozone Depletion Efficiency (ODE) of Iodine compounds (I<sub>v</sub>) relative to Chlorine compounds (Cl<sub>v</sub>). The ODE here is defined to account for all the ozone loss procedures involving a chemical from thermal and photochemical reactions. Therefore, ODE is always employed to assess the instantaneous local chemical efficiency of a chemical for ozone destruction. From Fig. 4 it is obvious that iodine compounds generated by CF<sub>3</sub>I could destroy ozone much more efficiently than chlorine compounds, especially in the lower and middle stratosphere where most of stratospheric ozone resides. Even though chlorine compounds have been considered to be the major driving forces of the past ozone depletion (e.g., WMO, 1999), chemicals with iodine such as CF<sub>3</sub>I could potentially have large impact on stratospheric ozone. If released at the Earth's surface, only very small amount of CF<sub>3</sub>I could be transported to the stratosphere directly. Taking the short atmospheric lifetime of CF<sub>3</sub>I into account, more iodine is likely to reach the stratosphere indirectly from CF<sub>3</sub>I reaction products. Much of the reactive iodine from the photolysis of CF<sub>3</sub>I will be released at an altitude and latitude near the locations the emissions occur. In the case of CF<sub>3</sub>I from aircraft emissions, if many of them were released in the lower stratosphere or higher troposphere above the altitude where they could be rained out efficiently, then the reactive iodine could have much stronger effects on ozone than those released near the surface.

The concept of ODPs are defined to evaluate relative cumulative effects on ozone of the emission of a gas, relative to one of the gases of most concern to ozone change, namely CFC-11 (CFCl<sub>3</sub>) (e.g., Wuebbles et al., 1983, 1995, 2001; Solomon et al., 1992; WMO, 1995, 1999). To obtain the ODPs of a gas, a certain amount of emission perturbation that depletes 1% total ozone at steady-state needs to be put into the model run. The ODP provides a single-valued, relative evaluation for a given compound and therefore is a useful scientific index for public policy. ODPs are a vital part of the current U.S. Clean Air Act, in which 0.2 is the upper bound of ODP values of any chemical that is not controlled. Additionally, chemicals with ODPs of 0.05 or larger should be considered carefully, according to the U.S. EPA. Traditionally, ODPs have been evaluated on the basis that most chemicals evaluated for ODPs have long enough lifetime to spread all over the atmosphere globally. However, as a chemical with extremely short lifetime, on the order of several days, CF<sub>3</sub>I is not expected to be well mixed in the atmosphere and thus has ODPs that should be dependent on location. Therefore, a more thorough study to investigate ODPs of CF<sub>3</sub>I as a function of location (latitude, altitude, etc.) needs to be carried out using a three-dimensional model as suggested by Wuebbles et al. (2001). As a result of the temporal and

**Table 3.** Surface emission scenarios for  $CF_3I$  and its impact on global ozone.

| Flux Scenario               | τ <sub>CF3I</sub> (days) | Percent ozone depletion per mass unit (%/Tg) | ODP   |
|-----------------------------|--------------------------|----------------------------------------------|-------|
| Northern Hemisphere/Surface | 3.7                      | 7.158                                        | 0.013 |
| 30°-60° N/Surface           | 3.8                      | 4.600                                        | 0.011 |
| 5° S–30° N/Surface          | 1.0                      | 9.629                                        | 0.018 |

**Table 4.** Estimated ozone depletion effects of  $CF_3I$  using the original estimate (Rupnik et al., 2002) of the  $CF_3I$  emission profile.

| Run Description               | τ <sub>CF3I</sub> (days) | Ozone depletion per mass unit (Pg/Tg) | ODP   |
|-------------------------------|--------------------------|---------------------------------------|-------|
| 0°-10° N/aircraft emission    | 0.7                      | 137.4                                 | 0.254 |
| 30°-40° N/aircraft emission   | 1.2                      | 44.53                                 | 0.084 |
| 55° N-60° N/aircraft emission | 7.1                      | 37.63                                 | 0.071 |

spatial variation, CF<sub>3</sub>I emissions from aircraft are expected to have rather different ODP values from the ones derived from surface emissions.

