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Abstract. Rapid co-seismic bottom displacements dur-
ing strong submarine earthquake give rise to intensive low-
frequency elastic oscillations of water layer. Nonlinear en-
ergy transfer from the elastic oscillations to long gravi-
tational waves may provide an additional contribution to
tsunami. The nonlinear tsunami generation mechanism is ex-
amined analytically. Finiteness of bottom elasticity is taken
into account. General parameters responsible for amplitude
and energy of the nonlinear contribution to tsunami wave are
revealed.

1 Introduction

Most tsunamis spring from deformations of ocean bottom
during strong submarine earthquakes. Co-seismic bottom
motions also give rise to low-frequency elastic oscillations
of the water column (Nosov, 1999, 2000). In case of a hor-
izontal bottom, the oscillations are characterized by a dis-
crete set of normal frequencies:νj=c (1+2j) /4H , where
j=0, 1, 2, ..., c is the sound speed in water,H is the oceanic
depth. Typical value of the normal frequency isν0∼0.1 Hz
(H=4000 m,c=1500 m/s). A clear manifestation of the low-
frequency elastic oscillations has been recently detected in
bottom pressure records (Nosov et al., 2005, 2007).

Owing to the existence of the cut-off frequency (Tolstoy
and Clay, 1987), the lowest modeν0=c/4H formed at a
given depthH does not propagate upslope. Therefore, the
mode is trapped by localized depressions of bottom, i.e.
trenches or holes. Being manifested only at sufficiently large
depths (in the open ocean) the low-frequency elastic oscilla-
tions are not observed near the shore. However, strong os-
cillations can contribute to the tsunami by means of nonlin-
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ear mechanisms (Novikova and Ostrovsky, 1982; Nosov and
Skachko, 2001; Nosov and Kolesov, 2005).

Let us compare the values of the energy of elastic oscil-
lations and surface gravity waves (tsunami) generated by a
vertical deformation of a flat bottom. Let the section of the
bottom of the areaS (

√
S≫H) begin to move with a con-

stant velocityU at a given moment of time. The motion lasts
during the timeT (T ≪

√
S/gH ), and then the bottom stops.

The permanent displacement height isUT . The energy of
the tsunami is estimated as the potential energy of the initial
elevation of water surfaceW1=0.5ρgS(UT )2, whereg is the
acceleration of gravity andρ is the water density.

In the frameworks of the model of a compressible fluid, the
power transmitted to the water layer by a surface of the mov-
able bottom is determined from the following simple formula
(Landau, Lifshitz, 1987):W2=ρcU2ST .

The ratio of the values takes the following form:
W2/W1=2c/gT . The bottom rise time T for M8 earthquake
obtained from empirical law (see e.g. Kanamori and Ander-
son, 1975) is∼6 s, i.e.W2/W1≈50. It is seen that an es-
sential amount of energy that is transmitted from the moving
bottom to the water layer exists in the form of elastic oscilla-
tions. Therefore, elastic oscillations are potentially capable
to contribute tsunami waves by means of nonlinearity.

Finiteness of bottom elasticity leads to a gradual damping
of the elastic oscillations due to refraction of the hydroacous-
tic waves in the bottom. The exponential decay time for en-
ergy (normal incidence) can be estimated as follows (Nosov,
2000):

τ = D
H

c
, D =

(

1 + ρbVp/ρc
)2

2ρbVp/ρc
, (1)

whereD≈7−9.5 (Nosov et al., 2007),Vp is P-wave velocity,
ρb is bottom density. It is worth reminding that the decay
time for amplitude is two times longer. For deep water, the
elastic oscillations of water layer can be observed at least
during a few minutes after bottom earthquake.
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Fig. 1. Mathematical statement of the problem.

The problem of tsunami generation due to nonlinear en-
ergy transfer from elastic or forced oscillations of water col-
umn to the long gravitational waves has been already ana-
lyzed numerically for absolutely rigid bottom (Nosov and
Skachko, 2001; Nosov and Kolesov, 2005). Neglecting of
the bottom elasticity certainly leads to an overestimation of
the nonlinear contribution in tsunami. In the present study,
we consider compressible water column lying on an elas-
tic bottom. The problem of tsunami generation by means
of nonlinear phenomena is examined analytically.

