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Abstract. Convective storms over East Mediterranean sea
and Israel were tracked by METEOSAT Second Generation
(MSG). The MSG data was used to retrieve time series of the
precipitation formation processes in the clouds, the temper-
ature of onset of precipitation, and an indication to aerosol
loading over the sea. Strong correlation was found between
the aerosol loading and the depth above cloud base required
for the initialization of effective precipitation processes (in-
dicated by the effective radius = 15µm threshold). It seems
from the data presented here that the clouds’ response to the
aerosol loading is very short.

1 Introduction

In March and April 2006, toward the end of the rain sea-
son in Israel, few very severe rain events occurred. Some of
the events were accompanied with dust (9 March , 4 April),
other produced floods (2 April) and even one tornado was
recorded (4 April). These events will be analyzed here using
a technique that Rosenfeld and Lensky introduced in 1998.
In the Rosenfeld Lensky technique (RLT), vertical profiles
of the cloud particles’ effective radius (re) are analyzed to
gain insights into precipitation forming processes. Rosen-
feld and Lensky (1998) used Advanced Very High Resolu-
tion Radiometer (AVHRR) data on the polar orbiting NOAA
satellites for their study. Later the RLT was applied to other
sensors on polar orbiting satellites (VIRS on TRMM, GLI
on ADEOS II, MODIS on Terra and Aqua), and was used
in many studies to assess the impact of different aerosols on
clouds and precipitation. (Rosenfeld, 1999, 2000; Rosen-
feld et al., 2001, 2002, 2004; Rosenfeld and Woodley, 2001,
2003; Ramanathan et al., 2001; Rudich et al., 2002, 2003;
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Tupper et al., 2004; Williams et al., 2002; Woodley et al.,
2000).

Lensky and Drori (2007) followed the RLT approach and
defined the temperature of onset of precipitation (T15), as
the temperature where the medianre exceeds a precipitation
threshold of 15µm (Lensky and Rosenfeld, 1997), andD15
as the temperature difference (depth) betweenT15 and the
cloud base temperature (Tbase).

In this paper we use data from the European geostationary
satellite METEOSAT Second Generation (MSG) to retrieve
time series of the RLT microphysical zones,D15, and an in-
dication to the aerosol loading over the sea.

In the next section the methodology of the cloud character-
ization will be described, followed by the case studies. Sum-
mary and conclusions will close this paper.

2 Methodology

The retrieval of precipitation formation processes is done by
using microphysical zones from the RLT. The RLT usesre
and cloud top temperature (T ) of all the cloudy pixels in a
predefined area as input. One of the outputs of the RLT is
the highest and lowest temperatures of the following five mi-
crophysical zones: the diffusional growth zone, coalescence
growth zone, rain out zone, mixed phase zone and glaciated
zone. These microphysical zones andT15 are schematically
shown in Fig. 1.

The RLT is based on two assumptions:

(a) The evolution ofre with height (orT ), observed by the
satellite at a given time (snapshot), for a cloud ensem-
ble over an area, is similar to theT −re time evolution
of a given cloud at one location. This assumption of
exchangeability between the time and space domains is
called the ergodicity assumption (see Fig. 2a).
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Fig. 1. Schematic representation of the five microphysical zones:
diffusional, coalescence, rain out, mix phase and glaciated; and the
temperature of onset of precipitation (T15).

 

Fig. 2. Schematic representation of the two assumptions underlying
the RLT. (a) the ergodicity assumption (exchangeability between
the time and space domains) says that theT −re observed by the
satellite at a given time (t0) for a cloud ensemble (C1C2C3) over an
area, is similar to the time evolution (t1t2t3) of theT −re of a given
cloud (C0), at one location.(b) the re near cloud top is similar to
that well within the cloud at the same height as long as precipitation
does not fall through that cloud volume.

(b) The re near cloud top (T1) of one cloud in a cloud
cluster, is similar to there of any other cloud in the
same cloud cluster, at the same height (whereT1 is well
within the other clouds) as long as precipitation does
not fall through that cloud volume (see Fig. 2b), and
that all the clouds in the cloud cluster, are in the same
environment in terms of the ambient air’s dynamic, ther-
modynamic and aerosol loading. Different clouds in
this cloud cluster should have more or less the same
CCN. This assumption may brake in the vicinity of a
point source of aerosols such as power plant (Rosen-
feld, 2000), or if the analyzed area is too large. In that
case a more careful treatment of theT −re plot will be
needed (i.e. the use of different percentiles of there for
different clouds).

 

Fig. 3. Sea level pressure (in Pascal) for 9 March 2006, 06:00 GMT,
based on the NCEP-NCAR CDAS-1 archive (Kalnay et al., 1996;
Kistler et al., 2001).

