
TRANSITIVITY OF CODIMENSION ONE ANOSOV ACTIONS OF Rk

ON CLOSED MANIFOLDS

THIERRY BARBOT AND CARLOS MAQUERA

Abstract. In this paper, we define codimension one Anosov actions of Rk, k ≥ 2, on

a closed connected orientable manifold M . We prove that if the ambient manifold has

dimension greater than k + 2, then the action is topologically transitive. This generalizes

a result of Verjovsky for codimension one Anosov flows.

1. Introduction

It is nowadays a common sense that the Anosov systems lie in the central heart of the

theory of dynamical systems, as the most perfect kind of global hyperbolic behavior. It

has strong connections with algebra, natural examples arising from number field theory

or Lie groups theory (see also [14] for an example illustrating the deep interplay between

Anosov systems and representation theory), and also with topology, the dynamics of an

Anosov system usually reflecting the ambient manifold topology.

The notion has been introduced by V.V. Anosov in the 60’s in [1], but one should also

consider previous works by precursors, including Hadamard, Morse, etc...

An Anosov system is (topologically) transitive if it admits a dense orbit. There is a

quite extensive literature devoted to transitivity for certain classes of Anosov systems. In

particular, by a celebrated result of Newhouse [18] and Franks [8], every codimension one

Anosov diffeomorphism on a compact manifold is topologically mixing (more than tran-

sitive). As a corollary from this theorem and [8, Corollary (6.4)], up to finite coverings,

codimension one Anosov diffeomorphisms on closed manifolds of dimension ≥ 3 are topo-

logically conjugate to hyperbolic toral automorphisms. For flows, in the three-dimensional

case, Franks–Williams [9] construct an Anosov flow that is not topologically transitive. In

the higher dimensional case, Verjovsky [35] proved that codimension one Anosov flows on

manifolds of dimension greater than three are transitive.
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A natural question arises: “what about transitivity for actions of higher dimensional

groups (particularly Rk, k ≥ 2)?”

The development which concerns us here deals with the case of Anosov actions of the

group Rk (some element r ∈ Rk acts normally hyperbolically with respect to the orbit

foliation). This concept was originally introduced by Pugh–Shub [24] in the early seventies,

and more recently received a strong impetus under the contribution of A. Katok and R.J.

Spatzier. The rigidity aspects of these actions receives nowadays a lot of attention, in the

framework of Zimmer program.

In this paper we undertake the study of transitivity of codimension one Anosov actions

of Rk, k > 1. An action Rk is called topologically transitive if it admits a dense orbit. Our

main result is the following theorem.

Theorem 1. Every codimension one Anosov action of Rk on a closed manifold of dimen-

sion greater than k + 2 is topologically transitive.

Note that if a closed n-manifold support a codimension one Anosov action of Rk and

m < k + 3, then m = k + 2. In this case, the Theorem does not hold: take the product

(cf. Example 4) of the by Franks–Williams example ([9]) by a flat torus is a non transitive

codimension one Anosov action of Rk on a (k + 2)-manifold of the form N3 ×Tk−1, where

N3 is closed three manifold.

Actually, we will prove slightly more. The theorem above states that under the hypoth-

esis there is a dense Rk-orbit, but we can wonder if there is a one parameter subgroup of

Rk whose orbit on M is dense. Actually, this stronger statement does not hold in general:

just consider once more as above the product of an Anosov flow, transitive or not, by a

flat torus. However, it is nearly true, in a weak sense, as explained just below.

An element of Rk is said Anosov if it acts normally hyperbolically with respect to the

orbit foliation. Every connected of the set of Anosov elements is an open convex cone in

Rk, called a chamber. More generally, a regular subcone C is an open convex cone in Rk

containing only Anosov elements. One should consider C as a semi-group in Rk: the sum

of two elements in the cone still lies in the cone. The C-orbit of a point x in M is the

subset comprising the iterates φa(x) for a describing C.

Theorem 2. Let φ be a codimension one Anosov action of Rk on a closed manifold M of

dimension greater than k + 2. Then any regular subcone C admits a dense orbit in M .

Theorem 1 is obviously a direct corollary of Theorem 2. On the other hand, given a

in Rk, we can apply Theorem 2 to every small regular cone containing a: hence we can

loosely have in mind that, up to arbitrarily small errors, φa admits a dense orbit.
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The cornerstone of the proof is the study of the codimension foliation F s tangent to the

stable subbundle of Anosov elements in C. The unstable foliation Fuu for C has dimension

one, and the first step is to prove that every leaf of Fuu admits an affine structure, preserved

by the action of Rk (cf. Theorem 6). The existence of this affine structure provides a very

good information about the transverse holonomy of F s, giving in fine, through the classical

theory of codimension one foliations, many information about the topology of the various

foliations involved. In particular, the orbit space of the lifting of φ to the universal covering

M̃ is a Hausdorff manifold, homeomorphic to Rn−k (cf. Theorem 8).

On the other hand, one can produce a generalization for Rk-actions of the classical Spec-

tral decomposition Theorem (Theorem 5). It allows to reduce the proof of the transitivity

to the proof that stable leaves are dense (Lemma 7). Now, if some leaf of F s is not dense,

then there must be some non bi-homoclinic orbit of Rk (cf. Proposition 4). One then get

the final result by using some clever argument, involving Jordan-Schönflies Theorem, and

already used in Verjovsky proof as rewritten in [3] or [15].

Actually, all the strategy above mostly follows the guideline used in Verjovsky proof,

but is more than a simple transposition. New phenomena arise, even enlightening the case

of Anosov flows.

– Convex cones: The case k = 1 is somewhat greatly simplified by the fact that regular

subcones in Rk are simply half-lines, and that the only non Anosov element of Rk is the

origin 0. One can compare the classical Closing Lemma with the general version, more

technical in its statement: Theorem 4.

– Reducibility: Given an Anosov Rk action on some manifold M , one can always take the

product M×Tl by some torus Tl = Rl/Zl and consider the locally free action of Rk+l on this

product manifold. Then this action is still Anosov. This construction can be generalized

to twisted products through a representation ρ : π1(M) → Rl (cf § 5). Of course, this

construction gives examples with k > 1, hence doesn’t appear in the case of Anosov flows.

Therefore, an important step is to put aside these examples. In Theorem 7, we prove that

every codimension one action of Rk splits uniquely as a principal torus bundle over some

manifold M̄ such that the Rk actions permutes the fibers, and thus induces an action on M̄ .

Moreover, the fibers are precisely the orbits of some subgroup H0 ⊂ Rk, and the induced

action is Anosov. Finally, this splitting is maximal, i.e. M̄ cannot be decomposed further:

it is irreducible. Many properties, among them transitivity, is obviously satisfied by the

Anosov action on M if and only if it is satisfied by the induced action on M̄ . Therefore,

the proof of Theorem 2 reduces to the irreducible case.

The irreducibility of an Anosov Rk action can be equivalently defined as requiring that

the codimension one stable foliation F s has trivial holonomy cover; in a less pedantic
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way, it means that homotopically non-trivial loops in leaves have non-trivial holonomy (cf.

Remark 5). Irreducible Anosov actions enjoy many nice topological properties. Among

them (cf. Proposition 3):

Let φ be an irreducible codimension one action of Rk on a manifold M . Then the isotropy

subgroup of every element of M is either trivial, or a lattice in Rk.

We can observe, as a corollary, that if a codimension one Anosov action of Rk admits

an orbit homeomorphic to Tk−1 × R, then it is a twisted product by flat tori Tk−1 over an

Anosov flow.

The paper is organized as follows: in the preliminary section 2, we give definitions,

and present first results, as the generalized Closing Lemma for actions of Rk, and the

spectral decomposition of the non-wandering set as a finite union of basic blocks. In § 3

we present the known examples of Anosov actions of codimension one. In § 4 we establish

the reduction Theorem 7 (it includes the proof of the Rk-invariant affine structures along

unstable leaves). In § 5 we prove the Main Theorem 2. In the last section 6 we give

additional comments, and present forecoming works in progress.

Acknowledgments. This paper was written while the second author stayed at Unité

de Mathématiques Pures et Appliquées, École Normale Supérieure de Lyon. He thanks the

members of UMPA, especially Professor Etienne Ghys for his hospitality.

2. Preliminaries

2.1. Definitions and notations. Now, we outline some basic results about actions of

Rk which will be used in the proof of the main theorem. Recall that, for any action

φ : Rk × M → M of Rk on a manifold M, Op := {φ(ω, p), ω ∈ R2} is the orbit of p ∈ M

and Γp := {ω ∈ Rk : φ(ω, p) = p} is called the isotropy group of p. The action φ is said to

be locally free if the isotropy group of every point is discrete. In this case the orbits are

diffeomorphic to Rℓ × Tk−ℓ, where 0 ≤ ℓ ≤ k.

