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Abstract. The 2006 large interplate Kurile earthquake
proved that the entire plate interface of the Kurile-Kamchatka
subduction zone was strongly coupled from Hokkaido,
Japan, to Kamchatka, Russia. The seismic moment of the
2006 Kurile earthquake estimated from ten tsunami wave-
forms is 3.1×1021 Nm (Mw=8.3). This estimate is consis-
tent with the seismic moment estimated from the seismolog-
ical data in the Global CMT catalog. The computed tsunami
propagation indicates that scattering of the tsunami waves
occurred at the shallow region near the Emperor Ridge. The
computed tsunami propagation also indicates that large later
tsunami waves observed at Crescent City is caused by the
shallow region along the Mendocino Fracture Zone. The
seismic moment of the 2007 outer-rise Kurile earthquake es-
timated from tsunami waveforms is 1.0×1021 Nm (Mw=8.0).
This estimate is also consistent with the seismic moment in
the Global CMT catalog.

1 Introduction

On 15 November 2006, a large earthquake occurred off the
central Kurile Islands (Fig. 1). The NEIC Preliminary De-
termination of Epicenters (PDE) provided the source param-
eters: origin time, 11:14:13.57 GMT; epicenter, 46.59◦ N,
153.27◦ E. The seismic moment of the earthquake from the
Global CMT catalog was 3.31×1021 Nm (Mw=8.3). The fo-
cal mechanism of the earthquake estimated using the tele-
seismic body waves (Yamanaka, 2006) showed a thrust fault
type (strike=220◦, dip=25◦, rake=96◦). This indicates that
the earthquake was a large interplate event which ruptured
the plate interface along the central Kurile subduction zone.

About two month after the 2006 large Kurile earthquake,
another large earthquake occurred near the source area of the
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2006 event on 13 January 2007. The NEIC PDE provided the
source parameters: origin time, 04:23:21.16 GMT; epicenter,
46.24◦ N, 154.52◦ E. The seismic moment of the earthquake
from the Global CMT catalog was 1.6×1021 Nm (Mw=8.1).
The focal mechanism of the earthquake estimated using the
teleseismic body waves (Yamanaka, 2007) showed a normal
fault type (strike=220◦, dip=37◦, rake=-108◦). The epicen-
ter of this large earthquake was located at the outer-rise in
the Pacific plate near the Kurile-Kamchtka Trench. Those
indicated that the earthquake was a large tensional outer-rise
event which was previously suggested to be occurred after a
large interplate earthquake by Christensen and Ruff (1988).

Many large earthquakes have occurred along the Kurile-
Kamchatka subduction zone from Kamchatka, Russia, to
Hokkaido, Japan, as shown in Fig. 1. The largest earth-
quake was the 1952 Kamchatka earthquake (Mw=9.2). How-
ever, no historical large shallow earthquakes were known in
the central Kurile segment (Nichenko, 1991) until the 2006
large Kurile earthquake occurred. Because of no large histor-
ical large earthquakes, Nichenko (1991) could not calculate a
probability of a large earthquake in this segment, although he
noted that this segment should be considered to have high po-
tential of large earthquake qualitatively. Interestingly, Christ-
tensen and Ruff (1988) previously suggested that large com-
pressive stresses should be present at the plate interface be-
cause a large compressional outer-rise earthquake occurred
opposite side of the central Kurile subduction zone in 1963
(mb 7.7). The 2006 interplate Kurile earthquake proved that
the suggestion by Christensen and Ruff (1988) was indeed
correct, and that the plate interface along the central Kurile
subduction zone was strongly coupled.

Two large earthquakes of the 2006 underthrust earthquake
and the 2007 outer-rise earthquake generated tsunamis,
which propagated through the Pacific Ocean and observed
at tide gauge stations along the Pacific coast. Those tsunamis
were also observed at ocean bottom pressure sensors oper-
ated by NOAA Center for Tsunami Research as a part of the
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Fig. 1. Source areas of the large earthquakes to rupture the Kurile
subduction zone from Hokkaido to Kamchatka during last 100
years. The thick ellipsoid shows the source area of the 2006 inter-
plate Kurile earthquake and the 2007 outer-rise Kurile earthquake.
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Fig. 2. Fault models for the 2006 and 2007 Kurile earthquakes. The
focal mechanisms for two earthquakes are the result from Yamanaka
(2007).

real time tsunami monitoring system (Meinig et al., 2005).
The 2006 tsunami caused some damages in the port of Cres-
cent City located in the west coast of USA, but not at any
cities in Japan or Russia which are located closer to the
source region of the earthquake (Rabinovich et al., 2008).