2 Nonlinear tsunami source: mathematical model

Let us consider a layer of an ideal compressible homoge-
neous fluid in the field of gravity. The mathematical model
is based on the non-linear hydrodynamic equations

∂v

∂t
+ (v, ∇) v = −

∇p

ρ
+ g (2)

∂ρ

∂t
+ div (ρv) =0. (3)

It is assumed that flow consists of oscillating and time-
averaged components

v = 〈v〉 + v, p = 〈p〉 + p′, ρ = 〈ρ〉 + ρ′, (4)

wherev is fluid velocity vector, p is pressure,ρ is density.
Let us specify the averaging interval to be equal to the max-
imum period of elastic oscillations 4Hmax/c, whereHmax is
the maximum depth. Thus, the time-averaged flow can be
considered as incompressible fluid motion. Substituting ex-
pressions (4) into Eqs. (2) and (3) and averaging these equa-
tions in time we obtained

∂ 〈v〉
∂ t

= −
∇ 〈p〉
〈ρ〉

+ g + 8, (5)

div (〈v〉) =s, (6)

8 = −〈(v, ∇) v〉 + 0.5
〈

∇p′2
〉

c−2 〈ρ〉−2 (7)

s = −c−2 〈ρ〉−1 div
〈

p′ v′〉 , (8)

When deriving Eqs. (5) and (6) we also neglected the non-
linear term(〈v〉∇)〈v〉 and used the relationp′=c2ρ′.

The non-linearity of Eqs. (2) and (3) introduces additional
terms in the time-averaged flow equations (5) and (6). These
additional terms8 ands can be interpreted as external mass
force and distributed mass source; we consider them as a
non-linear tsunami source.

In what follows we restrict our approach to a 2-D (plane)
problem. The origin of the Cartesian coordinate system Oxz
is located at the unperturbed free water surface, and the Oz-
axis is oriented vertically upward (Fig. 1).

Generation of gravitational waves by joint action of the
external mass force8=(8x, 8z) and the distributed mass
sources is described in the framework of the long-wave lin-
ear theory. Neglecting vertical acceleration and integrating
the Eqs. (5) and (6) along the vertical coordinate from bot-
tom up to free surface, we get the wave equation in terms of
free surface displacementsξ :

∂2ξ

∂x2
−

1

gH

∂2ξ

∂t2
=

1

gH
Q(x, t), (9)

where

Q(x, t) =
0
∫

−H

dz





∂8x

∂x
+

0
∫

z

∂28z

∂x2
dz∗ −

∂s

∂t



. (10)

Compressible fluid layer bounded above and below by a free
surface and absolutely rigid bottom respectively is a wave
guide. According to the theory of wave guides, elastic os-
cillations of a semi-bounded domain have a continuous fre-
quency spectrum and any elastic motion can be expressed
as a superposition of normal waves (Brekhovskikh and Gon-
charov, 1994)

F(x, z, t) =
∑

j

∫

dω F 0
j (ω) cos(ωt − mjx) sin(njz), (11)

mj =
(

ω2/c2 − n2
j

)1/2
, nj =

π

2H
(1 + 2j) (12)

wheremj is the horizontal component of the wave vector,
and nj is its vertical component. According to dispersion
relation (12), only a finite number of modes of a fixed fre-
quencyω can propagate in horizontal direction. These are
called the “propagating modes”. For certain modesmj is
imaginary. Such modes decrease exponentially and thus can
not propagate along the axis Ox.

Let us express functionsv andp′ in terms of the fluid ve-
locity potential

v = ∇F, p′ = −ρ
∂F

∂t
. (13)
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Considering formulas (7), (8), (11), and (13), we obtain

8x =
∑

j k

∫

dω1

∫

dω2 F 0
j (ω1)F

0
k (ω2) m2k×

×
{

m1jm2k sin(ω1t − m1jx) cos(ω2t − m2kx) sin(njz) sin(nkz)−
− njnk cos(ω1t − m1jx) sin(ω2t − m2kx) cos(njz) cos(nkz)−

−c−2ω1ω2 sin(ω1t − m1jx) cos(ω2t − m2kx) sin(njz) sin(nkz)
}

,

(14)

8z =
∑

j k

∫

dω1

∫

dω2 F 0
j (ω1)F

0
k (ω2)nk×

× {− m1jm2k sin(ω1t − m1jx) sin(ω2t − m2kx) sin(njz) cos(nkz)+

+njnk cos(ω1t − m1jx) cos(ω2t − m2kx) cos(njz) sin(nkz)+

+c−2ω1ω2 sin(ω1t − m1jx) sin(ω2t − m2kx) sin(njz) cos(nkz)
}

,

(15)

s =
1

c2

∑

j k

∫

dω1

∫

dω2 F 0
j (ω1)F

0
k (ω2) ω1×

×
{

m1j m2k cos(ω1t − m1jx) sin(ω2t − m2kx) sin(njz) sin(nkz)+

+m2
2k sin(ω1t − m1jx) cos(ω2t − m2kx) sin(njz) sin(nkz)−

−njnk sin(ω1t − m1jx) cos(ω2t − m2kx) cos(njz) cos(nkz)+

+n2
j sin(ω1t − mjx) cos(ω2t − m2kx) sin(njz) sin(nkz)

}

.

