N
N

N

HAL

open science

Revisiting the upper bounding process in a safe Branch
and Bound algorithm
Alexandre Goldsztejn, Yahia Lebbah, Claude Michel, Michel Rueher

» To cite this version:

Alexandre Goldsztejn, Yahia Lebbah, Claude Michel, Michel Rueher. Revisiting the upper bounding

process in a safe Branch and Bound algorithm. 14th International Conference on Principles and

Practice of Constraint Programming, Sep 2008, Sydney, Australia. pp.598-602. hal-00297086

HAL Id: hal-00297086
https://hal.science/hal-00297086
Submitted on 15 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00297086
https://hal.archives-ouvertes.fr

Revisiting the upper bounding process in a safe
Branch and Bound algorithm*

Alexandre Goldsztejn', Yahia Lebbah?3, Claude Michel?, and Michel Rueher?

! CNRS / Université de Nantes 2, rue de la Houssiniére, 44322 Nantes, France
alexandre.goldsztejnQuniv-nantes.fr
2 Université d’Oran Es-Senia B.P. 1524 EL-M’Naouar, 31000 Oran, Algeria
ylebbah@gmail.com
3 Université de Nice-Sophia Antipolis, I3S-CNRS, 06903 Sophia Antipolis, France
{cpjm, rueher}@polytech.unice.fr

Abstract. Finding feasible points for which the proof succeeds is a crit-
ical issue in safe Branch and Bound algorithms which handle continuous
problems. In this paper, we introduce a new strategy to compute very
accurate approximations of feasible points. This strategy takes advan-
tage of the Newton method for under-constrained systems of equations
and inequalities. More precisely, it exploits the optimal solution of a lin-
ear relaxation of the problem to compute efficiently a promising upper
bound. First experiments on the Coconuts benchmarks demonstrate that
this approach is very effective.

Introduction

Optimization problems are a challenge for CP in finite domains; they are also
a big challenge for CP on continuous domains. The point is that CP solvers
are much slower than classical (non-safe) mathematical methods on nonlinear
constraint problems as soon as we consider optimization problems. The tech-
niques introduced in this paper try to boost constraints techniques on these
problems and thus, to reduce the gap between efficient but unsafe systems like
BARON!, and the slow but safe constraint based approaches. We consider here
the global optimization problem P to minimize an objective function under non-
linear equalities and inequalities,

minimize f(z)
subject to g;(x) =0, i € {1,..,k} (1)
h’J(z) < 05 .7 S {15 -'7m}

withz € x, f : R" — R, g, : R" — IR and h; : R" — IR; Functions
f, gi and h; are nonlinear and continuously differentiable on some vector x of
intervals of IR. For convenience, in the sequel, g(z) (resp. h(z)) will denote the
vector of g;(x) (resp. hj(z)) functions.

* An extented version of this paper is available at:
http://www.i3s.unice.fr/%7Emh/RR /2008 /RR-08.11-A.GOLDSZTEJN.pdf
! See http://www.andrew.cmu.edu/user/nslb/baron/baron.html

Algorithm 1 Branch and Bound algorithm
Function BB(IN x, ¢; 0UT S, [L,U])

% S: set of proven feasible points
% fx denotes the set of possible values for f in x
% nbStarts: number of starting points in the first upper-bounding
L—{x}; (L,U)«(—o00,+0); S<UpperBounding(x',nbStarts);
while w([L,U]) > e do
x'«x" such that f,, = min{f ., : x" € L}; L—L\X; Frremin(fu,U);
x'—Prune(x’); f,,+LowerBound(x'); S«& U UpperBounding(x’,1);
if x' #£0 then (x],x5)«Split(x'); L—LU{x],x5};
if L=0 then (L,U)«(+00,—00)
else (L,U)«(min{f ., :x" € L}, min{f : x" € S})
endwhile

The difficulties in such global optimization problems come mainly from the
fact that many local minimizers may exist but only few of them are global min-
imizers [3]. Moreover, the feasible region may be disconnected. Thus, finding
feasible points is a critical issue in safe Branch and Bound algorithms for con-
tinuous global optimization. Standard strategies use local search techniques to
provide a reasonable approximation of an upper bound and try to prove that a
feasible solution actually exists within the box around the guessed global opti-
mum. Practically, finding a guessed point for which the proof succeeds is often
a very costly process.

