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Revisiting the upper bounding proess in a safeBranh and Bound algorithm⋆Alexandre Goldsztejn1, Yahia Lebbah2,3, Claude Mihel3, and Mihel Rueher3
1 CNRS / Université de Nantes 2, rue de la Houssinière, 44322 Nantes, Franealexandre.goldsztejn�univ-nantes.fr

2 Université d'Oran Es-Senia B.P. 1524 EL-M'Naouar, 31000 Oran, Algeriaylebbah�gmail.om
3 Université de Nie-Sophia Antipolis, I3S-CNRS, 06903 Sophia Antipolis, Frane{pjm, rueher}�polyteh.unie.frAbstrat. Finding feasible points for whih the proof sueeds is a rit-ial issue in safe Branh and Bound algorithms whih handle ontinuousproblems. In this paper, we introdue a new strategy to ompute veryaurate approximations of feasible points. This strategy takes advan-tage of the Newton method for under-onstrained systems of equationsand inequalities. More preisely, it exploits the optimal solution of a lin-ear relaxation of the problem to ompute e�iently a promising upperbound. First experiments on the Coonuts benhmarks demonstrate thatthis approah is very e�etive.IntrodutionOptimization problems are a hallenge for CP in �nite domains; they are alsoa big hallenge for CP on ontinuous domains. The point is that CP solversare muh slower than lassial (non-safe) mathematial methods on nonlinearonstraint problems as soon as we onsider optimization problems. The teh-niques introdued in this paper try to boost onstraints tehniques on theseproblems and thus, to redue the gap between e�ient but unsafe systems likeBARON1, and the slow but safe onstraint based approahes. We onsider herethe global optimization problem P to minimize an objetive funtion under non-linear equalities and inequalities,minimize f(x)subjet to gi(x) = 0, i ∈ {1, .., k}

hj(x) ≤ 0, j ∈ {1, .., m}
(1)with x ∈ x, f : IRn → IR, gi : IRn → IR and hj : IRn → IR; Funtions

f , gi and hj are nonlinear and ontinuously di�erentiable on some vetor x ofintervals of IR. For onveniene, in the sequel, g(x) (resp. h(x)) will denote thevetor of gi(x) (resp. hj(x)) funtions.
⋆ An extented version of this paper is available at:http://www.i3s.unie.fr/%7Emh/RR/2008/RR-08.11-A.GOLDSZTEJN.pdf1 See http://www.andrew.mu.edu/user/ns1b/baron/baron.html



Algorithm 1 Branh and Bound algorithmFuntion BB(IN x, ǫ; OUT S , [L, U ])% S : set of proven feasible points% fx denotes the set of possible values for f in x% nbStarts: number of starting points in the �rst upper-bounding
L←{x}; (L, U)←(−∞,+∞); S←UpperBounding(x′, nbStarts);while w([L, U ]) > ǫ do

x
′←x

′′ suh that f
x
′′ = min{f

x
′′ : x′′ ∈ L}; L←L\x′; f

x
′←min(f

x
′ , U);

x
′←Prune(x′); f

x
′←LowerBound(x′); S←S ∪ UpperBounding(x′, 1);if x

′ 6= ∅ then (x′

1,x
′

2)←Split(x′); L←L ∪ {x′

1,x
′

2};if L = ∅ then (L, U)←(+∞,−∞)else (L, U)←(min{f
x
′′ : x′′ ∈ L}, min{f

x
′′ : x′′ ∈ S})endwhileThe di�ulties in suh global optimization problems ome mainly from thefat that many loal minimizers may exist but only few of them are global min-imizers [3℄. Moreover, the feasible region may be disonneted. Thus, �ndingfeasible points is a ritial issue in safe Branh and Bound algorithms for on-tinuous global optimization. Standard strategies use loal searh tehniques toprovide a reasonable approximation of an upper bound and try to prove that afeasible solution atually exists within the box around the guessed global opti-mum. Pratially, �nding a guessed point for whih the proof sueeds is oftena very ostly proess.In this paper, we introdue a new strategy to ompute very aurate approx-imations of feasible points. This strategy takes advantage of the Newton methodfor under-onstrained systems of equations and inequalities. More preisely, thisproedure exploits the optimal solution of a linear relaxation of the problemto ompute e�iently a promising upper bound. First experiments on the Co-onuts benhmarks demonstrate that the ombination of this proedure with asafe Branh and Bound algorithm drastially improves the performanes.The Branh and Bound shemaThe algorithm (see Algorithm 1) we desribe here is derived from the well knownBranh and Bound shema introdued by Horst and Tuy for �nding a global min-imizer. Interval analysis tehniques are used to ensure rigorous and safe om-putations whereas onstraint programming tehniques are used to improve theredution of the feasible spae.Algorithm 1 omputes enlosers for minimizers and safe bounds of the globalminimum value within an initial box x. Algorithm 1 maintains two lists : a list