Several earlier studies have evaluated potential effects of CF<sub>3</sub>I on ozone, particularly stratospheric ozone in terms of ODPs. Assuming CF<sub>3</sub>I emissions from the Earth surface only, early studies obtained extremely small ODPs of CF<sub>3</sub>I, which were <0.008 by Solomon et al. (1994b) and 0.006 by Connell et al. (1996). Using the 2004 version UIUC 2-D CRT model, we have determined an ODP for surface emissions of CF<sub>3</sub>I that was 0.013, based on the assumption that emissions were evenly spread throughout the Northern Hemisphere. Table 3 summarizes ODP values from several scenarios of surface emissions of CF<sub>3</sub>I by the UIUC 2-D CRT model. In general, ODP values of CF<sub>3</sub>I from surface emissions distribute in the range of 0.01 to 0.02.

However, as a chemical with an extremely short lifetime, the ODPs for CF<sub>3</sub>I depend on altitude and latitude as discussed before. Therefore, emissions of CF<sub>3</sub>I from aircraft could have rather different ODPs from the ones presented above. We discuss this in detail in Sect. 4.

## 4 ODP for $CF_3I$ in different applications

"Fuel-inerting" refers to the safety action to protect fuel tank that contains highly flammable material, by pumping some inert gas or vapor, such as CF<sub>3</sub>Br, into its air space in order to displace oxygen. As a candidate replacement of CF<sub>3</sub>Br, CF<sub>3</sub>I released from aircraft for fuel inerting and its relevant impact on ozone need to be assessed scientifically. The original estimate of CF<sub>3</sub>I emissions from F-16 military aircraft by Rupnik et al. (2002) indicated that most of the emissions

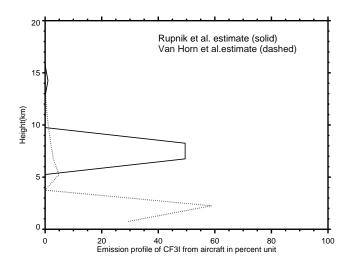
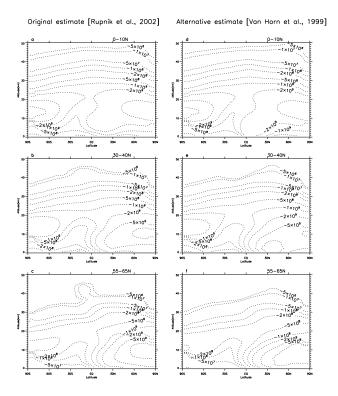



Fig. 5. The vertical profiles of  $CF_3I$  emissions for fuel inerting in military aircraft by Rupnik et al. (2002) and Van Horn et al. (1999). Percent unit is mass-weighted.

occur in the middle upper troposphere, where a large fraction of reactive iodine could reach the stratosphere through vertical atmospheric transport processes. Specifically, the emission profile is: 99% between 21 000 and 30 000 kft (approximately 6 km-9 km), and 1% at about 45 000 kft (approximately 13.5 km), roughly even distributed (Rupnik et al., 2002). As a response to the critique of Rupnik et al. (2002) by Banister et al. (2002), we further considered a different CF<sub>3</sub>I emission profile from F-16 military aircraft described by Van Horn et al. (1999), which we call the Van Horn estimate. The Van Horn estimate, in which most of CF<sub>3</sub>I emissions for fuel inerting were released at much lower altitudes, was employed to do a sensitivity study by the UIUC 2-D CRT model. Figure 5 illustrates the difference between these two estimates. Note that most of CF<sub>3</sub>I emissions in the original estimate reside near the tropopause and therefore have a better chance to survive rainout and reach the stratosphere where the reactive iodine radicals fraction is of its largest values. In contrast, in the Van Horn estimate, a large amount of CF<sub>3</sub>I emissions is located in the middle or lower troposphere. With the goal of evaluating the effects of CF<sub>3</sub>I emissions from aircraft comprehensively, we have done 3 case studies based on both of the original and Van Horn estimates above using the 2004 version UIUC 2-D CRT model. The three cases were designed to simulate flights occurring in three different latitude regions:  $0^{\circ}-10^{\circ}$  N,  $30^{\circ}-40^{\circ}$  N, and  $55^{\circ}-65^{\circ}$  N, which represented tropics, lower midlatitudes and higher midlatitudes. All the model runs were scaled to deplete 1% global total ozone from the background atmosphere, which was without aircraft-released CF<sub>3</sub>I perturbation, for the purpose of calculating ODPs of CF<sub>3</sub>I emissions. Results of these calculations were shown in Tables 4 and 5.


