
HAL Id: hal-00297007
https://hal.science/hal-00297007v1

Submitted on 15 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CPBVP: A Constraint-Programming Framework for
Bounded Program Verification

Hélène Collavizza, Michel Rueher, Pascal van Hentenryck

To cite this version:
Hélène Collavizza, Michel Rueher, Pascal van Hentenryck. CPBVP: A Constraint-Programming
Framework for Bounded Program Verification. The 14th International Conference on Principles and
Practice of Constraint Programming, Sep 2008, Sydney, Australia. pp.327-341. �hal-00297007�

https://hal.science/hal-00297007v1
https://hal.archives-ouvertes.fr

CPBPV: A Constraint-Programming Framework

For Bounded Program Verification

Hélène Collavizza1, Michel Rueher1, Pascal Van Hentenryck2

1 Université de Nice–Sophia Antipolis, France ({helen,rueher}@polytech.unice.fr)
2 Brown University, Box 1910, Providence, RI 02912 (pvh@cs.brown.edu)

Abstract. This paper studies how to verify the conformity of a pro-
gram with its specification and proposes a novel constraint-programming
framework for bounded program verification (CPBPV). The CPBPV
framework uses constraint stores to represent the specification and the
program and explores execution paths nondeterministically. The input
program is partially correct if each constraint store so produced implies
the post-condition. CPBPV does not explore spurious execution paths
as it incrementally prunes execution paths early by detecting that the
constraint store is not consistent. CPBPV uses the rich language of con-
straint programming to express the constraint store. Finally, CPBPV is
parametrized with a list of solvers which are tried in sequence, start-
ing with the least expensive and less general. Experimental results often
produce orders of magnitude improvements over earlier approaches, run-
ning times being often independent of the variable domains. Moreover,
CPBPV was able to detect subtle errors in some programs while other
frameworks based on model checking have failed.

1 Introduction

This paper is concerned with software correctness, a critical issue in software en-
gineering. It proposes a novel constraint-programming framework for bounded
program verification (CPBPV), i.e., when the program inputs (e.g., the array
lengths and the variable values) are bounded. The goal is to verify the conformity
of a program with its specification, that is to demonstrate that the specification is
a consequence of the program. The key idea of CPBPV is to use constraint stores
to represent the specification and the program, and to non-deterministically
explore execution paths over these constraint stores. This non-deterministic
constraint-based symbolic execution incrementally refines the constraint store,
which initially consists of the precondition. Non-determinism occurs when exe-
cuting conditional or iterative instructions and the non-deterministic execution
refines the constraint store by adding constraints coming from conditions and
from assignments. The input program is partially correct if each constraint store
produced by the symbolic execution implies the post-condition. It is important
to emphasize that CPBPV considers programs with complete specifications and
that verifying the conformity between a program and its specification requires
to check (explicitly or implicitly) all executables paths. This is not the case in

2 Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck

model-checking tools designed to detect violations of some specific property, e.g.,
safety or liveness properties.

The CPBPV framework has a number of fundamental benefits. First, con-
trary to earlier work using constraint programming or SMT [2,11,12], CPBPV
does not use predicate abstraction or explore spurious execution paths, i.e.,
paths that do not correspond to actual executions over inputs satisfying the
pre-condition. CPBPV incrementally prunes execution paths early by detecting
that the constraint store is not consistent. Second, CPBPV uses the rich language
of constraint programming to express the constraint store, including arbitrary
logical and threshold combination of constraints, the element constraint, and
global/combinatorial constraints that express complex relationships on a set of
variables. Finally, CPBPV is parametrized with a list of solvers which are tried
in sequence, starting with the least expensive and less general.

The CPBPV framework was evaluated experimentally on a series of bench-
marks from program verification. Experimental results of our (slow) prototype
often produce orders of magnitude improvements over earlier approaches, and
indicate that the running times are often independent of the variable domains.
Moreover, CPBPV was able to found subtle errors in some programs that some
other verification frameworks based on model-checking could not detect.

The rest of the paper is organized as follows. Section 2 illustrates how CPBPV
handles constraints store on a motivating example. Section 3 formalizes the
CPBPV framework for a small programming language and Section 4 discusses
the implementation issues. Section 5 presents experimental results on a number
of verification problems, comparing our approach with state of the art model-
checking based verification frameworks. Section 6 discusses related work in test
generation, bounded program verification and software model checking. Section
7 summarizes the contributions and presents future research directions.