(16)

It is important to stress here that elastic waves, with fre-
quencies smaller than a minimum critical frequency do not
exist, i.e. ω1>ω0 and ω2>ω0. Replacing in expressions
(14)–(16) the products of “sin” and “cos” with sums of
trigonometric functions, we get terms that oscillate with fre-
quenciesω1+ω2 andω1−ω2. While averaging the expres-
sions in time, the terms with frequenciesω1+ω2 vanish. At
the same time, the terms with frequenciesω1−ω2 provide a
nonzero contribution, but only if|ω1−ω2| <ω0. Thus the do-
main of integration (Fig. 2) is a narrow band about the line
ω1=ω2.

According to Eq. (10), the following three values con-
tribute to the generation of long gravitational waves:

“X” =
0
∫

−H

∂8x

∂x
dz,

“Z” =
0
∫

−H

0
∫

z

∂28z

∂x2
dz∗dz,

“S” = −
0
∫

−H

∂s

∂t
dz. (17)

 

Fig. 2. The domain of integration.

Omitting intermediate steps, we get the final expressions
these three values:

“X” =
H

8c4

∑

j

∫

dω1

∫

dω2 F 0
j (ω1)F

0
j (ω2)

cos
[

(ω1 − ω2)t − (m1j − m2j )x
]

ω1ω3 n2

m2
, (18)

“Z” =
H

4c4

∑

j

∫

dω1

∫

dω2 F 0
j (ω1)F

0
j (ω2)

cos
[

(ω1 − ω2)t − (m1j − m2j )x
]

ω21ω2 n2

m2
+

+
H

8

∑

j 6=k

∫

dω1

∫

dω2 F 0
j (ω1)F

0
k (ω2)

cos
[

(ω1 − ω2)t − (m1j − m2k)x
]

× (m1j − m2k)
2

{

(ω1ω2

c2
− m1jm2k

)

(

1 + 2k

j − k
+

1 + 2k

1 + j + k

)

−njnk

(

1 + 2k

j − k
−

1 + 2k

1 + j + k

)

}

, (19)

“S” = −
H

4c4

∑

j

∫

dω1

∫

dω2 F 0
j (ω1)F

0
j (ω2)

cos
[

(ω1 − ω2)t − (m1j − m2j )x
]

ω21ω2. (20)
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= =τ =
Fig. 3. Typical wave profile generated by the nonlinear
tsunami source. Calculations performed atL=10H , τ=2

√
H/g,

t=3L/
√

gH .

When deriving the expressions (18)–(20), the following
formulas and assumptions were used:

0
∫

−H

cos

[

πβ

H
z

]

dz = H
sin[πβ]

πβ
=
{

H, β = 0
0, β = ±1, ±2, ±3, ...

,

0
∫

−H

dz

0
∫

z

dz∗ sin

[

πβ

H
z∗
]

=
H 2

π2β2 [sin(πβ) − πβ] =







0, β = 0
−H 2π−1β−1,

β = ±1, ±2, ±3, ...

,

β=j−k or β=1+j+k, 1m=m1−m2, 1ω=ω1−ω2,

1m ≈
ω

c2m
1ω −

1

2 c2m

n2

m2
1ω2.

Comparison of expressions (18)–(20) allow us to con-
clude that the vertical component of the force8z always
dominates in the generation of long waves, whereas the
contributions of the horizontal component8x and the dis-
tributed mass sources are negligible (“X”/“Z”∼1ω/ω≪1,
“S”/“Z”∼m2/n2≪1). This conclusion is also confirmed by
results of our numerical simulation.

Neglecting values “X” and “S”, we reduce the Eq. (9) to
the following form:

∂2ξ

∂x2
−

1

gH

∂2ξ

∂t2
=

1

gH

∂2

∂x2

0
∫

−H

0
∫

z

8z dz∗dz (21)

In order to estimate function8z analytically, we consider
only the lowest modeν0=c/4H which is trapped by a lo-
calized depression. We assume the step-like bottom profile
(H1<H , H−H1≪H) which is shown on Fig. 1. The fluid
velocity potential for the trapped mode is expressed as fol-
lows:

F(x, z, t) = F0 cos
( cπ

2H
t
)

sin
( π

2H
z
)

, (22)

whereF0 is amplitude of the lowest mode. Substituting ex-
pression (22) in formula (7) we obtain

8z =
F 2

0 π3

16H 3
sin
(πz

H

)

,

0
∫

−H

0
∫

z

8z dz∗ dz = −
F 2

0 π2

16H
(23)

When deriving (23) we neglect the horizontal derivatives in
comparison with vertical derivatives. It is worth noting that
actually we assume the amplitudeF0 being a weak function
of coordinate x.