Let F be a continuous foliation on a manifold M . We denote the leaf that contains p ∈ M

by F(p). For an open subset U of M , let F|U be the foliation on U such that (F|U)(p) is

the connected component of F(p) ∩ U containing p ∈ M . A coordinate ϕ = (x1, · · · , xn)

on U is called a foliation coordinate of F if xm+1, · · · , xn are constant functions on each

leaf of F|U , where m is the dimension of F . A foliation is of class Cr+ is if it is covered

by Cr+ foliation coordinates. We denote the tangent bundle of M by TM . If F is a C1

foliation, then we denote the tangent bundle of F by TF .

We fix a Riemannian metric ‖, and denote by d the associated distance map on M .
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2.2. Anosov Rk-actions. Let us recall the definitions and basic properties of Anosov

actions.

Definition 1. Let M be a C∞ manifold and φ a locally free C1+ action of Rk on M . By

Tφ, we denote the k-dimensional subbundle of TM that is tangent to the orbits of φ.

(1) We say that a ∈ Rk is an Anosov element for φ if g = φ(a, ·) acts normally

hyperbolically with respect to the orbit foliation. That is, there exist real numbers

λ > 0, C > 0 and a continuous Dg-invariant splitting of the tangent bundle

TM = Ess
a ⊕ Tφ ⊕ Euu

a

such that
‖Dgn|Ess

a
‖ ≤ Ce−λn ∀n > 0

‖Dgn|Euu
a
‖ ≤ Ceλn ∀n < 0

(2) Call φ an Anosov action if some a ∈ Rk is an Anosov element for φ.

Hirsch, Pugh and Shub developed the basic theory of normally hyperbolic transforma-

tions in [11]. As consequence of this we obtain that the splitting is Hölder continuous and

the subbundles Ess
a , Euu

a , Tφ⊕Ess
a , Tφ⊕Euu

a are integrable. The corresponding foliations,

F ss
a , Fuu

a , F s
a , F

u
a , are called the strong stable foliation, the strong unstable foliation, the

weak stable foliation, and the weak unstable foliation, respectively.

From now φ is an Anosov action of Rk on M , and a an Anosov element fixed once for

all. For simplicity, the foliations corresponding to a will be denoted by F ss, Fuu, F s and

Fu. For all δ > 0, F i
δ(x) denote the open ball in F i(x) under the induced metric which

centering at x with radius δ, where i = ss, uu, s, u.

Theorem 3 (of product neighborhoods). Let φ : Rk × M → M be an Anosov action.

There exists a δ0 > 0 such that for all δ ∈ (0, δ0) and for all x ∈ M, the applications

[·, ·]u : F s(x) ×Fuu(x) → M ; [y, z]u = F s
2δ(z) ∩ Fuu

2δ (y)

[·, ·]s : F ss(x) ×Fu(x) → M ; [y, z]s = F ss
2δ (z) ∩ Fu

2δ(y)

are homeomorphisms on their images.

Remark 1. Every foliation F ss
a , Fuu

a , F s
a or Fu

a is preserved by every diffeomorphism

commuting with a. In particular, it is Rk-invariant. Another standard observation is that,

since every compact domain in a leaf of F ss
a (respectively of Fuu

a ) shrinks to a point under

positive (respectively negative) iteration by φa, every leaf of F ss
a or Fuu

a is a plane, i.e.

diffeomorphic to Rℓ for some ℓ.



6 THIERRY BARBOT AND CARLOS MAQUERA

Let F be a weak leaf, let say a weak stable leaf. For every strong stable leaf L in F , let

ΓL be the subgroup of Rk comprising elements a such that φa(L) = L, and let OL be the

saturation of L under φ. Thanks to Theorem 3 we have:

• OL is open in F ,

• ΓL is discrete.

Since F is connected, the first item implies F = OL: the φ-saturation of a strong leaf is an

entire weak leaf. Therefore, ΓL does not depend on L, only on F . The second item implies

that the quotient P = ΓL\Rk is a manifold, more precisely, a flat cylinder, diffeomorphic

to Rp × Tq for some p, q. For every x in F , define pF (x) as the equivalence class a + ΓL

such that x belongs to φa(L). The map pF : F → P is a locally trivial fibration and the

restriction of pF to any φ-orbit in F is a covering map. Since the fibers are contractible

(they are leaves of F ss, hence planes), the fundamental group of F is the fundamental

group of P , i.e. ΓL for any strong stable leaf L inside F .

Observe that if F ss is oriented, then the fibration pF is trivial: in particular, F is

diffeomorphic to P × Rp, where p is the dimension of F ss.

Of course, analogous statements hold for the strong and weak unstable leaves.

We say φ is a codimension-one Anosov action if Euu
a is one-dimensional for some a in

Rk. In this case, we will always assume that the fixed Anosov element has one dimensional

strong stable foliation.

Remark 2. Let A = A(φ) be the set of Anosov elements of φ.

(1) A is always an open subset of Rk. In fact, by the structural stability theorem for

normally hyperbolic transformations by Hirsch, Pugh and Shub a map C1-close to

a normally hyperbolic transformation is again normally hyperbolic for a suitable

foliation [11]. For an element in Rk close to an Anosov element, this suitable

foliation is forced to be the orbit foliation of the action.

(2) Every connected component of A is an open convex cone in Rk. Let a be an Anosov

element. Every element near a must share the same stable and unstable bundles,

therefore, all the Anosov elements in the same connected component than a admits

the same stable/unstable splitting. The contracting or expanding property along

a given bundle is stable by composition and by multiplication of the generating

vector field by a positive constant factor; it follows that the connected component

is a convex cone, as claimed.
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We call such a connected component a chamber, by analogy with the case of

Cartan actions. More generally, a regular subcone is an open convex cone contained

in a chamber.

(3) If Aa is the chamber containing a, then F ss
a = F ss

b , Fuu
a = Fuu

b , F s
a = F s

b and

Fu
a = Fu

b for all b ∈ Aa.

(4) Any φ-orbit whose isotropy subgroup contains an Anosov element v is compact.

Indeed, let y be a point in the closure of the orbit. It is clearly fixed by φv, and

there is a local cross-section Σ to φ containing x such that for every z in Σ near y

the image φv(z) lies in Σ. Then, y is a fixed point of φv of saddle type, in particular,

it is an isolated φv-fixed point. Hence y lies in the φ-orbit of x.

Another standard fact about Anosov Rk-actions is an Anosov-type closing lemma which

is a straightforward generalization of a similar statement for Anosov flows (cf. [12, Theorem

2.4]).

Theorem 4 (Closing Lemma). Let a ∈ Rk be an Anosov element of an Anosov Rk-action φ

on a closed manifold M . There exist positive constants ε0, C and λ depending continuously

on φ in the C1-topology and a such that: if for some x ∈ M and t ∈ R

d(φ(ta, x), x) < ε0,

then there exists a point y ∈ M , a differentiable map γ : [0, t] → Rk such that for all

s ∈ [0, t] we have

(1) d(φ(sa, x), φ(γ(s), y)) < Ce−λ(min{s,t−s})d(φ(ta, x), x);

(2) φ(γ(t), y) = φ(δ, y) where ‖δ‖ < Cd(φ(ta, x), x);

(3) ‖γ′ − a‖ < Cd(φ(ta, x), x).

Remark 3. Let C be a regular subcone containing a (for example, a chamber). Once a is

fixed, item (3) in the Theorem above implies that if d(φ(ta, x), x) is sufficiently small, the

velocity γ′ lies in C, therefore, that the image of γ is contained in C. Moreover, once more

if d(φ(ta, x), x) is sufficiently small, item (2) implies that γ(t)− δ belongs to C. According

to Remark 2 the orbit of y is compact.

Definition 2 (The nonwandering set). A point x ∈ M is nonwandering with respect to a

regular subcone C if for any open set U containing x there is a v ∈ C, ‖v‖ > 1, such that

φv(U) ∩ U 6= ∅, where φv = φ(v, ·). The set of all nonwandering points, with respect to C,

is denoted by Ω(C).

By using the Closing Lemma for Anosov Rk-actions we obtain:



8 THIERRY BARBOT AND CARLOS MAQUERA

Proposition 1. For any regular subcone C, the union of compact orbits of Rn is dense in

Ω(C).

Proof. For x ∈ Ω(C) and ε > 0 denote by Uε the ε/(2C + 1)-neighborhood of x in M ,

where C is as in the Closing Lemma. Then there exists v ∈ C such that φv(Uε) ∩ Uε 6= ∅.

