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Abstract. It is generally believed that the low-frequency
variability of climatic parameters seems to be connected
to solar cycles. The principal periodicities are: 11-year
(Schwabe), 22-year (Hale), 33-year (Bruckner) and 80–100-
year (Gleissberg) cycles. The main heliophysical factors act-
ing on climate, the biosphere and the atmosphere are solar ir-
radiance, the intensity of solar and galactic cosmic rays (rela-
tivistic charged particles with energies>500 MeV) changing
the cloud cover of the atmosphere, and UV-B-radiation. The
11-year and 80–90-year solar cycles are apparent in solar ra-
diation and galactic cosmic ray trends. At the same time the
bidecadal Hale cycle, related to a reversal of the main solar
magnetic field direction is practically absent in either solar
radiation or galactic cosmic ray variations. Besides, nobody
can identify any physical mechanisms by which a reversal
in the solar magnetic field direction could influence climate.
However, the 22-year cycle has been identified in rather
many regional climatic (droughts, rainfall, tree growth near
68◦ N, 30◦ E) and temperature records all over the world. We
discuss here three possible cause of the bidecadal periodicity
in climatic records, one of which is associated with a varia-
tion of stardust flux inside the Solar System. The most recent
observations by the DUST experiment on board the Ulysses
spacecraft have shown that the solar magnetic field lost its
protective power during the last change of its polarity (the
most recent solar maximum), so that the stardust level in-
side of the Solar System has been enhanced by a factor of
three. It is possible that the periodic increases of stardust in
the Solar System may influence the amount of extraterres-
trial material that falls to the Earth and consequently act on
the Earth’s atmosphere and climate through alteration of at-
mospheric transparency and albedo. This material (interstel-
lar dust and/or cometary matter) may also provide nucleation
sites and thereby influence precipitation.

Correspondence to: E. A. Kasatkina
(oleg@aprec.ru)

1 Introduction

The role of solar activity in climate and environmental
changes is now a subject of considerable discussion. The
last two decades of research in solar physics, geophysics and
climatology had led us to realize that:

1. Man-made influences on the environment are super-
posed upon a number of natural factors influencing the
climate, atmosphere and biosphere of the Earth (Priem,
1997; Singer, 1999; Soon and Baliunas, 2003).

2. The main heliophysical factors acting on climate, the
biosphere and the state of the atmosphere are solar ir-
radiance (Reid, 1991; Lean et al., 1995; Douglass and
Clader, 2002), the intensity of solar and galactic cos-
mic rays changing the cloud cover of the atmosphere
(Tinsley et al., 1989; Shumilov et al., 1996; Svensmark
and Friis-Christensen, 1997; Palle and Butler, 2001;
Carslaw et al., 2002; Kasatkina and Shumilov, 2005),
and UVB-radiation (Haigh et al., 1996).

3. The heliophysical factors demonstrate a cyclic charac-
ter, identified in a large number of temperature and
proxy records, as 11-year (Schwabe), 22-year (Hale)
and 80–90 year (Gleissberg) sunspot cycles (King,
1975; Mann and Park, 1994; Stocker, 1994; Plaut et
al., 1995; Molinari et al., 1997; Neff et al., 2001; Roig
et al., 2001; Douglass and Clader, 2002; Rigozo et al.,
2002; Gleisner and Thejll, 2003; Gusev et al., 2004).

The 11-year and 80–90-year solar cycles are apparent in
solar radiation and galactic cosmic ray trends (Tinsley et al.,
1989; Lean et al., 1995; Svensmark and Friis-Christensen,
1997; McCracken et al., 2001). At the same time the
bidecadal Hale cycle, related to a reversal of the overall solar
magnetic field direction is practically absent in either solar
radiation (Lean et al., 1995) or galactic cosmic ray variation
(Webber and Lockwood, 1988); nor could we identify any
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Fig. 1. The juniper (Juniperus Sibirica Burgsd) tree-ring chronol-
ogy with 20-year running mean from the Kola Peninsula (67.77◦ N,
36.52◦ E), 1328–2004.

physical mechanisms by which a reversal in solar magnetic
field could influence the Earth’s climate. However, the 22-
year cycle has been identified in rather many regional cli-
matic records worldwide (droughts, rainfalls, tree growth)
(King, 1975; Cook et al., 1997; Gusev et al., 2004; Kasatkina
et al., 2006). The 80–90-year solar cycle is less commonly
preserved in climatic records (Stocker, 1994). The 33-year
(Bruckner) solar cycle, the physical nature of which currently
remains unknown, has only been identified in a limited num-
ber of regions: Northern Finland (Stocker, 1994), Tasmania
(Cook et al., 1995), Chile (Roig et al., 2001), Mexico (Men-
doza et al., 2001), and North America (Scuderi, 1993; Dean
et al., 2002).