2 The Constraint-Programming Framework at Work

This section illustrates the CPBPV verifier on a motivating example, the binary
search program. CPBPV uses Java programs and JML specifications for the
pre- and post-conditions, appropriately enhanced to support the expressivity of
constraint programming. Figure 1 depicts a binary search program to determine
if a value v is present in a sorted array t. (Note that \result in JML corresponds
to the value returned by the program). To verify this program, our prototype
implementation requires a bound on the length of array t, on its elements, and
on v. We will verify its correctness for specific lengths and simply assume that
the values are signed integers on a number of bits.

The initial constraint store of the CPBPV verifier, assuming an input array
of length 8, is the precondition1 cpre ≡ ∀0 ≤ i < 7 : t0[i] ≤ t0[i + 1] where t0

is an array of constraint variables capturing the input. The constraint variables
are annotated with a version number as CPBPV performs a SSA-like renaming

1 We omit the domain constraints on the variables for simplicity.

A Constraint-Programming Framework for Bounded Program Verification 3

/*@ requires (\forall int i; i>=0 && i<t.length-1;t[i]<=t[i+1])

@ ensures

@ (\result != -1 ==> t[\result] == v) &&

@ (\result == -1 ==> \forall int k; 0 <= k < t.length ; t[k] != v) @*/

1 static int binary_search(int[] t, int v) {

2 int l = 0;

3 int u = t.length-1;

4 while (l <= u) {

5 int m = (l + u) / 2;

6 if (t[m]==v)

7 return m;

8 if (t[m] > v)

9 u = m - 1;

10 else

11 l = m + 1; } // ERROR else u = m - 1;

12 return -1; }

Fig. 1. The Binary Search Program

[10] on the fly since each assignment generates constraints possibly linking the
old and the new values of the assigned variable. The assignments in lines 2–3
add the constraints l0 = 0∧u0 = 7. CPBPV then considers the loop instruction.
Since l0 ≤ u0, it enters the loop body, adds the constraint m0 = (l0 + u0)/2,
which simplifies to m0 = 3, and considers the conditional statement on line
6. The execution of the statement is nondeterministic: Indeed, both t0[3] = v0

and t0[3] 6= v0 are consistent with the constraint store, so that the two alterna-
tives, which give rise to two execution paths, must be explored. Note that these
two alternatives correspond to actual execution paths in which t[3] in the input
is equal to, or different from, input v. The first alternative adds the constraint
t0[3] = v0 to the store and executes line 7 which adds the constraint result = m0.
CPBPV has thus obtained an execution path p whose final constraint store cp

is: cpre ∧ l0 = 0 ∧ u0 = 7 ∧ m0 = (l0 + u0)/2 ∧ t0[m0] = v0 ∧ result = m0

CPBPV then checks whether this store cp implies the post-condition cpost by
searching for a solution to cp ∧ ¬cpost. This test fails, indicating that the com-
putation path p, which captures the set of actual executions in which t[3] = v,
satisfies the specification. CPBPV then explores the other alternatives to the
conditional statement in line 6. It adds the constraint t0[m0] 6= v0 and executes
the conditional statement in line 8. Once again, this statement is nondetermin-
istic. Its first alternative assumes that the test holds, generating the constraint
t0[m0] > v0 and executing the instruction in line 9. Since u is (re-)assigned,
CPBPV creates a new variable u1 and posts the constraint u1 = m0 − 1 = 2.
The execution returns to line 4, where the test now reads l0 ≤ u1, since CPBPV
always uses the most recent version for each variable. Since the constraint stores
entails l0 ≤ u1, the only extension to the current path consists of executing line
5, adding the constraint m1 = (l0 + u1)/2, which actually simplifies to m1 = 1.
Another complete execution path is then obtained by executing lines 6 and 7.

4 Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck

Consider now a version of the program in which line 11 is replaced by u =

m-1. To illustrate the CPBPV verifier, we specify partial execution paths by in-
dicating which alternative is selected for each nondeterministic instruction. For
instance, 〈T4, F6, T8, T5, T6〉 denotes the last execution path discussed above in
which the true alternative is selected for the first execution of the instruction
in line 4, the false alternative for the first execution of instruction 6, the true
alternative for the first instruction of instruction 8, the true alternative of the
second execution of instruction 5, and the true alternative of the second execu-
tion of instruction 6. Consider the partial path 〈T4, F6, F8〉 and let us study how
it can be extended. The partial path 〈T4, F6, F8, T4, T6〉 is not explored, since it
produces a constraint store containing

cpre ∧ t0[3] 6= v0 ∧ t0[3] ≤ v0 ∧ t0[1] = v0

which is clearly inconsistent. Similarly, the path 〈T4, F6, F8, T4, F6, T8〉 cannot be
extended. The output of CPBPV on this incorrect program when executed on an
array of length 8 (with integers coded on 8-bits to make it readable) produces,
in 0.025 seconds, the counterexample:
v0 = −126 ∧ t0 = [−128,−127,−126,−125,−124,−123,−122,−121] ∧ result = −1.