For y ∈ φ−v(Uε) ∩ Uε 6= ∅ we have d(φv(y), y) < 2ε/(2C + 1) and hence by the Closing

Lemma and Remark 3 there is a point z such that φv(z) = z, Oz is compact and d(y, z) <

Cd(φv(y), y), consequently d(z, x) ≤ d(y, x) + d(y, z) < ε. It prove that Comp(φ) is dense

in Ω(C) and finishes the proof. �

Remark 4. Let a be any non-trivial element of Rk. The nonwandering set Ω(φta) of the

(semi-)flow generated by a is clearly contained in Ω(φ). On the other hand, the nonwan-

dering set of any linear flow on a torus is the entire torus. Hence, compact orbits of Rk are

contained in Ω(φta). Hence, it follows from the proposition above that the nonwandering

sets Ω(φta) and Ω(φ) coincide. In particular, the nonwandering set Ω(C) is independent

from the regular subcone C.

Lemma 1. The isotropy subgroup of any compact orbit contains an element in C.

Proof. Let R > 0 such that every Euclidean ball of radius R in Rk intersects every orbit of

the isotropy subgroup Γ. Let B be a closed Euclidean ball of radius r in the open convex

cone C. Then, for t > R/r, the ball tB is contained in C and has radius > R, and thus

intersects the Γ-orbit of 0. The lemma follows. �

The Riemannian metric induces an area form on every φ-orbit.

Lemma 2. For every C > 0, there is only a finite number of compact φ-orbits of area

≤ C.

Proof. Assume by contradiction the existence of an infinite sequence of distinct compact

orbits On of area ≤ C. For each of them, let Γn be the isotropy group of On: it is an element

of R = GL(k, R)/ SL(k, Z), the space of lattices in Rk. Since φ is locally free, the length of

elements of Γn is uniformly bounded from below, independently from n. By the Mahler’s

criterion ([25]), it ensures that, up to a subsequence, the Γn converges to some lattice Γ∞.

In particular, for every v∞ in Γ∞, there is a sequence of elements vn of Γn converging in

Rk to v∞. Furthermore, according to (the proof of) Lemma 1, we can select v∞ in C. Up

to a subsequence, we can also pick up a sequence of elements xn in each On converging to

some x∞ in M . Then, since φvn(xn) = xn, at the limit we have φv∞(x∞) = x∞. Since v∞ is

Anosov, the φ-orbit O∞ of x∞ is compact. Consider a local section Σ to φ containing x∞:

the first return map on Σ along the orbit of φv∞ is hyperbolic, admitting x∞ as an isolated
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fixed point. On the other hand, by pushing slightly along φ, we can assume without loss

of generality that every xn belongs to Σ. Since the vn converges to v∞, the φvn-orbit of

xn approximates the φv∞-orbit of x∞, showing that the xn are also fixed points of the first

return map. It is a contradiction, since they accumulate to the isolated fixed point x∞. �

Theorem 5 (Spectral decomposition). Let M be a closed smooth manifold and let φ be an

Anosov action on M . The nonwandering set of φ can be partitioned into a finite number

of φ-invariant closed subsets, called basic blocks:

Ω =
ℓ⋃

i=1

Λi

such that for every regular subcone C, every Λi is C-transitive, i.e. contains a dense C-orbit.

Proof. Let Comp(φ) be the set of compact orbits of φ. By Proposition 1 we have Comp(φ) =

Ω(φ). We define a relation on Comp(φ) by: x ∼ y if and only if Fu(x) ∩ F s(y) 6= ∅ and

F s(x) ∩ Fu(y) 6= ∅ with both intersections transverse in at least one point. We want to

show that this is an equivalence relation and obtain each Λi as the closure of an equivalence

class.

Note that ∼ is trivially reflexive and symmetric. In order to check the transitivity

suppose that x, y, z ∈ Comp(φ) and p ∈ Fu(x) ∩ F s(y), q ∈ Fu(y) ∩ F s(z) are transverse

intersection points. There exists v ∈ Aa such that φv(x) = x. Since the images of a ball

around p in Fu(p) = Fu(x) = φv(Fu(x)) accumulate on Fu(y), we obtain that Fu(x) and

F s(z) have a transverse intersection. Analogously, we obtain that F s(x) and Fu(z) have

a transverse intersection.

By Theorem 3 any two sufficiently near points are equivalent, so by compactness we

have finitely many equivalence classes whose (pairwise disjoint) closures we denote by

Λ1, Λ2, . . . , Λℓ.

It remains to show that every Λi is C-transitive for every regular subcone C. Notice first

that if p ∈ Λi ∩ Comp(φ) and p ∼ q with q ∈ Comp(φ), then there is z ∈ Fu(p) ∩ F s(q).

Let v ∈ Aa such that φv(p) = p. As the iterates under φv of a ball around z in Fu(p) =

Fu(z) = φv(Fu(z)) accumulate on Fu(q), and since z belongs to F s(q), we obtain that

Fu(p) is dense in Λi ∩ Comp(φ), hence in Λi.

Now, for the transitivity, we need to show that for any two open sets U and V in Λi

there exists v ∈ C such that φv(U) ∩ V 6= ∅. The density of compact orbits in Λi implies

the existence of p ∈ U and v ∈ C such that φv(p) = p (cf. Lemma 1). Let Fuu
δ (p) be a

neighborhood of p in Fuu(p) that is contained in U. Since the Rk-orbit of p is compact,

there is a compact domain K in Rk so that the leaf Fu(p) is equal to K · ∪∞
j=0φ

jv(Fuu
δ (p)).
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Since this leaf is dense in Λi, there exists for every m ∈ N sufficiently big an element

gm ∈ K such that V ∩ [gm · ∪m
j=0φ

jv(Fuu
δ (p))] 6= ∅, hence, V ∩ [∪m

j=0φ
jv+gm(Fuu

δ (p))] 6= ∅.

Thus V ∩ φmv+gm(Fuu
δ (p)) 6= ∅, consequently, V ∩ φmv+gm(U) 6= ∅. The Theorem follows,

since for m sufficiently large, mv + gm = m(v + gm/m) lies in C. �

3. Examples

Let us give some examples of Anosov actions of Rk. We will especially focus on codi-

mension one examples.

Example 1. Let G be a real semi-simple Lie group, with Lie algebra G, Γ a torsion-free

uniform lattice in G, and A a split Cartan subgroup of G. The centralizer of A in G is a

product AK, where A commutes with K. Then the action at the right induces a Rk-action

on the compact quotient M = Γ\G/K. An essential starting point in the theory of root

systems has a strong dynamical system flavor: this action is Anosov! More precisely, the

classical first step is to prove that the adjoint action of A on G preserves a splitting :

G = K + A +
∑

α∈Σ

Gα

where K, A are the Lie algebras of K, A, and where every α (the roots) are linear forms

describing the restriction of the adjoint action of a on Gα: it is simply the multiplication

by α(a). The classical way is then to prove that the elements a of A for which α(a) 6= 0

is a Zariski open subset, and these elements, called regular, are precisely the ones which

are Anosov in our terminology for Rk-action. They form an union of open convex cones,

called Weyl chambers, of the form {α > 0; ∀α ∈ Σ∗} where Σ∗ is a subsystem of a certain

kind, called reduced root system.

This family of examples, called Weyl chamber flows in [12], is certainly one the the most

interesting, but is never of codimension one, except in the case G = SL(2, R). Indeed, the

root system is always equal to its own opposite. Hence if the associated Rk Anosov action

has codimension one, then Σ contains exactly two elements, and our assertion follows.

In this very special case, the examples we obtain are Anosov flows (i.e. k = 1), and

more precisely, up to finite coverings, geodesic flows of compact Riemannian surfaces with

constant curvature −1.

This dynamical feature in algebra is very useful. For example, the (simple) fact that

Anosov actions admit compact orbits implies that every uniform lattice Γ in G admits a

conjugate gΓg−1 which is a lattice in A. In particular, Γ contains a free abelian subgroup

of the same rank than G.
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Example 2. Consider an action of Zk on a closed manifold S. The suspension of this

action is the quotient M of S ×Rk by the relation identifying each (x, u) with (k.x, u + k)

for every k in Zk. The translation on the second factor Rk induces a Rk-action on M . It is

easy to prove that this action is Anosov if and only some element of Zk induces an Anosov

diffeomorphism on S. Observe also that this action has codimension one if and only if one

of the Anosov element of Zk has codimension one. Hence, by Franks-Newhouse Theorem

reported in the introduction, if the suspension has codimension one, then codimension one

Anosov elements of Zk are (up to finite coverings and topological conjugation) hyperbolic

toral automorphism on some torus Tn. Every homeomorphism of the torus commuting with

a hyperbolic toral automorphism is also an automorphism (i.e. linear). Hence the only

possible examples of codimension one suspensions are the ones described below, arising

from number field theory, maybe after restriction to a subgroup of Zk ⊂ Aut(Tn).