L of boxes to be proessed and a list S of proven feasible boxes. It provides arigorous enloser [L, U ] of the global optimum with respet to a tolerane ǫ.Algorithm 1 starts with UpperBounding(x, nbStarts) whih omputes a setof feasible boxes by alling a loal searh with nbStarts starting points and aproof proedure.



The box around the loal solution is added to S if it is proved to ontaina feasible point. At this stage, if the box x
′ is empty then, either it does notontain any feasible point or its lower bound f

x
′ is greater than the urrentupper bound U . If x

′ is not empty, the box is split along one of the variables2of the problem.In the main loop, algorithm 1 selets the box with the lowest lower boundof the objetive funtion. The Prune funtion applies �ltering tehniques toredue the size of the box x
′. In the framework we have implemented, Prune justuses a 2B-�ltering algorithm [2℄. Then, LowerBound(x′) omputes a rigorouslower bound f

x
′ using a linear programming relaxation of the initial problem.Atually, funtion LowerBound is based on the linearization tehniques of theQuad-framework [1℄. LowerBound omputes a safe minimizer f

x
′ thanks to thetehniques introdued by Neumaier et al.Algorithm 1 maintains the lowest lower bound L of the remaining boxes Land the lowest upper bound U of proven feasible boxes. The algorithm terminateswhen the spae between U and L beomes smaller than the given tolerane ǫ.The Upper-bounding step (see Algorithm 2) performs a multistart strategywhere a set of nbStarts starting points are provided to a loal optimizationsolver. The solutions omputed by the loal solver are then given to a funtion

InflateAndProve whih uses an existene proof proedure based on the Borsuktest. However, the proof proedure may fail to prove the existene of a feasiblepoint within box xp. The most ommon soure of failure is that the �guess�provided by the loal searh lies too far from the feasible region.A new upper bounding strategyThe upper bounding proedure desribed in the previous setion relies on a loalsearh to provide a �guessed� feasible point lying in the neighborhood of a loaloptima. However, the e�ets of �oating point omputation on the provided loaloptima are hard to predit. As a result, the loal optima might lie outside thefeasible region and the proof proedure might fail to build a proven box aroundthis point.We propose here a new upper bounding strategy whih attempts to take ad-vantage of the solution of a linear outer approximation of the problem. The lowerbound proess uses suh an approximation to ompute a safe lower bound of P .When the LP is solved, a solution xLP is always omputed and, thus, availablefor free. This solution being an optimal solution of an outer approximation of P ,it lies outside the feasible region. Thus, xLP is not a feasible point. Nevertheless,
xLP may be a good starting point to onsider for the following reasons:� At eah iteration, the branh and bound proess splits the domain of thevariables. The smaller the box is, the nearest xLP is from the atual optimaof P .� The proof proess in�ates a box around the initial guess. This proess mayompensate the e�et of the distane of xLP from the feasible region.2 Various heuristis are used to selet the variable the domain of whih has to be split.



Algorithm 2 Upper bounding build from the LP optimal solution x∗

LPFuntion UpperBounding(IN x, x∗

LP , nbStarts; OUT S ′)% S ′: list of proven feasible boxes; nbStarts: number of starting points% x∗