This example highlights a few interesting benefits of CPBPV.

1. The verifier only considers paths that correspond to collections of actual in-
puts (abstracted by constraint stores). The resulting execution paths must all
be explored since our goal is to prove the partial correctness of the program.

2. The performance of the verifier is independent of the integer representation
on this application: it only requires a bound on the length of the array.

3. The verifier returns a counter-example for debugging the program.

Note that CBMC and ESC/Java2, two state-of-the-art model checkers fail to
verify this example as discussed in Section 5.

3 Formalization of the Framework

This section formalizes the CPBPV verifier on a small abstract language using a
small-step SOS semantics. The semantics primarily specifies the execution paths
over constraint stores explored by the verifier. It features assert and enforce

constructs which are necessary for modular composition.

Syntax Figure 2 depicts the syntax of the programs and the constraints gener-
ated by the verifier. In the following, we use s, possibly subscripted, to denote
elements of a syntactic entity S.

Renamings CPBPV creates variables and arrays of variables “on-the-fly” when
they are needed. This process resembles an SSA normalization but does not in-
troduce the join nodes, since the results of different execution paths are not
merged. Similar renamings are used in model checking. The renaming uses map-
pings of type V ∪A→ N which maps variables and arrays into a natural numbers

A Constraint-Programming Framework for Bounded Program Verification 5

L : list of instructions; I : instructions ; B : Boolean expressions

E : integer expressions; A : arrays ; V : variables

L ::= I ; L | ǫ
I ::= A[E]← E | V ← E | if B I | while B I | assert(B) | enforce(B) | return E | {L}
B ::= true | false | E > E | E ≥ E | E = E | E 6= E | E ≤ E | E < E
B ::= ¬B | B ∧ B | B ∨ B | B ⇒ B
E ::= V | A[E] | E + E | E −E | E × E | E/E |

C : constraints E+ : solver expressions

V + = {vi | v ∈ V & i ∈ N} : solver variables

A+ = {ai | a ∈ A & i ∈ N} : solver arrays

C ::= true | false | E+ > E+ | E+ ≥ E+ | E+ = E+ | E+ 6= E+ | E+ ≤ E+ | E+ < E+

C ::= ¬C | C ∧ C | C ∨ C | C ⇒ C
E+ ::= V | A[E+] | E+ + E+ | E+ − E+ | E+ × E+ | E+/E+ |

Fig. 2. The Syntax of Programs and Constraints

denoting their current “version numbers”. In the semantics, the version number
is incremented each time a variable or an array element is assigned. We use σ⊥

to denote the uniform mapping to zero (i.e., ∀x ∈ V ∪A : σ⊥(x) = 0) and σ[x/i]
the mapping σ where x now maps to i, i.e., σ[x/i](y) = if x = y then i else σ(y).
These mappings are used by a polymorphic renaming function ρ to transform
program expressions into constraints. For example, ρ σ b1 ⊕ b2 = (ρ σ b1) ⊕
(ρ σ b2)(where ⊕ ∈ {∧,∨,⇒}) is the rule used to transform a logical expression.

Configurations The CPBCV semantics mostly uses configurations of the type
〈l, σ, c〉, where l is the list of instructions to execute, σ is a version mapping,
and c is the set of constraints generated so far. It also uses configurations of the
form 〈⊤, σ, c〉 to denote final states and configurations of the form 〈⊥, σ, c〉 to
denote the violation of an assertion. The semantics is specified by rules of the

form conditions
γ1 7−→γ2

stating that configuration γ1 can be rewritten into γ2 when the
conditions hold.