The suspension process can be generalized to a version including Weyl chamber flows

(see twisted Weyl chamber flows in [12, 13]), but this new family of examples are never of

codimension one.

Example 3. Generically, the centralizer of an Anosov diffeomorphism f reduces to the

iterates fk (k ∈ Z) (see [20]). Hence the construction of Anosov actions of Zk for k ≥ 2

requires special features.

Let K = Q[α] be a field extension of the field Q of finite degree n, OK the ring of algebraic

integers of K, and O∗
K the group of units of OK . Then, the quotient of K⊗R by the additive

action of OK is a compact torus of dimension n, on which O∗
K acts by multiplication.

According to Dirichlet unit Theorem, the torsion-free part of O∗
K is isomorphic to Zk,

with k = r1 + r2 − 1 where r1 is the number of real embeddings and r2 the number of

conjugate pairs of complex embeddings of K. Hence every finite extension of Q naturally

provides an action of Zk on a torus. More precisely, the real and complex embeddings

provide altogether a realization of K ⊗ R as a vector subspace of Rr1 ⊕ Cr2, preserved by

the multiplicative action of O∗
K , which is diagonalizable, the eigenvalues being the various

conjugates. Hence, this action is Anosov if and only if some unit has no conjugate of norm

1.

A concrete way to produce such examples is to take some algebraic number α admitting

no conjugate of norm 1, and to consider the extension K = Q[α]. Of course, one can forget

part of the unit group and just consider some subgroup. It is actually what we do when

defining linear Anosov diffeomorphisms.

In order to get codimension one Zk-actions, it is sufficient to select as algebraic integer

α any Pisot number, which is, by definition precisely a real algebraic integer α exceeding
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1, and such that its conjugate elements are all less than 1 in absolute value. Concretely,

examples of Pisot numbers are roots of x3 − x − 1, x4 − x3 − 1, etc...

Example 4. Let N be a n-dimensional manifold supporting a codimension one Anosov flow

(clearly, n ≥ 3). We construct a codimension one action of Rk, k ≥ 2, on M = N × Tk−1.

Consider the coordinate system (x, θ) in M, x ∈ N, θ ∈ Tk−1. In what follows, for a real

function a(x, θ), by a(x, θ) ∂
∂x

we mean a1
∂

∂x1

+ · · ·+an
∂

∂xn
where x1, . . . , xn are coordinates

in N.

Let φ ∈ A1(Rk, M) be defined by X1 and Y1, . . . Yk−1, such that X1 = a(x) ∂
∂x

is a

codimension one Anosov flow in N and Xj := ∂
∂θj

, where θ1, . . . , θk−1 are coordinates in

Tk−1. Then

• φ is a codimension one Anosov action of Rk on M .

• for n > 3, by Verjovsky Theorem, φ is transitive.

• if n = 3 and X1 is the Anosov flow defined by Franks-Williams in [9], then φ is

a codimension one Anosov action of Rk on the (k + 2)-manifold M which is not

transitive.

Example 5. More generally, let φ be an Anosov Rk-action on a closed n-dimensional

manifold M , and let p : M̂ → M be a principal flat Tℓ-bundle over M . By flat, we mean

that it is equipped with a flat Tℓ-invariant connection, i.e. a n-dimensional foliation H

transverse to the fibers of p and preserved by Tℓ (there is a 1-1 correspondence between

principal flat Tk-bundles and group homomorphisms ρ : π1(M) → Tk). Then, the Rℓ-action

on M lifts uniquely as a Rℓ action tangent to H. Moreover, this action commutes with the

right action of Tℓ tangent to the fibers. Hence, both action combine to a Rk+l-action on

M̂ , which is clearly Anosov.

4. Reducing codimension one Anosov actions

In this section we to show that any codimension one Anosov action, up to a reduction

through a principal torus bundle, has the several topological properties, including:

• The universal covering of the ambient manifold is diffeomorphic ro Rn;

• The fundamental group of every compact orbit injects into the fundamental group

of the ambient manifold;

• The holonomy of the codimension one foliation along a homotopically non-trivial

loop in a leaf is non-trivial.

The crucial ingredient is the construction along each strong leaf of dimension one of an

affine structure, preserved by the action of φ.
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4.1. Affine structures over the leaves strong unstables. We begin by remembering

that an affine structure of class C2 on R it is equivalent to given a differential 1-form on R.

If f is a real-valued C2 map defined on an interval of R on which the derivative vanishes

nowhere, we may define the following differential 1-form:

η(f) =
f ′′

f ′
dt

It follows from the previous definition that

η(f ◦ g) = g∗η(f) + η(g)

where g∗η(f) is the pull-back of η(f) by g:

g∗η(f) =
f ′′ ◦ g

f ′ ◦ g
g′dt

On the other hand, the maps f satisfying η(f) = 0 are characterized as the restrictions

of affine maps (that is, of the form t → λt + b ). Consequently, if g is affine, we have

η(g ◦ f) = η(f).

Hence, there is a correspondence between a differential 1-form on an interval of R and an

affine structure on this interval. In fact, if ω(t)dt is a differential 1-form on an interval

I, then the differential equation η(f) = ωdt has local solutions which are local diffeomor-

phisms between I and an open set of R. Moreover, two of these diffeomorphisms differ by

right composition by an affine diffeomorphism. Then, the family of this local solutions is

a system of affine charts on I.

Conversely, if (Ui, fi)i is a system of charts that defines an affine structure of class C2,

then the differential 1-form defined by ω(t)dt = η(fi) if t ∈ Ui is independent of the choice

of Ui ∋ t.

We consider a C∞ Anosov action of Rk on M whose stable foliation F s is of codimension

one. Then, each leaf of Fuu is C∞ diffeomorphic to R. We may assume that Fuu is

orientable, otherwise we consider the double covering of M . Consequently, it is possible

to parametrize Fuu by u : R × M → M, an application such that the signed distance of

u(t, x) ∈ Fuu(x) to x is t. Here we consider the induced metric on Fuu.

Lemma 3. The application u is continuous. For x fixed, the application ux : R → M

defined by ux(t) = u(t, x) is C∞. Furthermore, the derivatives ∂
∂tℓ

u(0, x), ℓ ∈ N, depend

continuously on x.
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Proof. Since u is a flow, it is sufficient to establish the lemma for small values of t.

Let C∞(R, M) be the space of C∞ immersions of R in M provided of the C∞ uniform

topology. It follows from the theory developed in [11] that for all x ∈ M, there exist an

open neighborhood U of x and a continuous application I : U → C∞(R, M), such that, for

every y ∈ U , the immersion Iy = I(y) is a diffeomorphism between R and a neighborhood

of y in Fuu. There exist t0 > 0 such that, for all (t, y) ∈ (−t0, t0) × U we have that

u(t, y) ∈ Iy(R). Hence u(t, y) = Iy(s(t, y)) where s(t, y) ∈ R is defined by equation

∫ s(t,y)

0

‖I ′
y(α)‖dα = t

As ‖I ′
y(α)‖ is continuous with respect to y and smooth with respect to α, it follows that,

s(t, y) is continuous with respect to y and smooth with respect to t. This proves that u is

continuous and ux is of class C∞. The last statement of the lemma is trivial. �

For a continuous application ω : M → R, the parametrization u of Fuu permits us to

associate affine structures on the leaves Fuu(x) which are defined by the differential 1-form

ω(u(t, x)). This structure will be called of affine structure along the leaves of Fuu defined

by ω.

We say that an affine structure along the leaves of Fuu is invariant by the action φ if,

for each v ∈ Rk, the application φv|Fuu(x) : Fuu(x) → Fuu(φv(x)), x ∈ M, is an affine

diffeomorphism.

Theorem 6. Let φ be a codimension one Anosov action on M and suppose that Fuu is

one dimensional. There exists an unique affine structure along the leaves of Fuu depending

continuously on the points and invariant by the action φ.