In this paper, we discuss the evidence for and some pos-
sible causes of bidecadal periodicity in climatic records in
Finnish Lapland and the Kola peninsula, near 68◦ N, 30◦ E.

2 Data and method

For this analysis we used tree-ring and temperature records
collected in different parts of Europe and North West Rus-
sia (about 50 records including 14 own tree-ring series).
Tree-ring data (Pinus sylvestris; Juniperus Sibirica Burgsd)
were sampled in Northern Lapland (40 km from Sodankyla;
67◦22′ N, 26◦38′ E; 2 series) and Kola Peninsula (67◦33′–
68◦36′ N; 31◦45′–34◦58′ E; 12 series). The samples were
cross-dated and ring widths were measured using standard
dendrochronological techniques and COFECHA (Holmes,
1983) and ARSTAN (Cook and Kariukstis, 1990) programs.
Most of the series begin in the 1700’s; the largest juniper
chronology begins in 1328.

3 Results and discussion

All data series were spectrally analyzed with the help of
a multi-taped method (MTM) (Thomson, 1982; Dettinger
et al., 1995) in order to search for solar activity signals.

 

 

 

Fig. 2. MTM-spectrum of juniper tree-ring chronology (from
Fig. 1). Strong periodicities are shown (in years, y). The lower
(solid) and upper (dashed) lines represent 90% and 99% confidence
limits.

Spectral analysis of 46 tree-ring and temperature records
taken from North Atlantic/Europe region revealed a signif-
icant peak around∼22-years appearing almost in all records.
Some examples are shown in Figs. 1–4. Figure 1 illustrates
the juniper chronology for the Kola Peninsula covering the
676-year period from 1328 to 2004. Some of the juniper trees
studied were rather old (300–400 years) with the oldest two
reaching ages of 556 and 535 years meaning that they start
growing in 1328 and 1350, respectively. Two millennia-long
tree-ring width chronologies were constructed from juniper
in the western Tien Shan (Esper et al., 2003). However, the
juniper chronology is the longest chronology that has been
constructed for the Kola Peninsula up to the present date.
From Fig. 1 it becomes obvious that the juniper chronology
contains a lot of low-frequency components. Figure 2 shows
the MTM spectrum of the juniper chronology. It is curious
that the 11-year solar cycle does not appear in the spectrum.
The 20–22 year periodicity is, however, clearly present in the
juniper chronology, at the 99% confidence level (Fig. 2).

Spectral analysis of the data revealed significant (close to
90% level or higher) peaks at around 4–7, 9–15, 20–25, 33,
60, and 80–100-years in the Kola and Lapland series (see
Fig. 3). Peaks between 4 and 7-years may be related to the
North Atlantic Oscillation (NAO) (Mokhov et al., 2000) with
other peaks corresponding to solar cycles.

It has been observed that the 11-year periodicity is not
always present in climatic records, and where the signal is
apparent it is often seen at lower amplitudes than those of
the 22-year cycle (D’Arrigo and Jacoby, 1992; Molinari et
al., 1997; White et al., 1997). Moreover, in some regions
solar forcing may be masked by local climate effects. The
most significant differences in regional climatic variability
were observed for the last 30–40 years in the Arctic where
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Fig. 3. The same as in Fig. 2, but for Northern Finland, Luosto
(67◦ N, 27◦ E), 1635-1998.

the mean annual air temperature departures differ not only
with respect to their values, but as well in sign (Kahl et
al., 1993; Overpeck et al., 1997; Werner et al., 2000). It
was shown that external forcing of the atmosphere and cli-
mate is enhanced in spatially-localized atmospheric patterns
and/or so-called “climatic attractors” (zones with contrasting
atmospheric states) (Shuleikin, 1942; Smirnov, 1984; Hurrel,
1995; Wallace et al., 1995; Corti et al., 1999). Recent results
have demonstrated that in the North Atlantic/European sector
solar forcing on the climate is localized approximately along
the coastline of the Atlantic ocean (Thejll, 2001; Kasatkina
et al., 2006).