In this paper, we introduce a new strategy to compute very accurate approx-
imations of feasible points. This strategy takes advantage of the Newton method
for under-constrained systems of equations and inequalities. More precisely, this
procedure exploits the optimal solution of a linear relaxation of the problem
to compute efficiently a promising upper bound. First experiments on the Co-
conuts benchmarks demonstrate that the combination of this procedure with a
safe Branch and Bound algorithm drastically improves the performances.

The Branch and Bound schema

The algorithm (see Algorithm 1) we describe here is derived from the well known
Branch and Bound schema introduced by Horst and Tuy for finding a global min-
imizer. Interval analysis techniques are used to ensure rigorous and safe com-
putations whereas constraint programming techniques are used to improve the
reduction of the feasible space.

Algorithm 1 computes enclosers for minimizers and safe bounds of the global
minimum value within an initial box x. Algorithm 1 maintains two lists : a list
L of boxes to be processed and a list S of proven feasible boxes. It provides a
rigorous encloser [L, U] of the global optimum with respect to a tolerance e.

Algorithm 1 starts with Upper Bounding(x, nbStarts) which computes a set
of feasible boxes by calling a local search with nbStarts starting points and a
proof procedure.

The box around the local solution is added to S if it is proved to contain
a feasible point. At this stage, if the box x’ is empty then, either it does not
contain any feasible point or its lower bound f,, is greater than the current
upper bound U. If x’ is not empty, the box is split along one of the variables?
of the problem.

In the main loop, algorithm 1 selects the box with the lowest lower bound
of the objective function. The Prune function applies filtering techniques to
reduce the size of the box x’. In the framework we have implemented, Prune just
uses a 2B-filtering algorithm [2]. Then, LowerBound(x’) computes a rigorous
lower bound f,, using a linear programming relaxation of the initial problem.
Actually, function LowerBound is based on the linearization techniques of the
Quad-framework [1]. LowerBound computes a safe minimizer £, thanks to the
techniques introduced by Neumaier et al.

Algorithm 1 maintains the lowest lower bound L of the remaining boxes £
and the lowest upper bound U of proven feasible boxes. The algorithm terminates
when the space between U and L becomes smaller than the given tolerance e.

The Upper-bounding step (see Algorithm 2) performs a multistart strategy
where a set of nbStarts starting points are provided to a local optimization
solver. The solutions computed by the local solver are then given to a function
Inflate AndProve which uses an existence proof procedure based on the Borsuk
test. However, the proof procedure may fail to prove the existence of a feasible
point within box x,. The most common source of failure is that the “guess”
provided by the local search lies too far from the feasible region.

A new upper bounding strategy

The upper bounding procedure described in the previous section relies on a local
search to provide a “guessed” feasible point lying in the neighborhood of a local
optima. However, the effects of floating point computation on the provided local
optima are hard to predict. As a result, the local optima might lie outside the
feasible region and the proof procedure might fail to build a proven box around
this point.

We propose here a new upper bounding strategy which attempts to take ad-
vantage of the solution of a linear outer approximation of the problem. The lower
bound process uses such an approximation to compute a safe lower bound of P.
When the LP is solved, a solution xyp is always computed and, thus, available
for free. This solution being an optimal solution of an outer approximation of P,
it lies outside the feasible region. Thus, x 1, p is not a feasible point. Nevertheless,
xrp may be a good starting point to consider for the following reasons:

— At each iteration, the branch and bound process splits the domain of the
variables. The smaller the box is, the nearest xy,p is from the actual optima
of P.

— The proof process inflates a box around the initial guess. This process may
compensate the effect of the distance of xp from the feasible region.

2 Various heuristics are used to select the variable the domain of which has to be split.

Algorithm 2 Upper bounding build from the LP optimal solution z7 p

Function UpperBounding(IN x, z} p, nbStarts; OUT S’)

% S': list of proven feasible boxes; nbStarts: number of starting points

% x7 p: the optimal solution of the LP relaxation of P(x)

S «— 0; z},. «—FeasibilityCorrection(z} p); X, «InflateAndProve(z})yr, X);
if x, # 0 then &' S’ Ux,

return S’

However, while zpp converges to a feasible point, the process might be quite
slow. To speed up the upper bounding process, we have introduced a light
weight, though efficient, procedure which compute a feasible point from a point
lying in the neighborhood of the feasible region. This procedure which is called
FeasibilityCorrection will be detailed in the next subsection.