Due to bottom elasticity, the energy of trapped elas-
tic oscillations decreases exponentially, thus the ampli-
tude F0 decreases in time. The exponential dacay
time for the amplitude is 2τ (Eq. 1). Let us spec-
ify the following spatio-temporal law for the amplitude:
F0(x, t)=F max

0 exp
[

−t/2τ−(x/L)2
]

, whereL is a charac-
teristic length of tsunami source (L≫H), F max

0 is the maxi-
mum mode amplitude which can be expressed via maximum
mass velocity of fluidF max

0 =Vmax2H/π . The valueVmax
also can be interpreted as the maximum bottom velocity of
vertical bottom displacement.

The analytical solution of the heterogeneous wave Eq. (9)
is given by well-known integral formula. Introducing dimen-
sionless variables (x/H , t

√
g/H) and omitting intermediate

transformations, we obtain

ξ(x, t) =
V 2

max

8g

t
∫

0

dt∗
(

∂ϕ

∂x

∣

∣

∣

∣

[x+(t−t∗),t∗]
−

∂ϕ

∂x

∣

∣

∣

∣

[x−(t−t∗),t∗]

)

, (24)

whereϕ(x, t)= exp
[

−t/τ−2(x/L)2
]

.

3 Discussion of results

A typical gravitational wave, formed by the non-linear
source, is presented on Fig. 3. This wave profile was cal-
culated from Eq. (24). The profile consists of a positive
leading crest and a virtually symmetric negative tail. The
wave length corresponds to the horizontal size of the source
(i.e. ∼L). It is seen from Eq. (24) that the amplitude of the
wave is mostly determined by the factorV 2

max/8 g. Thus,
a noticeable contribution to tsunami amplitude can be ex-
pected ifVmax>∼10 m/s. Such great values of the mass ve-
locity may result either from very rapid co-seismic bottom
displacements or from a resonant pumping of energy in the
elastic oscillations of water layer. The resonance may oc-
cur if the normal frequencyνi (e.g.ν0) fits the spectrum of
seismic bottom trembling.

The wave amplitudeξmax and energyE=ρg
+∞
∫

−∞
ξ2dx are

plotted on Fig. 4 as functions of the exponential decay time
τ (see Eq. 1). The plots are shown in dimensionless form.
Either the amplitude or the energy slightly increases as the
value of τ goes up. According to Eq. (1) the parameter
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Fig. 4. Wave amplitude(a) and energy(b) as a function of the exponential decay time.

τ
√

g/H varies within the range 0−2.1. We do not con-
sider small values of the parameter. The small values stand
for shallow water where manifestations of the elastic oscil-
lations are depressed. The exponential decay timeτ has a
simple physical meaning in the problem under consideration.
It stands for characteristic duration of acting of the nonlinear
tsunami source. In case of absolutely rigid bottom, energy of
the elastic oscillations attenuates rather slowly, only because
a radiation of hydroacoustic waves in horizontal direction.
Finiteness of bottom elasticity leads to a more effective de-
cay of elastic oscillations due to refraction of hydroacoustic
waves in bottom. This is why our previous estimations per-
formed for absolutely rigid bottom (e.g. Nosov and Kolesov,
2005) overestimate contribution of nonlinearity in tsunami
wave.

It is also seen from Fig. 4 that the source characteristic
lengthL has an influence on the amplitude and the energy.
Actually this influence results from changing of spatial steep-
ness of the functionϕ(x, t) from Eq. (24). Assuming another
kind of spatial distribution, we surely obtain slightly different
values of the amplitude and energy. Anyway, concrete def-
inition of functionϕ(x, t) is necessary to solve the problem
analytically.

In conclusion, it is important to note that the non-linear
mechanism can lead to observable, though not dominant con-
tribution to the tsunami amplitude. However, the non-linear
effects can play a dominant role during quick bottom motions
without residual displacements, when the traditional linear
mechanism is not able to effectively generate gravitational
waves.

We did not consider here contribution of the modesj>0,
they may also provide an additional contribution in tsunami.
We choose just exponentially decaying time-function for the
source, whereas, in reality there is a finite time of energy
pumping to the elastic oscillations. At last, we examined the
case of flat horizontal bottom only and did not consider a
realistic bottom profile. All the listed points are subjects for
further numerical modeling of the problem.
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