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Revisiting the upper bounding pro
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om
3 Université de Ni
e-Sophia Antipolis, I3S-CNRS, 06903 Sophia Antipolis, Fran
e{
pjm, rueher}�polyte
h.uni
e.frAbstra
t. Finding feasible points for whi
h the proof su

eeds is a 
rit-i
al issue in safe Bran
h and Bound algorithms whi
h handle 
ontinuousproblems. In this paper, we introdu
e a new strategy to 
ompute verya

urate approximations of feasible points. This strategy takes advan-tage of the Newton method for under-
onstrained systems of equationsand inequalities. More pre
isely, it exploits the optimal solution of a lin-ear relaxation of the problem to 
ompute e�
iently a promising upperbound. First experiments on the Co
onuts ben
hmarks demonstrate thatthis approa
h is very e�e
tive.Introdu
tionOptimization problems are a 
hallenge for CP in �nite domains; they are alsoa big 
hallenge for CP on 
ontinuous domains. The point is that CP solversare mu
h slower than 
lassi
al (non-safe) mathemati
al methods on nonlinear
onstraint problems as soon as we 
onsider optimization problems. The te
h-niques introdu
ed in this paper try to boost 
onstraints te
hniques on theseproblems and thus, to redu
e the gap between e�
ient but unsafe systems likeBARON1, and the slow but safe 
onstraint based approa
hes. We 
onsider herethe global optimization problem P to minimize an obje
tive fun
tion under non-linear equalities and inequalities,minimize f(x)subje
t to gi(x) = 0, i ∈ {1, .., k}

hj(x) ≤ 0, j ∈ {1, .., m}
(1)with x ∈ x, f : IRn → IR, gi : IRn → IR and hj : IRn → IR; Fun
tions

f , gi and hj are nonlinear and 
ontinuously di�erentiable on some ve
tor x ofintervals of IR. For 
onvenien
e, in the sequel, g(x) (resp. h(x)) will denote theve
tor of gi(x) (resp. hj(x)) fun
tions.
⋆ An extented version of this paper is available at:http://www.i3s.uni
e.fr/%7Emh/RR/2008/RR-08.11-A.GOLDSZTEJN.pdf1 See http://www.andrew.
mu.edu/user/ns1b/baron/baron.html



Algorithm 1 Bran
h and Bound algorithmFun
tion BB(IN x, ǫ; OUT S , [L, U ])% S : set of proven feasible points% fx denotes the set of possible values for f in x% nbStarts: number of starting points in the �rst upper-bounding
L←{x}; (L, U)←(−∞,+∞); S←UpperBounding(x′, nbStarts);while w([L, U ]) > ǫ do

x
′←x

′′ su
h that f
x
′′ = min{f

x
′′ : x′′ ∈ L}; L←L\x′; f

x
′←min(f

x
′ , U);

x
′←Prune(x′); f

x
′←LowerBound(x′); S←S ∪ UpperBounding(x′, 1);if x

′ 6= ∅ then (x′

1,x
′

2)←Split(x′); L←L ∪ {x′

1,x
′

2};if L = ∅ then (L, U)←(+∞,−∞)else (L, U)←(min{f
x
′′ : x′′ ∈ L}, min{f

x
′′ : x′′ ∈ S})endwhileThe di�
ulties in su
h global optimization problems 
ome mainly from thefa
t that many lo
al minimizers may exist but only few of them are global min-imizers [3℄. Moreover, the feasible region may be dis
onne
ted. Thus, �ndingfeasible points is a 
riti
al issue in safe Bran
h and Bound algorithms for 
on-tinuous global optimization. Standard strategies use lo
al sear
h te
hniques toprovide a reasonable approximation of an upper bound and try to prove that afeasible solution a
tually exists within the box around the guessed global opti-mum. Pra
ti
ally, �nding a guessed point for whi
h the proof su

eeds is oftena very 
ostly pro
ess.In this paper, we introdu
e a new strategy to 
ompute very a

urate approx-imations of feasible points. This strategy takes advantage of the Newton methodfor under-
onstrained systems of equations and inequalities. More pre
isely, thispro
edure exploits the optimal solution of a linear relaxation of the problemto 
ompute e�
iently a promising upper bound. First experiments on the Co-
onuts ben
hmarks demonstrate that the 
ombination of this pro
edure with asafe Bran
h and Bound algorithm drasti
ally improves the performan
es.The Bran
h and Bound s
hemaThe algorithm (see Algorithm 1) we des
ribe here is derived from the well knownBran
h and Bound s
hema introdu
ed by Horst and Tuy for �nding a global min-imizer. Interval analysis te
hniques are used to ensure rigorous and safe 
om-putations whereas 
onstraint programming te
hniques are used to improve theredu
tion of the feasible spa
e.Algorithm 1 
omputes en
losers for minimizers and safe bounds of the globalminimum value within an initial box x. Algorithm 1 maintains two lists : a list

L of boxes to be pro
essed and a list S of proven feasible boxes. It provides arigorous en
loser [L, U ] of the global optimum with respe
t to a toleran
e ǫ.Algorithm 1 starts with UpperBounding(x, nbStarts) whi
h 
omputes a setof feasible boxes by 
alling a lo
al sear
h with nbStarts starting points and aproof pro
edure.