In this paper, we numerically compute the tsunamis due to
the 2006 and 2007 Kurile earthquakes to estimate the seismic
moments of the earthquakes, and we compare them with the
seismic moments previously estimated from the seismologi-
cal data. We also discuss a reason why a large tsunami was
observed only at Crescent City for the 2006 Kurile tsunami.

Hanasaki

Miyako

Chichijima

Kahului

Hilo

Port Orford

Crescent City

Arena Cove

Port SanLouis

DART21414

DART51407

Hanasaki

Miyako

Chichijima

DART21413

(a) The 2006 interplate Kurile 

(b) The 2007 outer-rise Kurile 

120     140      160      180      200     220      240

120     140      160      180      200     220      240

60

50

40

30

20

10

60

50

40

30

20

10

Fig. 3. Locations of tide gauges and ocean bottom pressure systems
(DART) used for tsunami analyses for(a) the 2006 interplate Kurile
earthquake, and(b) the 2007 outer-rise Kurile earthquake.

2 Tsunami waveform data and fault models

For the 2006 underthrust Kurile earthquake, we used 11
tsunami waveforms observed at three tide gauges in Japan,
Hanasaki, Miyako, and Chichijima, two tide gauges in
Hawaii, Hilo and Kahului, four tide gauges on the west coast
of US, Arena Cove, Port Orford, Port San Louis, and Cres-
cent City, and two ocean bottom pressure systems, called
DART, off the Aleutian and Hawaiian Islands (Figs. 3a and
4). For the 2007 outer-rise Kurile earthquake, we used four
tsunami waveforms observed at three tide gauges in Japan,
Hanasaki, Miyako, and Chichijima, and one ocean bottom
pressure system shown in Figs. 3b and 5.

The fault model of the 2006 large interplate earthquake
used to compute tsunami waveforms was a shallow dip-
ping thrust fault (strike=220◦, dip=25◦, rake=96◦). The
fault length and width are 200 km and 80 km, respectively
(Fig. 2). The fault model includes the rupture area of the
earthquake estimated using a teleseismic body wave analy-
sis (Yamanaka, 2006). The fault model of the 2007 large
outer-rise earthquake is assumed to be a northwest dipping
normal fault (strike=220◦, dip=37◦, rake=-108◦). The fault
length and width are 130 km and 30 km, respectively (Fig. 2).
This fault model also includes the rupture area of the earth-
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Fig. 4. Comparison of observed (solid) and computed (dashed) tsunami waveforms at nine tide gauges and two ocean bottom pressure
systems (DART) for the 2006 interplate Kurile earthquake.

quake estimated using a teleseismic body wave analysis (Ya-
manaka, 2007).

3 Tsunami numerical simulation

In order to compute tsunami propagation, initial water sur-
face deformation must be estimated. In general, the water
surface deformation due to faulting of a large earthquake is

assumed to be the same as the ocean bottom deformation,
because the wavelength of the ocean bottom deformation is
much larger than the ocean depth. However, this assump-
tion cannot be applied for the tsunami generated by the 2007
outer-rise earthquake because the fault width is only 30km
but an ocean depth is about 7km. Therefore, we compute
the water surface initial condition from the ocean bottom de-
formation using the Kajiura’s (1963) equations (see Tanioka
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Fig. 5. Comparison of observed (solid) and computed (dashed) tsunami waveforms at three tide gauges and one ocean bottom pressure
system (DART) for the 2007 outer-rise Kurile earthquake.

and Seno, 2001). The ocean bottom deformations due to two
large Kurile earthquakes are computed from the above fault
models using the equations of Okada (1985).

For far field tsunamis, the linear Boussinesq equation
should be used in numerical simulations because the disper-
sion has an effect on the tsunami waveform. However, Ima-
mura et al. (1990) introduced a technique in which the dis-
cretization error in the finite difference equation of the linear
long wave theory was used to replace the physical disper-
sion term in the linear Boussinesq equation. In order to use
the technique, the grid size must be chosen to make the ef-
fects of the discritization and the physical dispersion equal.
In this study, a grid size of 5 min is chosen to compute the
tsunami propagation in the Pacific (Fig. 3). Finer grid sizes,
1 min (about 1.8 km) and 20 s (about 0.6 km) are used near
the tide gauge stations where the dispersion effect is negligi-
ble. A detail description of the tsunami numerical simulation
is shown in Johnson (1998).