LP : the optimal solution of the LP relaxation of P(x)
S ′ ← ∅; x∗

corr ←FeasibilityCorretion(x∗

LP ); xp ←In�ateAndProve(x∗

corr, x);if xp 6= ∅ then S ′ ←S ′ ∪ xpreturn S ′However, while xLP onverges to a feasible point, the proess might be quiteslow. To speed up the upper bounding proess, we have introdued a lightweight, though e�ient, proedure whih ompute a feasible point from a pointlying in the neighborhood of the feasible region. This proedure whih is alled
FeasibilityCorrection will be detailed in the next subsetion.Algorithm 2 desribes how an upper bound may be build from the solutionof the linear problem used in the lower bounding proedure.Computing pseudo-feasible pointsThis setion introdues an adaptation of the Newton method to under-onstrainedsystems of equations and inequalities whih provides very aurate approxima-tions of feasible points at a low omputational ost. When the system of equa-tions g(x) = 0 is under-onstrained there is a manifold of solutions. l(x), thelinear approximation is still valid in this situation, but the linear system ofequations l(x) = 0 is now under-onstrained, and has therefore an a�ne spae ofsolutions. So we have to hoose a solution x(1) of the linearized equation l(x) = 0among the a�ne spae of solutions. As x(0) is supposed to be an approximatesolution of g(x) = 0, the best hoie is ertainly the solution of l(x) = 0 whih isthe losest to x(0). This solution an easily be omputed with the Moore-Penroseinverse: x(1) = x(0) − A+

g (x(0))g(x(0)), where A+
g ∈ IRn×m is the Moore-Penroseinverse of Ag ∈ IRm×n, the solution of the linearized equation whih minimizes

||x(1) − x(0)||. Applying previous relation reursively leads to a sequene of ve-tors whih onverges to a solution lose to the initial approximation, providedthat this latter is aurate enough.The Moore-Penrose inverse an be omputed in several ways: a singular valuedeomposition an be used, or in the ase where Ag has full row rank (whih isthe ase for Ag(x
(0)) if x(0) is non-singular) the Moore-Penrose inverse an beomputed using A+
g = AT

g (AgA
T
g )−1.Inequality onstraints are hanged to equalities by introduing slak vari-ables: hj(x) ≤ 0 ⇐⇒ hj(x) = −s2

i . So the Newton method for under-onstrained systems of equations an be applied.



ExperimentsIn this Setion, we omment the results of the experiments with our new upperbounding strategy on a signi�ant set of benhmarks. Detailled results an befound in the resarh report ISRN I3S/RR-2008-11-FR3). All the benhmarksome from the olletion of benhmarks of the Coonuts projet4. We have se-leted 35 benhmarks where Ios sueeds to �nd the global minimum whilerelying on an unsafe loal searh. We did ompare our new upper boundingstrategy with the following upper bounding strategies:S1: This strategy diretly uses the guess from the loal searh, i.e. this strategyuses a simpli�ed version of algorithm 1 where the proof proedure has beendropped. As a onsequene, it does not su�er from the di�ulty to provethe existene of a feasible point. However, this strategy is unsafe and mayprodue wrong results.S2: This strategy attempts to prove the existene of a feasible point within abox build around the loal searh guess. Here, all provided solutions are safeand the solving proess is rigorous.S3: Our upper bounding strategy where the upper bounding relies on the optimalsolution of the problem linear relaxation to build a box proved to hold afeasible point. A all to the orretion proedure attempts to ompensatethe e�et of the outer approximation.S4: This strategy applies the orretion proedure to the output of the loalsearh (to improve the approximate solution given by a loal searh).S5: This strategy mainly di�ers from S3 by the fat that it does not all theorretion proedureS3, our new upper bounding strategy is the best strategy: 31 benhmarks arenow solved within the 30s time out; moreover, almost all benhmarks are solvedin muh less time and with a greater amount of proven solutions. This newstrategy improves drastially the performane of the upper bounding proedureand ompetes well with a loal searh.Current work aims at improving and generalizing this framework and itsimplementation.Referenes1. Yahia Lebbah, Claude Mihel, Mihel Rueher, David Daney, and Jean-Pierre Mer-let. E�ient and safe global onstraints for handling numerial onstraint systems.SIAM Journal on Numerial Analysis, 42(5):2076�2097, 2004.2. Olivier Lhomme. Consisteny tehniques for numeri CSPs. In Proeedings ofIJCAI'93, pages 232�238, Chambéry(Frane), 1993.3. Arnold Neumaier. Complete searh in ontinuous global optimization and onstraintsatisfation. Ata Numeria, 2004.3 http://www.i3s.unie.fr/%7Emh/RR/2008/RR-08.11-A.GOLDSZTEJN.pdf4 See http://www.mat.univie.a.at/̃ neum/glopt/oonut/Benhmark/Benhmark.html.