**Table 5.** Estimated ozone depletion effects of CF<sub>3</sub>I using the alternative estimate (Van Horn et al., 1999) of the CF<sub>3</sub>I emission profile.

| Run Description             | τ <sub>CF3I</sub> (days) | 1     |       |
|-----------------------------|--------------------------|-------|-------|
| 0°-10° N/aircraft emission  | 0.1                      | 26.62 | 0.050 |
| 30°-40° N/aircraft emission | 3.4                      | 10.17 | 0.019 |
| 55°-65° N/aircraft emission | 8.9                      | 13.18 | 0.025 |

For the original estimate, the resulting ODPs were in the range of 0.07 to 0.25, above the EPA value of concern of 0.05. With respect to the Van Horn estimate, all the resulting ODPs were less than or at most equal to 0.05. Given the fact that aircraft are typically operated at mid-latitudes (case 2 and 3 in this study) in the Northern Hemisphere, where most of the population resides, CF<sub>3</sub>I emissions following the Van Horn estimate would not have a substantial impact on ozone. Based on the comparison of the results from two different estimates, we determined that both the altitude and latitude where the CF<sub>3</sub>I emissions from aircraft occur could play a role on the effects of CF<sub>3</sub>I on ozone. The altitude factor may be more important since it affects the ODE of iodine compounds dramatically.

Figure 6 illustrates the ozone concentration changes in the three cases for both estimates of aircraft-released CF<sub>3</sub>I emission profile. As shown in the figure, for the original estimate, major ozone depletion occurs in the lower stratosphere and upper troposphere. For the Van Horn estimate, the largest amount of ozone concentration decrease takes place at about the same altitudes but with a smaller amount, plus there is substantial ozone depletion near the altitudes where most of CF<sub>3</sub>I is released. The general circulation in the atmosphere moves iodine around the world, and thus carries iodine species, which survive rainout processes, into the stratosphere from lower latitudes to higher latitudes. Because all the reactions of IO with itself, O, NOx, HOx and ClO/BrO are all negatively dependent or independent on temperature, iodine catalytic cycles are particularly effective in the cold regions but abundant with iodine-containing compounds. Therefore, the largest ozone destruction occurs in polar regions in the stratosphere, where iodine-containing compounds accumulate in a very cold environment. Figure 6 also indicates that iodine in the stratosphere can stay much longer than in the troposphere.

As discussed above, the major difference in the vertical profile of CF<sub>3</sub>I emissions between estimates by Rupnik et al. (2002) and Van Horn et al. (1999) causes a large disparity in the ODPs of CF<sub>3</sub>I aircraft emissions. Nonetheless, the ODP calculations based on both estimates showed that the ODP of CF<sub>3</sub>I emissions would not exceed the upper limit value of 0.2 in the U.S. Clean Air Act, given the fact that most aircraft flights tend to occur at mid latitudes in the Northern Hemisphere.