The box around the lo
al solution is added to S if it is proved to 
ontaina feasible point. At this stage, if the box x
′ is empty then, either it does not
ontain any feasible point or its lower bound f

x
′ is greater than the 
urrentupper bound U . If x

′ is not empty, the box is split along one of the variables2of the problem.In the main loop, algorithm 1 sele
ts the box with the lowest lower boundof the obje
tive fun
tion. The Prune fun
tion applies �ltering te
hniques toredu
e the size of the box x
′. In the framework we have implemented, Prune justuses a 2B-�ltering algorithm [2℄. Then, LowerBound(x′) 
omputes a rigorouslower bound f

x
′ using a linear programming relaxation of the initial problem.A
tually, fun
tion LowerBound is based on the linearization te
hniques of theQuad-framework [1℄. LowerBound 
omputes a safe minimizer f

x
′ thanks to thete
hniques introdu
ed by Neumaier et al.Algorithm 1 maintains the lowest lower bound L of the remaining boxes Land the lowest upper bound U of proven feasible boxes. The algorithm terminateswhen the spa
e between U and L be
omes smaller than the given toleran
e ǫ.The Upper-bounding step (see Algorithm 2) performs a multistart strategywhere a set of nbStarts starting points are provided to a lo
al optimizationsolver. The solutions 
omputed by the lo
al solver are then given to a fun
tion

InflateAndProve whi
h uses an existen
e proof pro
edure based on the Borsuktest. However, the proof pro
edure may fail to prove the existen
e of a feasiblepoint within box xp. The most 
ommon sour
e of failure is that the �guess�provided by the lo
al sear
h lies too far from the feasible region.A new upper bounding strategyThe upper bounding pro
edure des
ribed in the previous se
tion relies on a lo
alsear
h to provide a �guessed� feasible point lying in the neighborhood of a lo
aloptima. However, the e�e
ts of �oating point 
omputation on the provided lo
aloptima are hard to predi
t. As a result, the lo
al optima might lie outside thefeasible region and the proof pro
edure might fail to build a proven box aroundthis point.We propose here a new upper bounding strategy whi
h attempts to take ad-vantage of the solution of a linear outer approximation of the problem. The lowerbound pro
ess uses su
h an approximation to 
ompute a safe lower bound of P .When the LP is solved, a solution xLP is always 
omputed and, thus, availablefor free. This solution being an optimal solution of an outer approximation of P ,it lies outside the feasible region. Thus, xLP is not a feasible point. Nevertheless,
xLP may be a good starting point to 
onsider for the following reasons:� At ea
h iteration, the bran
h and bound pro
ess splits the domain of thevariables. The smaller the box is, the nearest xLP is from the a
tual optimaof P .� The proof pro
ess in�ates a box around the initial guess. This pro
ess may
ompensate the e�e
t of the distan
e of xLP from the feasible region.2 Various heuristi
s are used to sele
t the variable the domain of whi
h has to be split.



Algorithm 2 Upper bounding build from the LP optimal solution x∗

LPFun
tion UpperBounding(IN x, x∗

LP , nbStarts; OUT S ′)% S ′: list of proven feasible boxes; nbStarts: number of starting points% x∗

LP : the optimal solution of the LP relaxation of P(x)
S ′ ← ∅; x∗

corr ←FeasibilityCorre
tion(x∗

LP ); xp ←In�ateAndProve(x∗

corr, x);if xp 6= ∅ then S ′ ←S ′ ∪ xpreturn S ′However, while xLP 
onverges to a feasible point, the pro
ess might be quiteslow. To speed up the upper bounding pro
ess, we have introdu
ed a lightweight, though e�
ient, pro
edure whi
h 
ompute a feasible point from a pointlying in the neighborhood of the feasible region. This pro
edure whi
h is 
alled
FeasibilityCorrection will be detailed in the next subse
tion.Algorithm 2 des
ribes how an upper bound may be build from the solutionof the linear problem used in the lower bounding pro
edure.Computing pseudo-feasible pointsThis se
tion introdu
es an adaptation of the Newton method to under-
onstrainedsystems of equations and inequalities whi
h provides very a