Proof. For each (v, x) ∈ Rk × M , let τ v
x : R → R be the application defined by:

φv(u(t, x)) = u(τ v
x (t), φv(x))

We claim that a continuous application ω : M → R defines an invariant affine structure

along the leaves of Fuu if and only if

ω = nv + δvω ◦ φv = Av(ω), for all v ∈ Rk,

where δvω(x) = (τ v
x )′(0) and nv(x) = (τ v

x )′′(0)/(τ v
x )′(0). In fact, fy, y = φv(x) is an affine

chart on Fuu(φv(x)) if only fy ◦ τ v
x is an affine chart on Fuu(x). Equivalently:

ω(u(τ v
x(t), y)) =

f ′′
y (τ v

x (t))

f ′
y(τ

v
x (t))

= ω ◦ φv(u(t, x)) ⇔ ω(u(t, x)) =
(fy ◦ τ v

x )′′(t)

(fy ◦ τ v
x )′(t)

.
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Hence, as τ v
u(t,x)(s) = τ v

x (t + s), we obtain:

ω(u(t, x)) =
(fy ◦ τ v

x )′′(t)

(fy ◦ τ v
x )′(t)

=
(τ v

x )′′(t)

(τ v
x)′(t)

+ (τ v
x )′(t)

f ′′
y (τ v

x (t))

f ′
y(τ

v
x (t))

=
(τ v

u(t,x))
′′(0)

(τ v
u(t,x))

′(0)
+ (τ v

u(t,x))
′(0)ω ◦ φv(u(t, x))

= nv(u(t, x)) + δv(u(t, x))ω ◦ φv(u(t, x))

= Av(ω)(u(t, x))

This proves our claim.

The applications Av acting on the Banach space of the continuous applications of M on

R provided of the uniform norm. By definition of Anosov action, if v is an element of the

Anosov chamber, we have that δsv, s < 0 has uniform norm less that one. This implies

that Asv, s < 0 is a contraction, hence Asv, s < 0 admit an unique fixed point. Finally,

since Av ◦ Aw = Aw ◦ Av for all v, w ∈ Rk, there exists an unique fixed point ω for all Av.

This finishes the proof. �

Real affine structures on the real line are well-known: they are all affinely isomorphic

to the segment (0, 1), the half-line (0, +∞), or the complete affine line (−∞, +∞). In the

latter case, the affine structure is said complete.

Lemma 4. Every leaf of Fuu, endowed with the affine structure provided by Theorem 6,

is complete.

Proof. For every x in M , there is a unique affine map fx : Fuu(x) → R mapping x on 0

and the point u(1, x) at distance 1 on 1. The image of fx is an interval (α(x), β(x)). We

aim to prove that α(x) = −∞ and β(x) = +∞.

For every v in Rk and x in M , the restriction of φv on Fuu(x) induces an affine trans-

formation, even linear, of the affine line, of the form z → λ(v, x)z:

fφv(x) ◦ φv = λ(v, x)fx

Hence:

β(φv(x)) = λ(v, x)β(x)

Recall that:

φv(u(t, x)) = u(τ v
x (t), φv(x))
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Since by definition fx(u(1, x)) = 1, we get:

λ(v, x) = fφv(x)(u(τ v
x (t), φv(x)))

Hence, for v = ta, where a is the codimension Anosov element, λ(−ta, x) is arbitrarily

small if t > 0 is sufficiently big. Therefore, if β(x) is not +∞, β(φ−ta(x)) takes arbitrarily

small value. This is a contradiction since obviously β > 1 everywhere. Therefore, β is

infinite everywhere.

The proof of α = −∞ is similar. �

4.2. Irreducible codimension one Anosov actions. A codimension one Anosov action

φ of Rk on M is said to be irreducible if for any v ∈ Rk − {0} and x ∈ M with φv(x) = x

we have that Holγ , the holonomy along of γ = {φsv(x); s ∈ [0, 1]} of F s(x), is a topological

contraction or a topological expansion.

Remark 5. It follows from Theorem 6 that the holonomy along γ is differentially lineariz-

able. Therefore, an equivalent definition of irreducibility is to require that the holonomy

along γ is non-trivial.

Remark 6. When k = 1, the case that the action is a flow, all the codimension one Anosov

actions are irreducibles.

Theorem 7. Let φ : Rk × M → M be a codimension one Anosov action. Then, there

exists a free abelian subgroup H0 ≈ Rℓ of Rk, a lattice Γ0 ⊂ H0, a smooth (n− ℓ)-manifold

M̄ , and p : M → M̄ a smooth Tℓ-principal bundle such that:

(1) Γ0 is the kernel of φ;

(2) every orbit of φ0 = φ|H0×M is a fiber of p : M → M̄ . In particular, M̄ is the orbit

space of φ0;

(3) φ induces an irreducible codimension one Anosov action φ̄ : H̄ × M̄ → M̄ where

H̄ = Rk/H0.

The proof of Theorem 7 essentially relies on the following lemma:

Lemma 5. Let v be an element of Rk and x an element of M such that φv(x) = x. Then,

either x is a repelling of attracting (and therefore, unique) fixed point of the restriction of

φv to Fuu(x), or the action of φv on the entire manifold M is trivial.

Proof. For every x in M and every w in Rk such that F ss(x) = φw(F ss(x)) we consider

any loop in F s(x) which is the composition of t ∈ [0, 1] → φtw(y) with any path in F ss(x)

joining φw(x) to x. Since F ss(x) is a plane (Remark 1) all these loops are homotopic one
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to the other in F s(x); in particular, the holonomy of F s along any of them is well-defined

and does not depend on the loop. We denote it by hw
x .

Assume that x is the one appearing in the statement of the lemma. Then according to

Theorem 6, the restriction of φv to Fuu(x) is conjugated to an affine transformation of the

real affine line. Therefore, in order to prove the theorem, we just have to consider the case

where hv
x is trivial.

We define Ωw as the set comprising the points x in M such that φw(x) ∈ F ss(x) and

for which the holonomy hw
x is trivial. This set is obviously φ-invariant. By the discussion

above, we can assume that Ωv is non empty. Moreover, for every x in Ωw, and every y

in F ss(x), the loops considered above associated to respectively x, y, are freely homotopic

one to the other in F s(x). Hence hw
y = hw

x . It follows that Ωw is saturated by F s.

Finally, for every subset U of Rk, let ΩU be the union of the Ωw for w in U . For every

x in Ωv, since the holonomy hv
x is trivial, for every y in Fuu(x) near x the point φv(y) lies

in the local stable leaf of y. It follows that y lies in Ωw for some w close to v in Rk. Since

M is compact, for every neighborhood U of v in Rk, there exists δ > 0 such that every y

in M , lying on a local unstable leaf Fuu
δ (x) with x in Ωv, belongs to ΩU .

Now, at the one hand we know that ΩU is φ-invariant. On the other hand, since the

Fuu-saturation of any F s-invariant subset is the entire M , for every y in M the point φta(y)

lies in Fuu
δ (x) for some t < 0, where x is an element of Ωv. It follows that ΩU is the entire

M . Since U is arbitrary, we get the equality M = Ωv.

Consider now a compact φ-orbit O. For some δ > 0 and every x in O, the intersection

O ∩ F ss
δ (x) is reduced to x. For every y in F ss(x), and for every t > 0 sufficiently big,

φta(y) belongs to F ss
δ (φta(x)). Hence F ss(x) ∩ O = {x}. It follows that every point in

Comp(φ) ∩ Ωv = Comp(φ) is fixed by φv. Hence, the restriction of φv to the closure Ω(φ)

of Comp(φ) is trivial.

Finally, assume that x is an arbitrary element of M = Ωv. Let (tn)(n∈N) be a sequence

of positive real number diverging to +∞ and such that xn = φ−tna(x) converges to some

element x∞ of Ω(φ) ⊂ Fix(φ). Then, due to the proximity to x∞, for every ǫ > 0, and for

n is sufficiently big, there is a path cn in F ss(xn) of length ≤ ǫ joining xn to φv(xn). Then,

φtna(cn) is a path of length ≤ ǫ joining x to φv(x). Since ǫ is arbitrary, we get φv(x) = x.

This achieves the proof of the lemma. �

Proof of Theorem 7. Let Γ0 be the kernel of φ. Since the action is locally free, Γ0 is

discrete, isomorphic to Zℓ for some integer ℓ ≥ 0. Let H0 be the subspace of Rk generated

by Γ0. Observe that for every x in M , and every v in Γ0, the holonomy hv
x is well-defined,

and trivial (cf. the notations introduced in the proof of Lemma 5).
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The torus Tℓ = Γ0\H0 acts on M ; since it is compact, this action is proper. Moreover,

this action is free: indeed, if some v in H0 fixes some x, then the holonomy hv
x is trivial

since v is a linear combination of elements of Γ0 (or, better to say, since some of the iterates

nv, for integers n, are arbitrarily approximated by elements of Γ0). According to Lemma 5,

the action of v on M is trivial, i.e. v belongs to Γ0.