**Fig. 6.** Annually averaged ozone concentration changes in unit of molecule.s<sup>-1</sup>.cm<sup>-3</sup> relative to background atmospheric conditions without CF<sub>3</sub>I emissions from aircraft. Results from three cases (0°–10° N, 30°–40° N, 55°–65° N) shown here are based on two different estimates (the original estimate, Rupnik et al., 2002, left column; the alternative estimate, Van Horn et al., 1999, right column) of CF<sub>3</sub>I emission profiles. All the model runs were scaled to deplete 1% global total ozone from background atmosphere.

Through interactions with Donald Bein at the National Institute of Standards and Technology (NIST) (unpublished data, 2005), we attempted to do an evaluation of the potential effects on ozone resulting from using  $CF_3I$  in fire fighting connected with engine nacelle and auxiliary power unit applications. Table 6 shows the  $CF_3I$  emission profile from NIST in detail. Similarly, we designed three cases  $(0^\circ-10^\circ\,\text{N}, 30^\circ-40^\circ\,\text{N}, 55^\circ-65^\circ\,\text{N})$  for the latitudes where the emissions occur. The results are shown in Table 7. For the tropical case  $(0^\circ-10^\circ\,\text{N})$ , the resultant ODP was 0.084. The other two cases assuming mid latitudinal aircraft emissions gave ODPs smaller than 0.05. All the resulting ODPs were well below the control value of 0.2 in the U.S. Clean Air Act.

Though under different assumptions, the discussion of the effects on ozone resulting from aircraft-released CF<sub>3</sub>I for fuel inerting could also apply here. In general, since most of CF<sub>3</sub>I emissions in this estimate occur at lower altitudes, they do not tend to deplete atmospheric ozone. Therefore, provided the CF<sub>3</sub>I emission profile from NIST is representative to the actual release characteristics, CF<sub>3</sub>I released from aircraft for fire fighting should have a low impact on the ozone

**Table 6.** The NIST estimate of the  $CF_3I$  emission profile for fire fighting.

| Flight Height | Model layer | Emission (kg) | Percent of total emissions |
|---------------|-------------|---------------|----------------------------|
| 12-13.5 km    | layer 9     | 8.73          | 0.57%                      |
| 10.5-12 km    | layer 8     | 13.34         | 0.87%                      |
| 9-10.5 km     | layer 7     | 77.93         | 5.07%                      |
| 7.5–9 km      | layer 6     | 22.39         | 1.46%                      |
| 6–7.5 km      | layer 5     | 142.34        | 9.26%                      |
| 4.5-6 km      | layer 4     | 45.00         | 2.93%                      |
| 3-4.5 km      | layer 3     | 61.51         | 4.00%                      |
| 1.5-3 km      | layer 2     | 115.62        | 7.52%                      |
| 0–1.5 km      | layer 1     | 1050.55       | 68.3%                      |

layer and thus can be considered a qualified substitute for CF<sub>3</sub>Br in fighting fires in engine nacelles.

#### 5 Uncertainties in the study

Since iodine chemistry is not as well understood as that of its cousins, such as chlorine and bromine, there are still various uncertainties in the study, besides the needs for accurate estimates of the vertical profile and locations of CF<sub>3</sub>I emissions we discussed above. For instance, the photolysis of OIO is highly debated. Hoffmann et al. (2001) proposed that self-reaction of OIO could form low-volatility iodine oxides with stable structures and thus result in a much longer lifetime. While Ashworth et al. (2002), as used in our study, suggests that OIO is unlikely to be an important reactant in iodine chemistry as a consequence of its extremely short photolysis lifetime. If self-reactions of OIO are important mechanisms for particle formation, which would lead to efficient loss through rainout processes, the effects of aircraftreleased CF<sub>3</sub>I on atmospheric ozone would be further decreased. On the other hand, heterogeneous reactions between reactive iodine and other active atmospheric reactants on the surface of aerosols could accelerate ozone destruction rate of iodine catalytic cycles (Larin et al., 2002). This mechanism could result in much larger ODPs of CF<sub>3</sub>I. However, the role of this much faster heterogeneous process is still under further investigation. As mentioned earlier, further interest in CF<sub>3</sub>I use in aircraft would require extensive studies using a three-dimensional global transport model of the troposphere and stratosphere. Nonetheless, recent modeling studies have been much improved by more observational data as well as improved laboratories experiments and thus the ability of models to simulate the real atmosphere has been largely enhanced.