The second assumption was verified using in situ aircraft
measurements (Rosenfeld and Lensky, 1998; Freud et al.,
2005). To address the ergodicity assumption, Lensky and
Rosenfeld (2006) used rapid scan data (three minutes in-
terval) of the Spinning Enhanced Visible and InfraRed Im-
ager (SEVIRI) on board the MSG satellite (Schmetz et al.,
2002). One outcome of that study was a tool named CAP-
SAT: Clouds, Aerosols, and Precipitation Satellite Analysis
Tool (Lensky and Rosenfeld, 20071). In this paper we used
CAPSAT to analyze the MSG data. In each area and time
step (see Sect. 3) we looked for the five microphysical zones
defined in the RLT, andT15. As an indication for the aerosol
loading over the sea we looked for the smallest cloud free
visible (0.6µm) reflectance in area 1.

3 The case studies

In this study we use MSG SEVIRI data. Fifteen minutes
interval data, from 06:00 to 14:00 GMT from three cases of
sever weather in 2006: 9 March, 2 April and 4 April were
used to monitor convective clouds over East Mediterranean
Sea (area 1) and Israel (area 2).

In the first case study from 9 March 2006, a highly de-
veloped large scale cyclonic system approached Israel in the
early morning (see Fig. 3), with a dust storm developing over
South East Mediterranean. Figure 4 shows clouds and dust
interacting in areas 1 and 2 at 06:00 GMT (a); 08:00 GMT
(b); 11:00 GMT (c); and 13:00 GMT (d). In this color
scheme, clouds are colored in orange and red, and dust is
colored in pink. Strong dust storm is developing in the north-
east corner of area 2 in panel b, and intensifies in panels c and

1Lensky, I. M. and Rosenfeld, D.: Clouds-Aerosols-
Precipitation Satellite Analysis Tool (CAPSAT), Atmos. Chem.
Phys. Discuss., to be submitted, 2007.
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Figure 4. Clouds and dust over East Mediterranean Sea (area 1) and Israel (area 2). Panel a is 

from March 9  2006 6:00 GMT, b 8:00 GMT, c 11:00 GMT, and d 13:00 GMT. In this color 

Fig. 4. Clouds and dust over East Mediterranean Sea (area 1) and Israel (area 2). Panel(a) is from 9 March 2006, 06:00 GMT,(b) 08:00 GMT,
(c) 11:00 GMT, and(d) 13:00 GMT. In this color scheme clouds are colored in orange and red, and the dust in pink.

d. Dust is actually seen over the eastern part of the delta of
the Nile in panel a moving eastward over southeast Mediter-
ranean sea and to the southern part of area 2 in panel b. From
this figure one can see that there is much more dust in area
2 than in area 1. Indeed, the time series of the temperatures:
Tbase, T15 and the cloud top temperatures (Ttop) in areas 1
and 2 in Fig. 5 show that theD15 parameter is much larger
in area 2 than in area 1, indicating that the clouds that were
exposed to the dust (in area 2) are more continental (smaller
re, larger diffusional growth zones, and largerD15). Figure 6
shows time series of the temperature of the base and top of
the RLT zones: diffusion (orange), coalescence (red), mixed
phase (purple) and glaciated (blue), and the temperature of
onset of precipitation (T15 – in green) for the same data as
in area 1 of this case study. Note that onset of precipitation
(T15) is reached only after coalescence (or mixed phase) are
initiated.

The pink colors in Fig. 4 can give a qualitative indication
to the existence of dust. A more refined quantitative parame-
ter of the aerosol loading was checked here. The reflectance
of sea water in the visible channel (0.6µm) in Clear sky con-
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Figure 5. Time series of the cloud base temperature (T ), the temperature of onset of 
Fig. 5. Time series of the cloud base temperature (Tbase), the tem-
perature of onset of precipitation (T15), and cloud top temperature
(Ttop), of the clouds in Fig. 4.D15 is the temperature difference
(depth) betweenT15 andTbase.

ditions (aer) is very low (3.5–4%) and uniform. Over this
dark uniform background, any addition of aerosol loading
will result in higher visible reflectance. We assume that the
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Fig. 6. Time series of the temperature of the base and top of the RLT
zones: diffusion (orange), coalescence (red), mixed phase (purple)
and glaciated (blue), and the temperature of onset of precipitation
(T15) (green) for the same data as in area 1 of Fig. 5.T15 is reached
only after coalescence (or mixed phase) is initiated.
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Fig. 7. Time series ofD15 and the minimal visible (0.6µm) re-
flectance for the same data as figure 6. The minimal visible re-
flectance is used here as a quantitative measure for aerosol loading,
and shown here to be highly correlated toD15. Also notable is the
clouds’ response to the aerosol loading.

cloud free minimum visible reflectance in area 1 is correlated
with aerosol loading. Figure 7 shows time series ofD15 and
aer in area 1. These two parameters are highly correlated.
Also notable is the quick response of the cloud microphysics
to the aerosol loading: in most of the curve it is shorter than
the 15 min interval of the MSG data.