Algorithm 2 describes how an upper bound may be build from the solution
of the linear problem used in the lower bounding procedure.

Computing pseudo-feasible points

This section introduces an adaptation of the Newton method to under-constrained
systems of equations and inequalities which provides very accurate approxima-
tions of feasible points at a low computational cost. When the system of equa-
tions g(z) = 0 is under-constrained there is a manifold of solutions. I(z), the
linear approximation is still valid in this situation, but the linear system of
equations [(x) = 0 is now under-constrained, and has therefore an affine space of
solutions. So we have to choose a solution z(!) of the linearized equation I(z) = 0
among the affine space of solutions. As z(?) is supposed to be an approximate
solution of g(x) = 0, the best choice is certainly the solution of I(x) = 0 which is
the closest to z(9). This solution can easily be computed with the Moore-Penrose
inverse: z1) = (0 — A¥ (2(9)g(2(?), where A} € IR"™ ™ is the Moore-Penrose
inverse of A, € IR™*", the solution of the linearized equation which minimizes
||z — 2(©)||. Applying previous relation recursively leads to a sequence of vec-
tors which converges to a solution close to the initial approximation, provided
that this latter is accurate enough.

The Moore-Penrose inverse can be computed in several ways: a singular value
decomposition can be used, or in the case where A, has full row rank (which is
the case for Ay(z(?) if 2(®) is non-singular) the Moore-Penrose inverse can be
computed using Af = AT (A A7)~

Inequality constraints are changed to equalities by introducing slack vari-
ables: hj(z) < 0 <= hj(z) = —s?. So the Newton method for under-
constrained systems of equations can be applied.

Experiments

In this Section, we comment the results of the experiments with our new upper
bounding strategy on a significant set of benchmarks. Detailled results can be
found in the resarch report ISRN I3S/RR-2008-11-FR?3). All the benchmarks
come from the collection of benchmarks of the Coconuts project*. We have se-
lected 35 benchmarks where Icos succeeds to find the global minimum while
relying on an unsafe local search. We did compare our new upper bounding
strategy with the following upper bounding strategies:

S1: This strategy directly uses the guess from the local search, i.e. this strategy
uses a simplified version of algorithm 1 where the proof procedure has been
dropped. As a consequence, it does not suffer from the difficulty to prove
the existence of a feasible point. However, this strategy is unsafe and may
produce wrong results.

S2: This strategy attempts to prove the existence of a feasible point within a
box build around the local search guess. Here, all provided solutions are safe
and the solving process is rigorous.

S3: Our upper bounding strategy where the upper bounding relies on the optimal
solution of the problem linear relaxation to build a box proved to hold a
feasible point. A call to the correction procedure attempts to compensate
the effect of the outer approximation.

S4: This strategy applies the correction procedure to the output of the local
search (to improve the approximate solution given by a local search).

S5: This strategy mainly differs from S3 by the fact that it does not call the
correction procedure

S3, our new upper bounding strategy is the best strategy: 31 benchmarks are
now solved within the 30s time out; moreover, almost all benchmarks are solved
in much less time and with a greater amount of proven solutions. This new
strategy improves drastically the performance of the upper bounding procedure
and competes well with a local search.

Current work aims at improving and generalizing this framework and its
implementation.

References

1. Yahia Lebbah, Claude Michel, Michel Rueher, David Daney, and Jean-Pierre Mer-
let. Efficient and safe global constraints for handling numerical constraint systems.
SIAM Journal on Numerical Analysis, 42(5):2076-2097, 2004.

2. Olivier Lhomme. Consistency techniques for numeric CSPs. In Proceedings of
IJCATI’93, pages 232-238, Chambéry(France), 1993.

3. Arnold Neumaier. Complete search in continuous global optimization and constraint
satisfaction. Acta Numerica, 2004.

% http:/ /www.i3s.unice.fr/%7Emh/RR,/2008/RR-08.11-A.GOLDSZTEJN.pdf
* See http://www.mat.univie.ac.at/ neum /glopt/coconut/Benchmark /Benchmark.html.