#### 6 Summary and conclusion

Compatibility of CF<sub>3</sub>I as a replacement of CF<sub>3</sub>Br in aircraft engine nacelles for fuel inerting and fire extinguishing has

**Table 7.** Estimated ozone depletion effects of  $CF_3I$  using the NIST estimate of the  $CF_3I$  emission profile.

| Run Description             | τ <sub>CF3I</sub> (days) | Ozone depletion<br>per mass unit (Pg/Tg) | ODP   |
|-----------------------------|--------------------------|------------------------------------------|-------|
| 0°-10° N/aircraft emission  | 0.1                      | 45.08                                    | 0.084 |
| 30°-40° N/aircraft emission | 1.9                      | 14.93                                    | 0.028 |
| 55°-65° N/aircraft emission | 9.0                      | 19.30                                    | 0.036 |

been evaluated using the UIUC 2-D CRT model. Iodine chemistry related to CF<sub>3</sub>I emissions has been discussed. We find that iodine self-catalytic cycles dominate the ozone depletion mechanism in the stratosphere among the four iodine catalytic cycles groups. Due to the extremely short lifetime of CF<sub>3</sub>I and the high ozone depletion efficiency of iodine species in the stratosphere, locations (altitudes, latitudes, etc.) where CF<sub>3</sub>I emissions are released can impact the potential effects of iodine species on atmospheric ozone significantly. For the usage of CF<sub>3</sub>I for fuel inerting, two estimates of CF<sub>3</sub>I emission profile have been considered. Results showed that ODPs of CF<sub>3</sub>I emissions should be less than 0.2 except for emissions in the troposphere. For the application of CF<sub>3</sub>I for fire extinguishing, ODPs of CF<sub>3</sub>I emissions indicated the ozone depletion effects depend on latitude and altitude of emissions, but assuming the NIST altitude distribution is correct, ODPs should be less than 0.08.

Acknowledgements. This study was supported in part by the National Institute for Standards and Technology through contract SB1341-04-W-0879.

Edited by: J. Abbatt

#### References

Alicke, B., Hebestreit, K., Stutz, J., and Platt, U.: Iodine oxide in the marine boundary layer, Nature, 397, 572–573, 1999.

Ashworth, S. H. and Allan, B. J.: Plane JMC high resolution spectroscopy of the OIO radical: Implications for the ozone-depleting potential of iodine, Geophys. Res. Lett., 29(10), doi:10.1029/2001GL013851, 2002.

Atkinson, R.: Gas-phase tropospheric chemistry of volatile organic compounds, J. Phys. Chem. Ref. Data, 26, 215–290, 1997.

Banister, W., Basinger, W., Dlugogorski, B., Grossl, P., Kennedy, E., Kibert, C., Lauterbach, A., O'Bryon, J., Ober, G., Rubenstein, R., Vitali, J., and Wakayama, E. (Eds.): Critique of the Report Suitability of CF<sub>3</sub>I to Replace Halon 1301 as the Inerting Agent in Wing Fuel Tanks on the F-16 Aircraft, Performed by Hydro Geologics, Inc., Contract Number DACA39-99-C-0002 for the Director of Defense Research and Engineering, 2002.

Bedjanian, Y., LeBras, G., and Poulet, G.: Kinetics and mechanism of the IO+ClO reaction, J. Phys. Chem. A, 101, 4088–4096, 1997.