 

Fig. 8. As Fig. 3, but for 2 April 2006, 12:00 GMT.

 

Figure 9. T-r  plot of Area 1 April 2
nd

, 2006, 10:45 GMT; the number of pixels (in blue) in 

μ
Fig. 9. T −re plot of Area 1, 2 April 2006, 10:45 GMT; the number
of pixels (in blue) in each 1◦C temperature interval, and the mi-
crophysical zones, showing deep diffusional growth zone (∼20◦C)
with re<10µm, followed by mixed phase zone with probably co-
alescence (∼20◦C) and glaciation zone (∼22◦C). Heavy rains oc-
curred in Wadi Ara region in the northern part of Israel, resulting
with severe floods, and record high rain intensity and duration.D15
shows extremely continental values of∼25◦C, as those of clouds in
heavy smoke (Lensky and Drori, 2007).

In the second case study of 2 April heavy rains occurred in
the Wadi Ara region in the northern part of Israel, resulting
with severe floods, and record–high rain intensity and dura-
tion. Figure 8 shows the Sea level pressure (in Pascal) of
12:00 GMT of this case study. Figure 9 showsT −re plot
of Area 2 of this case study, from 10:45 GMT, and the mi-
crophysical zones, showing a deep diffusional growth zone
(∼20◦C) with re<10µm, followed by a mixed phase zone
(∼20◦C). As the slope of theT −re curve in both coalescence
and mixed phase growth may be the same, the RLT takes an
arbitrary temperature of−10◦C, as the limit between these
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Fig. 10. As Fig. 3, but for 4 April 2006, 12:00 GMT.

two microphysical growth zones. To get a more reliable pic-
ture on which of the processes actually exists in that tempera-
ture interval in the analyzed area, a spectral analysis on pixel
basis (the pixels in that temperature interval) should be car-
ried out. This can be done for example by looking at the ratio
between the reflectance in 0.6 and 1.6µm where the larger
values will indicate the existence of ice. A glaciation zone of
about 22◦C followed the mixed phase zone.D15 shows ex-
tremely continental values of about 25◦C, similar to clouds
in heavy smoke (Lensky and Drori, 2007).

In the third case study a quickly deepening upper trough
formed a surface low over South East Mediterranean during
the night between 3 and 4 April. The upper air system con-
tinued to develop forming a low over Cyprus on the noon
of 4 April, creating an extremely unstable atmosphere over
Israel and allowing the development of a super cell in the
north. Figure 8 shows theT −re plot of the data extracted
from area 2 on 4 April, 13:00 GMT. The microphysical zones
of this area are showing a very deep diffusional growth zone
of about 25◦C, followed by a shallow mixed phase zone
(∼12◦C) and a glaciation zone (∼15◦C). Like the case of
4 April, D15 shows extremely continental values of about
27◦C, which are typical to clouds in heavy smoke (Lensky
and Drori, 2007). A tornado and giant hail followed shortly
after in this area.

4 Summary and conclusions

Three case studies of severe weather events were shown here.
Time series of precipitation formation processes in clouds
over sea and land were monitored, as well as the impact of
aerosols on these processes. The clouds that were monitored
in this study were clouds that passed in two predefined areas.
We plan to further elaborate the approach that was demon-
strated here by applying a cloud tracking algorithm on the
MSG data and then using the RLT microphysical zones and

 

 

Figure 11. As figure 9 only for April 4
th

, 2006, 13:00 GMT area 2; the microphysical zones 

Fig. 11. As Fig, 9 only for 4 April 2006, 13:00 GMT area 2;
the microphysical zones show here very deep diffusional growth
zone (∼25◦C), followed by shallow mixed phase zone (∼12◦C) and
glaciation zone (∼15◦C). D15 shows extremely continental values
of ∼27◦C, as those of clouds in heavy smoke (Lensky and Drori,
2007). A tornado followed shortly after in this area.

the D15 parameter on the individual cloud clusters that are
tracked. This can be very beneficial for short predictions as
to the nature of clouds coming in and the potential risk for
sever storms producing floods or hail from these clouds. To
this end we plan to combine the RLT microphysical zones
and theD15 parameter inferred from the multyspectral MSG
data with radar data.
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