As noted earlier, the periodicities of 11-year and 80–90
year solar cycles were identified in variations of solar irradi-
ance and galactic cosmic rays. These periods are also evident
in climatic variations. There are several reasons to consider
the 33-year cycle observed in the Kola and Lapland series
to be of solar origin. It has been discovered in variations of
magnetic index (Ap) as well as of sunspots, although it is
very unstable (Gonzalez et al., 1993). This period seems to
be explained by the Sun’s oscillation about the center of mass
of the solar system (Landscheidt, 1999). As for the 22-year
solar cycle, although it is perceivable in climatic records,
knowledge of any physical mechanism by which a reversal in
the solar magnetic field could influence climate is still miss-
ing.

There are several possible interpretations of the phenom-
ena observed:

1. Parametric resonance. In this case the 22-year peak may
be connected to the non-linear response of the climatic
dynamical system on the weak solar signal (doubling
of the 11-year solar cycle) (Haken, 2004). This mech-
anism was discussed in some papers (Shuleikin, 1942;
Smirnov, 1984; Hurrel, 1995; Wallace et al., 1995; Corti
et al., 1999; Kasatkina et al., 2006).

 

 

Fig. 4. The same as in Fig. 2, but for St.-Petersburg temperature
(60.0◦ N, 30.3◦ E), 1752-2002.

2. Bidecadal variations of galactic cosmic ray (GCR) in-
tensity (Ogurtsov et al., 2003). Ogurtsov et al. (2003)
argued that the integrated GCR flux is doubled during
solar cycles with positive polarity (magnetic field di-
rected away from the Sun). It is true that the integrated
GCR flux during negative solar cycles would be some-
what lower (Webber and Lockwood, 1988). But tak-
ing into account that the amplitude of the 11-year GCR
variation is equal to about 10% at the ground (Tinsley
et al., 1989), some part of this value would hardly in-
fluence climate considerably through variations in addi-
tional cloudiness. Besides, the effect is observed mainly
at high latitudes according to Ogurtsov et al. (2003). Ex-
perimental results do not confirm this suggestion (Cook
et al., 1997; Gusev et al., 2004; Kasatkina et al., 2006)
(see Fig. 4). Figure 4 shows the MTM spectrum of
temperature at the middle-to-high latitude station of St.-
Petersburg (60◦ N). The 25-year periodicity is clearly
present in this spectrum, above the 90% confidence
level (Fig. 4).

3. Variation of stardust flux inside the Solar System. The
Sun’s magnetic field protects the inner solar system
from the interstellar dust penetration, and such dust
grains (radius greater than 0.4µm) may be focused in
the plane of the ecliptic or diverted from the plane de-
pending on its polarity, which changes every 11 years
(Zank and Frisch, 1999; Frisch, 2000; Altobelli et al.,
2003). The most recent observations made by the DUST
experiment on board Ulysses have shown that this mag-
netic shield has lost its protective power during the re-
cent solar maximum, and the stardust level inside the
Solar System was trebled (Landgraf et al., 2003). Ac-
cording to model simulations, in the reversed configu-
ration after the recent solar maximum (North negative,
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South positive), the interstellar dust is even more effec-
tively channelled towards the inner Solar System (Alto-
belli et al., 2003; Landgraf et al., 2003). Increases of
stardust in the Solar System, if they penetrate the mag-
netopause, may influence the amount of extraterrestrial
material that may rains down to Earth and consequently
the Earth’s atmosphere and climate (McCrea, 1975; Mc-
Cay and Thomas, 1978; Zank and Frisch, 1999; Frisch,
2000; Landgraf et al., 2003). The increased amount of
stardust material would change the gravity potential in-
side the Solar System. The increased gravity would af-
fect the penetration of small comets into the Earth’s at-
mosphere (Frank et al., 1986).

It is important to note that in a number of climate models
variations with periods from 11 to 90 years are interpreted
exclusively in terms of internal processes (ocean-atmosphere
interaction, thermohaline circulation) without consideration
of the role of solar forcing (Wohlleben and Weaverm, 1995;
Latif, 1998).

4 Conclusions

Results of spectral analysis have allowed us to identify sev-
eral solar activity cycles in tree-ring data collected in the
Kola Peninsula and Finnish Lapland. The strong∼22-year
periodicity in climatic parameters may be related to the vari-
ation of stardust flux inside the Solar System caused by
changes in the polarity of the main solar magnetic field.