Therefore, the quotient space M̄ is a closed (n−ℓ)-dimensional manifold, and the quotient

map p : M → M̄ is a principal Tℓ-bundle. The action of Rk on M induces an action of

H̄ = Rk/H0. It is straightforward to check that this action is Anosov, and of codimension

one.

Finally, if φ̄ is not irreducible, there is a non-trivial element v̄ of H̄ fixing a point x̄ in

M̄ and such that hv̄
x̄ is trivial. There is a representant v of v̄ in Rk fixing a point x in M

above x̄, and such that hv
x is trivial. According to Lemma 5, v belongs to Γ0 ⊂ H0. Hence

v̄ is trivial. This contradiction achieves the proof of the theorem. �

Remark 7. Let φ : Rk × M → M be a codimension one Anosov action and φ̄ an action

of H̄ (that is isomorphic to Rk−ℓ) on M̄ as in Theorem 7. Then:

(1) dim M > k + 2 ⇐⇒ dim M̄ > dim H̄ + 2;

(2) φ is transitive ⇐⇒ φ̄ is transitive;

(3) φ is irreducible ⇐⇒ H̄ = Rk.

4.3. The orbit space of an irreducible codimension one Anosov action. Let π :

M̃ → M be the universal covering map of M and φ̃ be the lift of φ on M̃ . The foliations

F ss, Fuu, F s and Fu lift to foliations F̃ ss, F̃uu, F̃ s and F̃u in M̃ . We denote by Qφ be

the orbit space of φ̃ and πφ : M̃ → Qφ be the canonical projection. This section is devoted

to the proof of the following theorem, which is a keystone of the proof of the main theorem.

Theorem 8. If φ is an irreducible codimension one Anosov action of Rk on M then Qφ,

the orbit space of φ̃, is homeomorphic to Rn−k.

Let p = n − 1 − k. Since by hypothesis Fuu is one dimensional, p is the dimension of

F ss.

Proposition 2. Every loop in M transverse to F s is homotopically non-trivial in M .

Proof. By a Theorem of Haefliger (see [4, Proposition 7.3.2]), if some transverse loop is

homotopically trivial, then there is a leaf F , of F s containing a loop c : [0, 1] → F ,

homotopically non-trivial in F , and such that the holonomy of F s along c is trivial on one

side.
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According to Remark 1 there is a fibration pF : F → P where P is a flat cylinder, and

whose fibers are strong stable leaves. Moreover, the restriction of pF to the orbit Ox of

x = c(0) is a covering map. Hence we can lift in Ox the curve p ◦ c. In other words, there

is a continuous path c′ : [0, 1] → Rk such that for every t in [0, 1] the image c′(t) lies in

the same leaf of F ss than φc(t)(x). Let v = c′(1): since c is homotopic to the loop obtained

by composing c′ with any path in F ss(c(0)) joining c′(1) to c(1) = c(0) = x, we get that

the holonomy hv
x is trivial on one side. Since it is linearizable, hv

x is trivial. According to

Lemma 5, and since φ is irreducible, it means that c′(1) = 0. Hence c′ is homotopically

trivial in Rk. Hence pF ◦ c′ is homotopically trivial in P . But since pF is a trivial fibration

with contractible leaves and pF ◦ c = pF ◦ c′, we obtain that c is homotopically trivial in

F . Contradiction. �

Corollary 1. The orbits of φ are incompressible: every loop in a φ-orbit O which is

homotopically non-trivial in O is homotopically non-trivial in M .

Proof. Every loop in O is homotopic to a trajectory t → c(t) = φtv(x); t ∈ [0, 1], v ∈

Rn, φv(x) = x. Since φ is irreducible, the holonomy of F s along c is non-trivial. It follows

that there is a loop homotopic to c and transverse to F s. The corollary follows from

Proposition 2. �

A foliation is said to be by closed planes if all the leaves are closed and images of

embeddings of Rn.

Corollary 2. Let φ be an irreducible codimension one Anosov action on M . The foliations

F̃uu, F̃ ss, F̃u, F̃ s and the foliation defined by φ̃ are by closed planes. The intersection

between a leaf of F̃u and a leaf of F̃ s is at most an orbit of φ̃. Every orbit of φ̃ meets a

leaf of F̃uu or F̃ ss at most once.

Proof. According to Corollary 1, φ̃ is a free action. Moreover, if F̃ ss(x) = F̃ ss(φ̃v(x)) for

some non-trivial v, then hv
π(x) is non-trivial (since φ is irreducible), but is also the holonomy

of F s along a closed loop in F s(π(x)) homotopically trivial in M . It is in contradiction

with Proposition 2.

Therefore, every orbit of φ̃ intersects every leaf of F̃ ss at most once. Since every leaf of

F̃ s is the saturation under φ̃ of a leaf of F̃ ss, it follows that it is an injective immersion of

Rp+k. Similarly, every leaf of F̃u is an injective immersion of R2+k.

It is easy to show, by a standard argument, that if a leaf F̃ s is not closed, then there

is a loop in M̃ transverse to F̃ s, giving a contradiction with Proposition 2. Hence F̃ s is a

foliation by closed planes. The statement for leaves of F̃ ss follows.
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Since M̃ is simply connected, every foliation in it are oriented and transversely oriented.

Being closed hypersurfaces, leaves of F̃ s disconnect M̃ . Hence, a leaf of F̃uu intersecting

a leaf F of F̃ s enters in one side of F , and cannot cross F once more afterwards, due to

orientation considerations. In other words, every leaf of F̃uu intersects every leaf of F̃ s at

most once. In particular, it cannot accumulate somewhere, i.e. it is closed.

In order to achieve the proof of the corollary, we just have to prove that the φ̃-orbits are

closed. But this is clear, since each of them is the intersection between a weak stable leaf

and a weak unstable leaf, that we have shown to be closed. �

Consequently, by a theorem of Palmeira [21]:

Corollary 3. With the same hypotheses of above proposition, the universal covering of M

is diffeomorphic to Rn. �

Lemma 6. If φ be a codimension one Anosov action on M , then the orbit space of φ̃ is

Hausdorff.

Proof. By contradiction, we assume that there exist two different φ̃-orbits Õx1
and Õx2

which are non-separable. Then, the saturation by F̃uu of F̃ s(x1) and F̃ s(x2) are two non

disjoint neighborhoods of Õx1
and Õx2

, respectively.

First, we assume that Õx1
and Õx2

are contained in the same leaf of F̃ s. Hence, we can

assume that F̃ ss(x1) = F̃ ss(x2) = F0. Let U1 and U2 be the disjoint neighborhoods in F0

of x1 and x2, respectively. It follows, from Corollary 2, that the saturation by F̃u of U1

and U2 are two disjoint φ̃-invariant neighborhoods of Õx1
and Õx2

. This contradicts our

assumption.

Hence, F̃ s(x1) 6= F̃ s(x2). The saturation by F̃uu of F̃ s(x1) and F̃ s(x2) cannot be disjoint

since they are neighborhoods of respectively x1, x2. There exist y1 ∈ F̃ s(x1) and y2 ∈

F̃ s(x2) such that F̃uu(y1)=F̃uu(y2). Since y1 6= y2, there exist disjoint neighborhoods U1

and U2 in F̃uu(y1) of y1 and y2, respectively. The saturation by F̃ s of U1 and U2 are two

φ̃-invariant neighborhoods of Õx1
and Õx2

which, by our assumption, are non disjoint. In

this case, a leaf of F̃ s passing by a point in the intersection of these neighborhoods meet

F̃uu(y1) in two points, this contradicts the Corollary 2 and finishes the proof. �

Proof of Theorem 8. Let x ∈ M̃ and U be a neighborhood of x which is a lift of a product

neighborhood in the sense of Theorem 3. Let Σ ⊂ U be a smooth (n − k)-submanifold

which is transverse to φ. First we are going to show that every orbit of φ meets Σ in at

most one point. By contradiction, we assume that there exists an orbit O that meets Σ
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in two points. As O meets a leaf of F̃ ss in at most one point (Corollary 2), then O meets

U along two different leaves of F̃ s|U . Hence, since U is a product neighborhood, we have

that there are leaves of F̃uu that meets a leaf of F̃ ss at two points. But this is impossible

by Corollary 2.

Let (Σi)i∈I be a family of transverses as above whose union meets all the orbits of φ.

Then {(Σi, π
φ|Σi

); i ∈ I} defines a differentiable structure on Qφ whose class of differen-

tiability is the same that of the action φ. Moreover, πφ is a locally trivial bundle. Thus

Qφ is a manifold of dimension n − k, Hausdorff and, as shown by the exact sequence of

homotopy groups for the bundle πφ : M̃ → Qφ, simply connected. Since F̃ s induces on

Qφ a codimension one foliation by planes, we conclude, once more by Palmeira’s Theorem,

that Qφ is diffeomorphic to Rn−k. �

Proposition 3. All the non compact orbits of an irreducible codimension one Anosov

action are planes.