Bedjanian, Y., LeBras, G., and Poulet, G.: Kinetics and mechanism of the IO+BrO reaction, J. Phys. Chem. A, 102, 10501–10511, 1998.

- Carpenter, L. J.: Iodine in the marine boundary layer, Chem. Rev., 103(12), 4953–4962, 2003.
- Chameides, W. L. and Davis, D. D.: Iodine: Its possible role in tropospheric photochemistry, J. Geophys. Res., 85, 7383–7398, 1980.
- Chatfield, R. B. and Crutzen, P. J.: Are there interactions of iodine and sulfur species in marine air photochemistry?, J. Geophys. Res., 95, 22319–22341, 1990.
- Connell, P. S., Kinnison, D. E., Bergmann, D. J., Patten, K. O., Wuebbles, D. J., Daniel, R. G., Williamson, C. K., Miziolek, A. W., and Huie, R. E.: Environmental Aspects of Halon Replacements: Considerations for Advanced Agents and the Ozone Depletion Potential of CF<sub>3</sub>I, Proc. Conf. on the Halon Options Technical Working Conference (HOTWC) in Albuquerque, NM, 1996.
- Coy, L. and Swinbank, R.: Characteristics of stratospheric winds and temperatures produced by data assimilation, J. Geophys. Res, 102, D22, 1997.
- Davis, D., Crawford, J., Liu, S., McKeen, S., Bandy, A., Thornton, D., Rowland, F., and Blake, D.: Potential impact of iodine on tropospheric levels of ozone and other critical oxidants, J. Geophys. Res., 101(D1), 2135–2147, 1996.
- DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E., and Molina, M. J.: Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling, Evaluation Number 12, Jet Propulsion Laboratory (JPL) Publication 97-4, Pasadena, California, 1997.
- Garcia, R. R., Stordal, F., Solomon, S., and Kiehl, J. T.: A new numerical model of the middle atmosphere, 1. Dynamics and transport of tropospheric source gases, J. Geophys. Res., 97, 12967–12991, 1992.
- Gilles, M. K., Turnipseed, A. A., Burkholder, J. B., Ravishankara, A. R., and Solomon, S.: Kinetics of the IO radical. 2.Reaction of IO with BrO, J. Phys. Chem. A, 101, 5526–5534, 1997.
- Gilles, M. K., Talukdar, R. K., and Ravishankara, A. R.: Rate coefficients for the OH+CF<sub>3</sub>I reaction between 271 and 370 K, J. Phys. Chem. A, 104, 8945–8950, 2000.
- Harwood, M. H., Burkholder, J. B., Hunter, M., Fox, R. W., and Ravishankara, A. R.: Absorption cross sections and self-reaction kinetics of the IO radical, J. Phys. Chem. A, 101, 853–863, 1997.
- Hoffmann, T., O'Dowd, C. D., and Seinfeld, J. H.: Iodine oxide homogeneous nucleation: An explanation for coastal new particle production, Geophys. Res. Lett., 28(10), doi:10.1029/2000GL012399, 2001.
- Langner, J., Rodhe, H., and Olofsson, M.: Parameterization of subgrid scale vertical tracer transport in a global two-Dimensional model of the troposphere, J. Geophys. Res., 95, 13 691–13 706, 1990.
- Larin, I. K., Spasskii, A. I., Trofimova, E. M., and Turkin, L. E.: Experimental evidence for acceleration of reaction between iodine monoxide and chlorine monoxide at the reactor surface, Kinet. Katal., 44, 202–210, 2003.
- Nathan, T. R., Cordero, E. C., Li, L., and Wuebbles, D. J.: Effects of planetary wave-breaking on the seasonal variation of total column ozone, Geophys. Res. Lett., 27, 1907–1910, 2000.
- Olaguer, E. P., Yang, H., and Tung, K. K.: A reexamination of the radiative balance of the stratosphere, J. Atmos. Sci., 49, 1242–1263, 1992.