Acknowledgements. This work was supported by grant from
Russian Foundation for Basic Research (grant No. 05-06-97528),
by the Program ‘Biodiversity and dynamics of gene pool’ of the
Russian Academy and by the Regional Scientific Program of
Murmansk region. The authors thank the referees for their useful
comments.

Edited by: N. Crosby and M. Rycroft
Reviewed by: three anonymous referees

References

Altobelli, N., Kempf, S., Landgraf, M., Srama, R., Dikarev, V.,
Kruger, H., Moragas-Klostermeyer, G., and Grun, E.: Cassini
between Venus and Earth: Detection of interstellar dust, J. Geo-
phys. Res., 108(A10), 8032, doi:10.1029/2003JA009874, 2003.

Carslaw, K. S., Harrison, R. G., and Kirkby, J.: Cosmic rays, clouds,
and climate, Science, 298, 1732–1737, 2002.

Cook, E. R. and Kairiukstis, L.: Methods of Dendrochronology,
Kluwer Academic Publishing, Dordrecht, 1990.

Cook, E. R., Buckley, B. M., and D’Arrigo, R. D.: Interdecadal tem-
perature oscillations in the Southern hemisphere: evidence from
Tasmanian tree rings since 300 B.C., in: Natural Climate Vari-
ability on Decade-to Century Time Scales, National Research
Council, 523–532, 1995.

Cook, E. R., Meko, D. M., and Stockton, C. W.: A new assess-
ment of possible solar and lunar forcing of the bidecadal drought
rhythm in the Western United States, J. Climate, 10, 1343–1356,
1997.

Corti, S., Molteni, F., and Palmer, T. N.: Signature of recent climate
change in frequencies of natural atmospheric circulation regimes,
Nature, 398, 799–802, 1999.

D’Arrigo, R. D. and Jacoby, G. C.: Dendroclimatic evidence from
northern North America, in: Climate since A.D. 1500, edited by:
Bradley, R. S. and Jones, P. D., Routledge, London, 296–311,
1992.

Dean, W., Anderson, R., Bradbury, J. P., and Anderson, D.: A 1500-
year record of climatic and environmental change in Elk Lake,
Minnesota I: Varve thickness and gray-scale density, J. Paleolim-
nology, 27, 287–299, 2002.

Dettinger, M. D., Ghil, M., Strong, C. M., Weibel, W., and Yiou,
P.: Software expedites singular-spectrum analysis of noisy time
series, EOS Trans. American Geophysical Union, 76, p. 12, 14,
21, 1995.

Douglass, D. H. and Clader, B. D.: Climate sensitivity of the Earth
to solar irradiance, Geophys. Res. Lett., 29, 1029–1032, 2002.

Esper, J., Shiyatov, S. G., Mazepa, V. S., Wilson, R. J. S., Graybill,
D. A., and Funkhouser, G.: Temperature-sensitive Tien Shan tree
ring chronologies show multi-centennial growth trends, Clim.
Dynam., 21, 699–706, 2003.

Frank, L. A., Sigwarth, J. B., and Craven, J. D.: On the influx of
small comets into the Earth’s upper atmosphere II. Interpretation,
Geophys. Res. Lett., 13, 307–310, 1986.

Frisch, P. C.: The galactic environment of the Sun, Am. Sci., 88,
52–65, 2000.

Gleisner, H. and Thejll, P.: Patterns of tropospheri9c response to
solar variability, Geophys. Res. Lett., 30, 1029–1032, 2003.

Gonzalez, A. L. C., Gonzalez, W. D., Dutra, S. L. G., and Tsurutani,
B. T.: Periodic variation in the geomagnetic activity: A study
based on the Ap index, J. Geophys. Res., 98, 9215–9231, 1993.

Gusev, A. A., Martin, I. M., Mello, M. G. S., Pankov, V., Pugacheva,
G., Schuch, N. G., and Spjeldvik, W. N.: Bidecadal cycles in
liquid precipitations in Brazil, Adv. Space Res., 34, 370–375,
2004.

Haken, H.: Synergetics. Introduction and advanced topics,
Springer-Verlag, Germany, 2004.

Holmes, R. L.: Computer-assisted quality control in tree-ring dating
and measurement, Tree-Ring Bulletin, 44, 69–75, 1983.

Hurrel, J. W.: Decadal trends in the North Atlantic Oscillation: Re-
gional temperatures and precipitation, Science, 269, 676–679,
1995.

Kahl, J. D., Charlevoix, D. J., Zaitseva, N. A., Schnell, R. C., and
Serreze, M. C.: Absence of evidence for greenhouse warming
over the Arctic Ocean in the past 40 years, Nature, 361, 335–
337, 1993.