Proof. Let O be an orbit of an irreducible codimension one Anosov action φ : Rk×M → M .

Suppose that O is not a plane, i.e. that φv(x) = x on O for some v ∈ Rk −{0}. Let y ∈ O.

Then there exist a sequence {xn} of elements of O such that xn → y. Thus, φv(y) = y.

Since the action is irreducible, the holonomy hv
y is non trivial. It follows that all the xn,

for n sufficiently big, lie in the same local stable leaf F s
δ (y).

Hence the closure O in M , which is compact, is contained in the weak stable leaf F =

F s(y) = F s(x). It follows that the space P = pF (O) = pF (O) of strong stable leaves in

F is compact (cf. the notations in Remark 1), hence ΓL is a lattice in Rk. According to

Lemma 1, ΓL contains an Anosov element b contained in the chamber Aa. The restriction

of φa to the strong stable leaf L is a contraction, hence contains a fixed point z. By

Remark 2, the φ-orbit of z is compact, and ΓL is the isotropy group of z. Now, since O

is compact, the same is true for the intersection L ∩ O. On the other hand, the negative

iterates φ−na(z′) of a point z′ in L different from z escape from any compact subset of L.

Therefore, O is the compact orbit of z. �

As an immediate corollary of Theorem 7 and Proposition 3 we get:

Corollary 4. Let φ : Rk × M → M be a codimension one Anosov action, not necessarily

irreducible. Every non-compact φ-orbit is diffeomorphic to Tℓ × Rk−ℓ. �

5. Codimension one Anosov Rk-actions are transitive

In this section we prove the main Theorem:
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Theorem 2. Let φ be a codimension one Anosov action of Rk on a closed manifold M of

dimension greater than k + 2. Then, any regular subcone C admits a dense orbit in M .

In what follows, we consider a codimension one Anosov action φ : Rk × M → M , with

dim M > k + 2 and a regular subcone C. Furthermore, we will consider the foliations

F ss, Fuu, F s and Fu which corresponds to the chamber Aa containing C.

5.1. Bi-homoclinic points and transitivity. Let u be the parametrization of Fuu which

was studied in Lemma 3. We define

H+ = {x ∈ M ; (x, +∞) ∩ F s(x) = ∅}

H− = {x ∈ M ; (−∞, x) ∩ F s(x) = ∅}

where (x, +∞) = {u(τ, x); τ > 0} and (−∞, x) = {u(τ, x); τ < 0}.

Definition 3. A point x ∈ M is said to be bi-homoclinic if x /∈ H+ ∪H−.

The following results establish a criterion for transitivity.

Proposition 4. If every point in M is bi-homoclinic, then every leaf of F s is dense.

Proof. For all τ0 ∈ R we consider the set {x ∈ M ; (x, u(τ0, x)) ∩ F s(x) 6= ∅}. It follows,

from Theorem 3, that this set is open. Hence, since M is compact, there is τ0 ∈ R such

that

for all x ∈ M, there exists τ ∈ (0, τ0) such that u(τ, x) ∈ F s(x)

Similarly, increasing τ0, if necessary, we have

for all x ∈ M, there exists τ ∈ (−τ0, 0) such that u(τ, x) ∈ F s(x).

Thus, there exists ℓ > 0 such that if I is an interval contained in a leaf of Fuu whose arc

length is grater than ℓ, then each leaf of F s intercepting I contains at least three points of

I.

On the other hand, any interval contained in a leaf of Fuu admits an iterate by φa

(a Anosov element) whose arc length is greater than ℓ. This implies that any interval of

Fuu(x) meets F s(x), and hence the closure of F s(x) is an open set. Therefore F s(x) is

dense in M. �

Lemma 7. If every leaf of F s is dense in M , then C admits a dense orbit.

Proof. Let a ∈ C be an Anosov element and φta the corresponding flow. According to

Remark 4:

Ω(φ) = Ω(φta).
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By a result of Conley [6], there exists L : M → R a complete Lyapunov function for

the flow φta, meaning that for t > 0 we have L(φta(x)) ≤ L(x), and the equality holds

only if x lies in Ω(φta). On the other hand, Theorem 5 and the hypotheses imply that

the Ω(φ) admits only one basic block, in particular, that there C admits a dense orbit in

Ω(φ). Moreover, for every x, y in the basic block Ω(φ), the unstable leaf of x intersects

the stable leaf of y, and the stable leaf of x intersects the unstable leaf of y. From the

former we get L(x) ≥ L(y), and from the latter, L(y) ≥ L(x). Hence, the restriction of L

to Ω(φ) is constant, say, vanishes. Then, for every x in M , the inequalities L(x) ≥ 0 and

L(x) ≤ 0 hold (the former because the α-limit set of the φta-orbit of x is non-empty, the

latter because the ω-limit set is non-empty). It follows that L vanishes everywhere, and

Ω(φ) = M . Therefore C is transitive. �

5.2. Proof of Main Theorem.

Lemma 8. Assume that φ is an irreducible codimension one Anosov action. The sets H−

and H+ are unions of compact orbits.

Proof. Note that H− and H+ are closed invariant sets. We will show the lemma for H+,

the case of H− is analogous.

Cover M by a finite collection (Ui)1≤i≤N) of product neighborhoods as in Theorem 3.

We claim that the intersection of any orbit in H+ with every Ui is connected. This will

show the lemma. Indeed, since the Ui are in finite number, the orbit under consideration

is compact. Moreover, since the area of local orbits contained in every Ui is uniformly

bounded from above, it also implies that there is an uniform bound on the area of compact

orbits in H+. According to Lemma 2, H+ is the union of a finite number of compact orbits.

We are going to show our claim above. Let y0 ∈ H+, and let F be its weak stable

leaf. By the very definition of H+, for every i, the intersection between the orbit O0 of y0

and the product neighborhood Ui must be contained in a single plaque Fi. The union of

the closure of the Fi is compact; it follows that O0 is relatively compact, not only in the

manifold M , but also in the leaf F equipped with its own leaf topology.

Recall that there is there is a bundle map pF : F → P , whose restriction to O0 is a

covering map (remark 1). Since O0 is relatively compact in F , the base manifold P =

Rk/ΓF is compact. By Lemma 1, the lattice ΓL must contain an element v of Aa. The

restriction of φv to F ss(y0) is then a contracting map, hence admitting a fixed point y1.

Moreover, since O0 is relatively compact, the leaf distance between the iterates φ−tv(y0)

and φ−tv(y1) is bounded. It is possible if and only if y0 = y1, in particular, y0 is fixed by

the Anosov element φv.
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According to item (4) of Remark 2, the orbit O0 is compact. The claim and the lemma

then follow, since F contains at most one compact orbit, and that this compact orbit

intersects every strong stable leaf at most once. �

Proof of Main Theorem. As by Remark 7 we can assume that φ is irreducible, then by

Proposition 4 and Lemma 7, it is sufficient to show that the sets H+ and H− are empty.

We will show by contradiction that H+ = ∅, the case H− = ∅ is analogous.

Fix a point x0 ∈ H+ which we consider as the basepoint of M and put Γ = π1(M, x0).

We consider the action of Γ on Qφ which is induced by the action of Γ on M̃ by covering

automorphisms. Let Gs and Gu be the foliations on Qφ which are induced by F̃ s and F̃u,

respectively. They are both preserved by the Γ-action.

Let θ0 be the φ̃-orbit of a lift of x0 in M̃ . Since the φ-orbit of x0 is diffeomorphic to Tk

and incompressible, the isotropy group Γ0 of θ0 is isomorphic to Zk. Let F0 be the leaf

through θ0 of Gs and put F ′
0 = F0 − {θ0}.

As the foliation Gu is orientable and one dimensional, their leaves admit a natural order.

For all x ∈ Qφ the subset of Gu(x) comprising elements above x is denoted by (x, +∞).

The fact that x0 ∈ H+ means:

(θ0, +∞) ∩ Γ · F0 = ∅.

On the other hand, since θ0 is only point of F0 which is the lift of a compact orbit, all the

points of F ′
0 are not lifts of compact orbits. This means that each point x ∈ F ′

0 is not a lift

of an orbit contained in H+, equivalently, (x, +∞) ∩ Γ · F0 6= ∅. Let h(x) be the infimum

of (x, +∞) ∩ Γ · F0. We observe that h is, by definition, injective.