urate approxima-tions of feasible points at a low 
omputational 
ost. When the system of equa-tions g(x) = 0 is under-
onstrained there is a manifold of solutions. l(x), thelinear approximation is still valid in this situation, but the linear system ofequations l(x) = 0 is now under-
onstrained, and has therefore an a�ne spa
e ofsolutions. So we have to 
hoose a solution x(1) of the linearized equation l(x) = 0among the a�ne spa
e of solutions. As x(0) is supposed to be an approximatesolution of g(x) = 0, the best 
hoi
e is 
ertainly the solution of l(x) = 0 whi
h isthe 
losest to x(0). This solution 
an easily be 
omputed with the Moore-Penroseinverse: x(1) = x(0) − A+

g (x(0))g(x(0)), where A+
g ∈ IRn×m is the Moore-Penroseinverse of Ag ∈ IRm×n, the solution of the linearized equation whi
h minimizes

||x(1) − x(0)||. Applying previous relation re
ursively leads to a sequen
e of ve
-tors whi
h 
onverges to a solution 
lose to the initial approximation, providedthat this latter is a

urate enough.The Moore-Penrose inverse 
an be 
omputed in several ways: a singular valuede
omposition 
an be used, or in the 
ase where Ag has full row rank (whi
h isthe 
ase for Ag(x
(0)) if x(0) is non-singular) the Moore-Penrose inverse 
an be
omputed using A+
g = AT

g (AgA
T
g )−1.Inequality 
onstraints are 
hanged to equalities by introdu
ing sla
k vari-ables: hj(x) ≤ 0 ⇐⇒ hj(x) = −s2

i . So the Newton method for under-
onstrained systems of equations 
an be applied.



ExperimentsIn this Se
tion, we 
omment the results of the experiments with our new upperbounding strategy on a signi�
ant set of ben
hmarks. Detailled results 
an befound in the resar
h report ISRN I3S/RR-2008-11-FR3). All the ben
hmarks
ome from the 
olle
tion of ben
hmarks of the Co
onuts proje
t4. We have se-le
ted 35 ben
hmarks where I
os su

eeds to �nd the global minimum whilerelying on an unsafe lo
al sear
h. We did 
ompare our new upper boundingstrategy with the following upper bounding strategies:S1: This strategy dire
tly uses the guess from the lo
al sear
h, i.e. this strategyuses a simpli�ed version of algorithm 1 where the proof pro
edure has beendropped. As a 
onsequen
e, it does not su�er from the di�
ulty to provethe existen
e of a feasible point. However, this strategy is unsafe and mayprodu
e wrong results.S2: This strategy attempts to prove the existen
e of a feasible point within abox build around the lo
al sear
h guess. Here, all provided solutions are safeand the solving pro
ess is rigorous.S3: Our upper bounding strategy where the upper bounding relies on the optimalsolution of the problem linear relaxation to build a box proved to hold afeasible point. A 
all to the 
orre
tion pro
edure attempts to 
ompensatethe e�e
t of the outer approximation.S4: This strategy applies the 
orre
tion pro
edure to the output of the lo
alsear
h (to improve the approximate solution given by a lo
al sear
h).S5: This strategy mainly di�ers from S3 by the fa
t that it does not 
all the
orre
tion pro
edureS3, our new upper bounding strategy is the best strategy: 31 ben
hmarks arenow solved within the 30s time out; moreover, almost all ben
hmarks are solvedin mu
h less time and with a greater amount of proven solutions. This newstrategy improves drasti
ally the performan
e of the upper bounding pro
edureand 
ompetes well with a lo
al sear
h.Current work aims at improving and generalizing this framework and itsimplementation.Referen
es1. Yahia Lebbah, Claude Mi
hel, Mi
hel Rueher, David Daney, and Jean-Pierre Mer-let. E�
ient and safe global 
onstraints for handling numeri
al 
onstraint systems.SIAM Journal on Numeri
al Analysis, 42(5):2076�2097, 2004.2. Olivier Lhomme. Consisten
y te
hniques for numeri
 CSPs. In Pro
eedings ofIJCAI'93, pages 232�238, Chambéry(Fran
e), 1993.3. Arnold Neumaier. Complete sear
h in 
ontinuous global optimization and 
onstraintsatisfa
tion. A
ta Numeri
a, 2004.3 http://www.i3s.uni
e.fr/%7Emh/RR/2008/RR-08.11-A.GOLDSZTEJN.pdf4 See http://www.mat.univie.a
.at/̃ neum/glopt/
o
onut/Ben
hmark/Ben
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