- Rupnik, J., Bowman, R. G., and Berrill, P.: Suitablility of CF<sub>3</sub>I to Replace Halon 1301 as the Inerting Agent Wing Fuel Tanks on the F-16 Aircraft, HydroGeoLogic, Inc., Herndon, VA, 2002.
- Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Huie, R. E., Orkin, V. L., Moortgat, G. K., Ravishankara, A. R., Kolb, C. E., Molina, M. J., and Finlayson-Pitts, B. J.: Chemical kinetics and photochemical data for use in atmospheric studies, NASA/JPL Publication 02-25, Pasadena, California, 334pp, 2003.
- Solomon, S. and Albritton, D. L.: Time-dependent Ozone Depletion Potentials for short- and long-term forecasts, Nature, 357, 33–37, 1992
- Solomon, S., Garcia, R. R., and Ravishankara, A. R.: On the role of iodine in ozone depletion, J. Geophys. Res., 99(D10), 20491–20499, 1994a.
- Solomon, S., Burkholder, J. B., Ravishankara, A. R., and Garcia, R. R.: Ozone depletion and global warming potentials of CF<sub>3</sub>I, J. Geophys. Res., 99(D10), 20 929–20 935, 1994b.
- Stutz, J., Hebestreit, K., Alicke, B., and Platt, U.: Chemistry of halogen oxides in the troposphere: Comparison of model calculations with recent field data, J. Atmos. Chem., 34(1), 65–85, 1999.
- Swinbank, R. and O'Neill, A.: Quasi-biennial and semi-annual oscillations in equatorial wind fields constructed by data assimilation, Geophys. Res. Lett., 21, 2099–2102, 1994.
- Tellinghuisen, J.: Resolution of the visible-infrared absorption spectrum of  $I_2$  into three contributing transitions, J. Chem. Phys., 58, 2821-2834, 1973.
- Teruel, M. A., Dillon, T. J., Horowitz, A., and Crowley, J. N.: Reaction of O(<sup>3</sup>P) with the alkyl iodides: CF<sub>3</sub>I, CH<sub>3</sub>I, CH<sub>2</sub>I<sub>2</sub>, C<sub>2</sub>H<sub>5</sub>I, 1-C<sub>3</sub>F<sub>7</sub>I and 2-C<sub>3</sub>F<sub>7</sub>I, Phys. Chem. Chem. Phys., 6, 2172–2178, 2004.
- Turnipseed, A. A., Gilles, M. K., Burkholder, J. B., and Ravishankara, A. R.: Kinetics of the IO radical. 1. Reaction of IO with ClO, J. Phys. Chem.A, 101(30), 5517–5525, 1997.
- Van Horn, S. R., Vitali, J., Capt. Tucker, J., Delgado, M., and Rodriguez, B.: CF<sub>3</sub>I Agent for Fire Extinguishment in Unoccupied Areas Aircraft Fuel Tank Inerting Application, Technology Transition Briefing, AFRL# 99P10VA, ASC Program #292, ASC Validated Technology # 131, 1999.
- World Meteorological Organization: Scientific Assessment of Ozone Depletion: Global Ozone, Research and Monitoring Project, Report 37, Geneva, 1995.
- World Meteorological Organization: Scientific Assessment of Ozone Depletion: Global Ozone, Research and Monitoring Project, Report 44, Geneva, 1999.
- Wuebbles, D. J., Lutcher, F. M., and Penner, J. E.: Effects of coupled anthropogenic perturbations on stratospheric ozone, J. Geophys. Res., 88, 1444–1456, 1983.
- Wuebbles, D. J.: Weighing functions for ozone depletion and greenhouse gas effects on climate, Annual review of energy and environment, 20, 45–70, 1995.
- Wuebbles, D. J., Patten, K. O., Johnson, M. T., and Kotamarthi, R.: The new methodology for Ozone Depletion Potentials of short-lived compounds: n-propyl bromide as an example, J. Geophys. Res., 106, 14551–14571, 2001.