Claim 1. Every x ∈ F ′
0 is strictly inferior to h(x). Indeed, there exists [x, βx) a

neighborhood of x in [x, +∞) such that all the leaves of Gs which meets [x, βx) also meets

[θ0, +∞). Hence, since none of these leaves is of the form γ · F0, γ ∈ Γ, we obtain that

βx ≤ h(x). Consequently h(x) > x.

Claim 2. The image of F ′
0 by h is contained in a leaf F1 of Gs. Given x, consider a

small product neighborhood around h(x). Then it is clear that h(y) and h(x) lies in the

same leaf of Gs. Hence, for every weak stable leaf F ′, the subset Ω(F ′) of F ′
0 comprising

elements whose image by h belongs to F ′ is open. F ′
0 is the disjoint union of all the Ω(F ′),

and is connected (here we use the hypothesis n > k+2), therefore, all the Ω(F ′) are empty,

except one, Ω(F1).
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Claim 3. The leaf F1 is Γ0 invariant, and the map h : F ′
0 → F1 is a Γ0-equivariant

injective local homeomorphism onto its image. It is clear that h ◦ γ = γ ◦ h for every γ in

Γ0. The claim follows.

According to Claim 1, F1 and F0 are disjoint. Consider the stable leaf F̄1 = π(F1): it is

a bundle with contractible fibers over a flat cylinder Rk/Γ1. Its fundamental group is Γ0,

hence Γ1 is isomorphic to Zk, and thus, a lattice in Rk. According to Lemma 1, it contains

an Anosov element, which acts as a contraction in every strong stable leaf. Therefore, F̄1

contains a unique compact orbit. This compact orbit lifts as an element θ1, which is the

unique Γ0-fixed point in F1. Let F ′
1 = F1 − {θ1}. Observe that since h is injective, that θ1

is a Γ0-fixed point, and that Γ0 admits no fixed point in F ′
0, the image of h is contained in

F ′
1.

Claim 4. The map h : F ′
0 → F1 is a homeomorphism. The only remaining point to

show is the fact that h(F ′
0) = F ′

1. According to item (4) of Remark 2, Γ0 contains an

element γ0 such that, for some Anosov element v of Rk we have φv(x) = γ0x for every x

in θ0. It follows that the action of γ0 on F0 is contracting, admitting θ0 as its unique fixed

point. Therefore, the action of γ0 on F ′
0 ≈ Rp − {0} is free, properly discontinuous, and

the quotient space is diffeomorphic to Sp−1 × S1. If we knew that the action of γ0 on F1 is

also a contraction, then the claim would follow immediately from the fact that h induces

a continuous map between the quotient spaces F ′
0/ < γ0 > and F ′

1/ < γ0 >, and from

the compactness of these quotient spaces. Unfortunately, there is no warranty that γ0 acts

properly on F ′
2, hence we need a slightly more intricate argument.
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Since γ0 is a contraction, there is an embedded codimension 1 sphere S0 in F ′
0, boundary

of a closed ball B0 containing θ0, such that γ0(S0) is another embedded sphere, contained

inside B0, and disjoint from S0. The union S0 ∪ γ0(S0) is the boundary of a subdomain

W0 ≈ Sp−1 × [0, 1] of B0. Now, the union of all the iterates γn
0 W0 covers the entire F ′

0.

Since h is injective, its image is a Γ0-invariant domain W∞ of F ′
1 ≈ Sp−1×R diffeomorphic

to Sp−1 × R, containing the embedded sphere S1 = h(S0). Now observe that even if γ0

might not be contracting in F1, the same argument as the one used in F ′
0 ensures that some

element γ1 of Γ0 is contracting. Then, for N sufficiently big, γN
1 S1 is disjoint from S1. By

construction, S1 does not bound a ball inside W∞, hence the same is true for γN
1 S1: there

are both incompressible spheres inside W∞ ≈ Sp−1 × R. It follows that their union is the

boundary of a compact domain W1 ⊂ W∞. Considering W1 as a compact domain in F ′
1,

we get that F ′
1 is the union of the iterates under γN

1 of W1. Therefore, W∞ is the entire F ′
1.

Conclusion. Consider the sphere S0 introduced in the previous step, and its image S1

by h. By construction, S1 bounds a ball B0 in F0, containing θ0. According to Jordan-

Schönflies Theorem, S1 is also the boundary of a closed ball B1 in F1. If B1 does not

contain θ1, then it would be contained in F ′
1, and h−1(B1) would be a closed ball in F ′

0

bounded by S0: contradiction.

Let C be the union of all unstable segments [x, h(x)] for x describing S0. The union S of

C with B0 and B1 is then a submanifold of Qφ, homeomorphic to a sphere of codimension

one. Since Qφ is homeomorphic to Rn−k, S is the boundary of a closed topological ball B.

We not get the concluding final contradiction as follows: the Gu-leaf ℓ1 through θ1 is a

closed line in Qφ, crossing S at θ1. Since B is compact, Gu must escape from it, and thus,

cross S at another point. This intersection cannot occur in C, since C is tangent to Gu. It

cannot occur in B1, since, as a leaf of Gu, it intersects every Gs-leaf in at most one point.

Therefore, ℓ1 must intersect B0, and this intersection is reduced to one point. Finally, since

F0 and ℓ1 are Γ0-invariant, this intersection point must be fixed by Γ0: hence, it is θ0.

Therefore, ℓ1 contains two Γ0-fixed points: θ0 and θ1. This is a contradiction with the

fact that unstable leaves contain at most one compact orbit (see figure 2)

�

6. Conclusion

As we already mentioned in the introduction, codimension one Anosov flows has been

extensively studied, from the 60’s until nowadays. It is reasonable to expect that all these

results admit natural extensions to (irreducible) Anosov actions of Rk, but most work still

has to be done.
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A symmetric flow is the flow defined by a one-parameter subgroup gt of a Lie group G

by right translations on a quotient manifold Γ\G/K, where Γ is a lattice of G and K a

compact subgroup commuting with gt. In [32] P. Tomter classified Anosov symmetric flows

up to finite coverings and conjugacy when G is semisimple or solvable. He proved that in

the former case, the symmetric flow is (commensurable to) the geodesic flow of a rank 1

symmetric space, and in the former case, the flow is (commensurable to) the suspension of

hyperbolic automorphisms of a compact infranilmanifold. He further pursued his study to

the more general case ([33]).

This definition of symmetric flows extends naturally to the notion of symmetric actions

of Rk. It is natural to ask about the classification of these actions for k > 1, at least

in the case of irreducible actions. But the case k = 1 is already quite intricate. In a

forecoming paper, we will classify irreducible symmetric actions of Rk of codimension one:

either they are Anosov symmetric flows, or suspensions of hyperbolic automorphisms of

tori (cf. examples 2, 3).

In [10], E. Ghys proved that Anosov flows of codimension one on a manifold of dimension

≥ 4, preserving a volume form and for which the sum of the stable and the unstable bundles

is C1, is topologically equivalent to the suspension of an Anosov diffeomorphism (and hence
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a hyperbolic automorphism of the torus). In a forecoming paper, we also extend this result

to the k ≥ 2 case.

Actually, this last statement, for Anosov flows, has been recently highly improved: S.

Simic proved that the same conclusion holds if the sum of the stable and unstable bundles

is only Lipschitz regular (but this is still a restrictive hypothesis) ([30]), and Asoako fur-

thermore proved that the volume form preserving form hypothesis can be removed ([2]).

All these impressive results are important steps towards the Verjovsky conjecture: every

codimension one Anosov flow on a manifold of dimension ≥ 4 is topologically equivalent

to a suspension (of a hyperbolic toral automorphism). Moreover, S. Simic announced a

complete solution of Verjovsky’s conjecture ([31]).

Therefore, it seems reasonable to conjecture:

Conjecture. Every irreducible codimension one Anosov action of Rk on a manifold of

dimension ≥ k + 3 is topologically conjugate the suspension of an Anosov action of Zk on

a closed manifold.
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[34] Thérèse Vivier. Flots robustement transitifs sur les variétés compactes. C. R. Math. Acad. Sci. Paris,

337(12):791–796, 2003.

[35] Verjovsky, Alberto. Codimension one Anosov flows. Bol. Soc. Mat. Mexicana, 19(2):49–77, 1974.

Thierry Barbot, CNRS, UMR 5669, UMPA, ENS Lyon 46, allée d’Italie 69364 Lyon,



30 THIERRY BARBOT AND CARLOS MAQUERA

Carlos Maquera, CNRS, UMR 5669, UMPA, ENS Lyon 46, allée d’Italie 69364 Lyon,

and, Universidade de São Paulo - São Carlos, Instituto de ciências matemáticas e de
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