Conditional Instructions The conditional instruction if b i considers two
cases. If the constraint cb associated with b is consistent with the constraint
store, then the store is augmented with cb and the body is executed. If the
negation ¬cb is consistent with the store, then the constraint store is augmented
with ¬cb. Both rules may apply, since the store may represent some memory
states satisfying the condition and some violating it.

c ∧ (ρ σ b) is satisfiable

〈if b i ; l, σ, c〉 7−→ 〈i ; l, σ, c ∧ (ρ σ b)〉

c ∧ ¬(ρ σ b) is satisfiable

〈if b i ; l, σ, c〉 7−→ 〈l, σ, c ∧ ¬(ρ σ b)〉

Iterative Instructions The while instruction while b i also considers two cases.
If the constraint cb associated with b is consistent with the constraint store, then

6 Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck

the constraint store is augmented with cb, the body is executed, and the while
instruction is reconsidered. If the negation ¬cb is consistent with the constraint
store, then the constraint store is augmented with ¬cb.

c ∧ (ρ σ b) is satisfiable

〈while b i ; l, σ, c〉 7−→ 〈i; while b i ; l, σ, c ∧ (ρ σ b)〉

c ∧ ¬(ρ σ b) is satisfiable

〈while b i ; l, σ, c〉 7−→ 〈l, σ, c ∧ ¬(ρ σ b)〉

Scalar Assignments Scalar assignments create a new constraint variable for
the program variable to be assigned and add a constraint specifying that the
variable is equal to the right-hand side. A new renaming mapping is produced.

σ2 = σ1[v/σ1(v) + 1] & c2 ≡ (ρ σ2 v) = (ρ σ1 e)

〈v ← e ; l, σ1, c1〉 7−→ 〈l, σ2, c1 ∧ c2〉

Assignments of Array Elements The assignment of an array element creates
a new constraint array, add a constraint for the index being indexed and posts
constraints specifying that all the new constraint variables in the array are equal
to their earlier version, except for the element being indexed. Note that the index
is an expression which may contain variables as well, giving rise to the well-known
element constraint in constraint programming [25].

σ2 = σ1[a/σ1(a) + 1]
c2 ≡ (ρ σ2 a)[ρ σ1 e1] = (ρ σ1 e2)
c3 ≡ ∀i ∈ 0..a.length : (ρ σ1 e1) 6= i ⇒ (ρ σ2 a)[i] = (ρ σ1 a)[i]

〈a[e1]← e2, σ1 ; l, c1〉 7−→ 〈l, σ2, c1 ∧ c2 ∧ c3〉

Assert Statements An assert statement checks whether the assertion is im-
plied by the control store in which case it proceeds normally. Otherwise, it ter-
minates the execution with an error.

c⇒ (ρ σ b)

〈assert b ; l, σ, c〉 7−→ 〈l, σ, c〉

c ∧ ¬(ρ σ b) is satisfiable

〈assert b ; l, σ, c〉 7−→ 〈⊥, σ, c〉

Enforce Statements An enforce statement adds a constraint to the constraint
store if it is satisfiable.

c ∧ (ρ σ b) is satisfiable

〈enforce b ; l, σ, c〉 7−→ 〈l, σ, c ∧ (ρ σ b)〉

Block Statements Block statements simply remove the braces.

〈{l1} ; l2, σ, c〉 7−→ 〈l1 : l2, σ, c〉

A Constraint-Programming Framework for Bounded Program Verification 7

Return Statements A return statement simply constrains the result variable.

c2 ≡ (ρ σ1 result) = (ρ σ1 e)

〈return e ; l, σ1, c1〉 7−→ 〈σ1, c1 ∧ c2〉

Termination Termination also occurs when no instruction remains.

〈ǫ, σ, c〉 7−→ 〈⊤, σ, c〉

The CPBPV Semantics Let P be program bpre l bpost in which bpre denotes

the precondition, l is a list of instructions, and bpost the post-condition. Let
∗
7−→

be the transitive closure of 7−→. The final states are specified by the set

SFN (bpre,P) = { 〈f, σ, c〉|〈i, σ⊥, ρ σ⊥ bpre〉
∗
7−→ ∗〈f, σ, c〉 ∧ f ∈ {⊥,⊤} }

The program violates an assertion if the set

SFE (bpre,P , bpost) = {〈⊥, σ, c〉 ∈ SFN (bpre,P)}

is not empty. It violates its specification if the set

SFE (bpre,P , bpost) = {⊤, σ, c〉 ∈ SFN (bpre,P) | c ∧ (ρ σ ¬bpost) satisfiable}

is not empty. It is partially correct otherwise.