Kasatkina, E. A. and Shumilov, O. I.: Cosmic ray-induced strato-
spheric aerosols: A possible connection to polar ozone deple-
tions, Ann. Geophys., 23, 675–679, 2005,
http://www.ann-geophys.net/23/675/2005/.

Kasatkina, E. A., Shumilov, O. I., and Kanatjev, A. G.: Solar cy-
cle signatures in atmosphere of the North Atlantic and Europe,
Meteorology and Hydrology, 1, 55–59, 2006 (in Russian and En-
glish).

King, J. W.: Sun-weather relationships, Aeronaut. Astronaut., 13,

Adv. Geosci., 13, 25–29, 2007 www.adv-geosci.net/13/25/2007/

http://www.ann-geophys.net/23/675/2005/


E. A. Kasatkina et al.: On periodicities in long term climatic variations 29

10–19, 1975.
Landgraf, M., Kruger, H., Altobelli, N., and Grun, E.: Penetra-

tion of the heliosphere by the interstellar dust stream during so-
lar maximum, J. Geophys. Res., 108(A10), 8030, doi:10.1029
2003JA009872, 2003.

Landscheidt, T.: Extrema in sunspot cycle linked to Sun’s motion,
Solar Phys., 189, 415–426, 1999.

Latif, M.: Dynamics of interdecadal variability in coupled ocean-
atmosphere models, J. Climate, 11, 602–624, 1998.

Lean, J., Beer, J., and Bradley, R.: Reconstruction of solar irradi-
ance since 1610: Implications for climate change, Geophys. Res.
Lett., 22, 3195–3198, 1995.

Mann, M. E. and Park, J.: Global-scale modes of surface tempera-
ture variability on interannual to century timescales, J. Geophys.
Res., 99, 25 819–25 833, 1994.

McCracken, K. G., Dreschhoff, G. A. M., Smart, D. F., and Shea,
M. A.: Solar cosmic ray events for the period 1561-1994 2. The
Gleissberg periodicity, J. Geophys. Res., 106, 21 599–21 609,
2001.

McCrea, W. H.: Ice ages and the Galaxy, Nature, 255, 607–609,
1975.

McKay, C. P. and Thomas, G. E.: Consequences of a past encounter
of the Earth with an interstellar cloud, Geophys. Res. Lett., 5,
215–218, 1978.

Mendoza, B., Lara, A., Maravilla, D., and Jauregui, E.: Tempera-
ture variability in central Mexico and its possible association to
solar activity, J. Atmos. Sol. Terr. Phys., 63, 1891–1900, 2001.

Mokhov, I. I., Eliseev, A. V., Handorf, D., Petukhov, V. K., Dethloff,
K., Weisheimer, A., and Khvorost’yanov, D. V.: North Atlantic
Oscillation: Diagnosis and simulation of decadal variability and
its long-period evolution, Izv. RAN, FAO, 36, 605–616, 2000 (in
English and Russian).

Molinari, R. L., Mayer, D. A., Festa, J. F., and Bezdek, H. F.: Mul-
tiyear variability in the near-surface temperature structure of the
midlatitude western North Atlantic Ocean, J. Geophys. Res., 102,
3267–3278, 1997.

Neff, U., Burns, S. J., Mangini, A., Mudelsee, M., Fleitman, D.,
and Matter, A.: Strong coherence between solar variability and
the monsoon in Oman between 9 and 6 kyr ago, Nature, 411,
290–293, 2001.

Ogurtsov, M. G., Jungner, H., Kocharov, G. E., Lindholm, M., Ero-
nen, M., and Nagovitsyn, Yu. A.: On the link between Northern
Fennoscandian climate and length of the quasi-eleven-year cycle
in galactic cosmic ray flux, Solar Phys., 218, 345–357, 2003.

Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R., Dou-
glas, M., Finney, B., Gajewski, K., Jacoby, G., Jennings, A.,
Lamoreux, S., Lasca, A., MacDonald, G., Moore, J., Retelle,
M., Smith, S., Wolfe, A., and Zelinski, G.: Arctic environmen-
tal change of the last four centuries, Science, 278, 1251–1256,
1997.

Palle, E. and Butler, J.: Sunshine records from Ireland: Cloud fac-
tors and possible links to solar activity and cosmic rays, Int. J.
Climatol., 21, 709–729, 2001.