4 Results

The comparison of the observed and computed tsunami
waveforms for the 2006 large interplate Kurile earthquake is
shown in Fig. 4. The slip amount of the fault model (Fig. 2) is
estimated by comparing the amplitudes of ten observed ini-
tial tsunami waves and computed ones. The tsunami wave-
form observed at Crescent City is not used to estimate the slip
amount because the initial observed tsunami wave is within
the noise level although the tsunami has large later phases
(Fig. 4). The estimated slip amount from this analysis is
4.8 m. The seismic moment is calculated to be 3.1×1021 Nm
(Mw=8.3) by assuming that the rigidity near the source area
is 4×1010 N/m2. This estimate is consistent with the seismic
moment of 3.31×1021 Nm (Mw=8.3) from the Global CMT
catalog. This indicates that the excitation of tsunami due to
the earthquake is well expected from the seismological data.

The comparison of the observed and computed tsunami
waveforms for the 2007 large outer-rise Kurile earthquake
is shown in Fig. 5. The slip amount of the fault model
(Fig. 2) is estimated by comparing the amplitudes of four
observed initial tsunami waves and computed ones. The es-
timated slip amount is 6.4 m. The seismic moment is cal-
culated to be 1.0×1021 Nm (Mw=8.0) by assuming that the
rigidity near the source area is 4×1010 N/m2. This estimate
is also consistent with the seismic moment of 1.65×1021 Nm
(Mw=8.1) from the Global CMT catalog. All of the observed
initial waves for the 2007 tsunami show depression, although
the observed initial waves for the 2006 tsunami are positive
waves. Those observed negative waves for the 2007 tsunami
are well explained by the computed tsunami wave. Those
negative initial waves are clearly generated by the subsidence
near the source area due to the large tensional earthquake
with a normal fault type mechanism.

5 Discussions

Eight snapshots of the computed tsunami propagation for the
2006 large interplate Kurile earthquake and the bathymetry
around the Pacific Ocean are shown in Fig. 6. At 1 and 2 h
after the earthquake occurred, large tsunami waves propagate
toward the southeast direction from the source and only small
tsunami waves propagate toward Japan or Kamchatka.

At 3, 4, and 5 h after the earthquake occurred, large
tsunami waves scatter at the shallow region located in the
most southern part of the Emperor Ridge system. A part of
that scattered tsunami propagates toward Japan or the west
coast of USA. This should be one of reasons that large later
phases were observed at tide gauges in Japan (Japan Me-
teorological Agency, 2007). The tsunami generated by the
1994 large Kurile earthquake also caused the similar scatter-
ing near the Emperor Ridge system (Tanioka, 2005).
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Fig. 6. Bathymetry around Pacific and seven snapshots of the tsunami propagation of the 2006 Kurile tsunami. The snapshots are taken 2, 3,
4, 5, 6, 7, and 8 h after the origin time of the 2006 Kurile earthquake. An ellipsoid shows the large tsunami off Crescent City.

At 6 and 7 h after the earthquake, large tsunamis continue
to propagate toward southwest and reached the Hawaiian Is-
lands. The tsunami propagates continuously toward the west.
At 8 h after the earthquake, the tsunami reaches the west
coast of USA. We can see that the later tsunamis off Cres-
cent City were much larger than those off other parts of the
west coast (an ellipsoid in Fig. 6). Those large later phases
are caused by the shallow area along the Mendocino Fracture

Zone off Crescent City. This should be one of reasons that
the 2006 Kurile tsunami caused some damages in the port of
Crescent City, but not in the other cities along the west coast
of USA. Another reason may be a local resonant effect of the
harbor in Crescent City.
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6 Conclusions

The 2006 large interplate earthquake proved that the plate in-
terface along the entire Kurile-Kamchatka subduction zone
was coupled from Hokkaido to Kamchatka as shown in
Fig. 1. The seismic moment of the 2006 Kurile earthquake
estimated from the tsunami waveforms observed at eight tide
gauges and two ocean bottom pressure systems (DART) was
3.1×1021 Nm (Mw=8.3). This estimate was consistent with
the seismic moment from the Global CMT catalog. The
snapshots of the computed tsunami propagation indicated
that the scattering of the tsunami waves occurred at the shal-
low region near the Emperor Ridge. The snapshots also in-
dicated that large later tsunami waves observed at Crescent
City was caused by the shallow region along the Mendocino
Fracture Zone off Crescent City.

The seismic moment of the 2007 outer-rise Kurile
earthquake estimated using four tsunami waveforms was
1.0×1021 Nm (Mw=8.0). This estimate was also consistent
with the seismic moment from the Global CMT catalog. The
tsunami simulation indicated that negative initial observed
tsunamis were generated by the subsidence near the source
area due to the large tensional earthquake with a normal fault
type mechanism.
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