Plaut, G., Ghil, M., and Vautard, R.: Interannual and interdecadal
variability in 335 years of Central England temperatures, Sci-
ence, 268, 710–713, 1995.

Priem, H. N. A.: CO and climate: a geologist’s view, Space Sci.
Rew., 81, 193–197, 1997.

Reid, G. C.: Solar irradiance variations and the global sea surface
temperature record, J. Geophys. Res., 96, 2835–2844, 1991.

Rigozo, N. R., Nordemann, D. J. R., Echer, E., Vieira, L. E. A.,
Echer, M. P. S., and Prestes, A.: Tree-ring width wavelet and
spectral analysis of solar variability and climatic effects on a
Chilean cypress during the last two and a half millennia, Clim.
Past Discuss., 1, 121–135, 2005,
http://www.clim-past-discuss.net/1/121/2005/.

Roig, F. A., Le-Quesne, C., Boninsegna, J. A., Briffa, K. R., Lara,
A., Grudd, H., Jones, P. D., and Villagran, C.: Climate variability
50,000 years ago in mid-latitude Chile as reconstructed from tree
rings, Nature, 410, 567–570, 2001.

Scuderi, L. A.: A 2000-year tree ring record of annual temperatures
in the Sierra Nevada mountains, Science, 259, 1433–1436, 1993.

Shulejkin, W. W.: The thermobaric seishes in the atmosphere as a
factor of weather changes, Izvestija Academii nauk SSSR, Serija
geograf. i geophys., 1–2, 3–25, 1942 (in Russian).

Shumilov, O. I., Kasatkina, E. A., Henriksen, K., and Vashenyuk,
E. V.: Enhancement of stratospheric aerosols after solar proton
event, Ann. Geophys., 14, 1119–1123, 1996,
http://www.ann-geophys.net/14/1119/1996/.

Singer, S. F.: Human contribution to climate change remains ques-
tionable, EOS Transactions, AGU, 80, 183–187, 1999.

Smirnov, R. V.: Spatial regularities of solar activity effects in the
troposphere, Astron. J., 61, 1168–1178, 1984 (in Russian).

Soon, W. and Baliunas, S.: Proxy climatic and environmental
changes of the past 1000 years, Clim. Res., 23, 89–100, 2003.

Stocker, T. F.: The variable ocean, Nature, 367, 221–222, 1994.
Svensmark, H. and Friis-Christensen, E.: Variation of cosmic ray

flux and global cloud coverage – a missing link in Solar-climate
relationships, J. Atmos. Terr. Phys., 59, 1225–1232, 1997.

Thejll, P. A.: Decadal power in land air temperatures: Is it statisti-
cally significant? J. Geophys. Res., 106, 31 693–31 702, 2001.

Thomson, D. J.: Spectrum estimation and harmonic analysis, Proc.
IEEE, 70, 1055–1067, 1982.

Tinsley, B. A., Brown, G. M., and Scherrer, P. H.: Solar variability
influences on weather and climate: possible connections through
cosmic ray fluxes and storm intensifications, J. Geophys. Res.,
94, 14 783–14 792, 1989.

Wallace, J. M., Zhang, Y., and Renwick, J. A.: Dynamic contri-
bution to hemispheric mean temperature trends, Science, 270,
780–783, 1995.

Webber, W. R. and Lockwood, J. A.: Characteristics of the 22-year
modulation of cosmic rays as seen by neutron monitors, J. Geo-
phys. Res., 93, 8735–8740, 1988.

Werner, P. C., Gerstengarbe, F.-W., Fraedrich, K., and Oesterle, H.:
Recent climate change in the North Atlantic/European sector, Int.
J. Clim., 20, 463–471, 2000.

White, W. B., Lean, J., Cayan, D. R., and Dettinger, M. D.: Re-
sponse of global upper ocean temperature to changing solar irra-
diance, J. Geophys. Res., 102, 3255–3266, 1997.

Wohlleben, T. M. H. and Weaverm, A. M.: Interdecadal climate
variability in the subpolar North Atlantic, Clim. Dynam., 11,
459–467, 1995.

Zank, G. P. and Frisch, P. C.: Consequences of a change in the
galactic environment of the Sun, Astrophys. J., 518, 965–973,
1999.

www.adv-geosci.net/13/25/2007/ Adv. Geosci., 13, 25–29, 2007

http://www.clim-past-discuss.net/1/121/2005/
http://www.ann-geophys.net/14/1119/1996/