4 Implementation issues

The CPBPV framework is parametrized by a list of solvers (S1, . . . , Sk) which
are tried in sequence, starting with the least expensive and less general. When
checking satisfiability, the verifier never tries solver Si+1, . . . , Sk if solver Si is
a decision procedure for the constraint store. If solver Si is not a decision pro-
cedure, it uses an abstraction α of the constraint store c satisfying c ⇒ α and
can still detect failed execution paths quickly. The last solver in the sequence
is a constraint-programming solver (CP solver) over finite domains which iter-
ates pruning and searching to find solutions or prove infeasibility. When the CP
solver makes a choice, the earlier solvers in the sequence are called once again
to prune the search space or find solutions if they have become decision proce-
dures. Our prototype implementation uses a sequence (MIP, CP), where MIP is
the mixed integer-programming tool ILOG CPLEX2 and CP is the constraint-
programming tool Ilog JSOLVER. Our Java implementation also performs some
trivial simplifications such as constant propagation but is otherwise not opti-
mized in its use of the solvers and in its renaming process whose speed and
memory usage could be improved substantially. Practically, simplifications are
done on the fly and the MIP solver is called at each node of the executable
paths. The CP solver is only called at the end of the executable paths when

2 See http://www.ilog.com/products.

8 Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck

the complete post condition is considered. Currently, the implementation use a
depth-first strategy for the CP solver, but modern CP languages now offer high-
level abstractions to implement other exploration strategies. In practice, when
CPBPV is used for model checking as discussed below, it is probably advisable
to use a depth-first iterative deepening implementation.

5 Experimental results

In this section, we report experimental results for a set of traditional benchmarks
for program verification. We compare CPBVP with the following frameworks:

– ESC/Java is an Extended Static Checker for Java to find common run-time
errors in JML-annotated Java programs by static analysis of the code and
its annotations. See http://kind.ucd.ie/products/opensource/ESCJava2/.

– CBMC is a Bounded Model Checker for ANSI-C and C++ programs. It al-
lows for the verification of array bounds (buffer overflows), pointer safety, ex-
ceptions, and user-specified assertions. See http://www.cprover.org/cbmc/.

– BLAST, the Berkeley Lazy Abstraction Software Verification Tool, is a
software model checker for C programs. See http://mtc.epfl.ch/software-
tools/blast/.

– EUREKA is a C bounded model checker which uses an SMT solver instead
of an SAT solver. See http://www.ai-lab.it/eureka/.

– Why is a software verification platform which integrates many existing provers
(proof assistants such as Coq, PVS, HOL 4,...) and decision procedures such
as Simplify, Yices, ...). See http://why.lri.fr/.

Of course, neither the expressiveness nor the objectives of all these systems are
the same as the one of CPBPV. For instance, some of them can handle CTL/LTL
constraints whereas CPBPV dos not yet support this kind of constraints. Nev-
ertheless, this comparison is useful to illustrate the capabilities of CPBPV.
All experiments were performed on the same machine, an Intel(R) Pentium(R)
M processor 1.86GHz with 1.5G of memory, using the version of the verifiers
that can be downloaded from their web sites (except for EUREKA for which the
execution times given in [2,3] are reported.) For each benchmark program, we de-
scribe the data entries and the verification parameters. In the tables, “UNABLE”
means that the corresponding framework is unable to validate the program ei-
ther because a lack of expressiveness or because of time or memory limitations,
“NOT FOUND” that it does not detect an error, and “FALSE ERROR” that
it reports an error in a correct program. Complete details of the experiments,
including input files and error traces, can be found in [13].

Binary search We start with the binary search program presented in figure 1.
ESC/Java is applied on the program described in Figure 1. ESC/Java requires a
limit on the number of loop unfoldings, which we set to log(n) + 1 which is the
worst case complexity of binary search algorithm for an array of length n. Sim-
ilarly, CBMC requires an overestimate of the number of loop unfoldings. Since

A Constraint-Programming Framework for Bounded Program Verification 9

CPBPV
array length 8 16 32 64 128 256
time 1.081s 1.69s 4.043s 17.009s 136.80s 1731.696s

CBMC
array length 8 16 32 64 128 256
time 1.37s 1.43s UNABLE UNABLE UNABLE UNABLE

Why
with invariant 11.18s
without invariant UNABLE

ESC/Java FALSE ERROR

BLAST UNABLE

Table 1. Comparison table for binary search

CBMC does not support first-order expressions such as JML \forall statement,
we generated a C program for each instance of the problem (i.e., each array
length). For example, the postcondition for an array of length 8 is given by

(result!=-1 && a[result]==x)||

(result==-1 && (a[0]!=x&&a[1]!=x&&a[2]!=x&&a[3]!=x&&a[4]!=x&&a[5]!=x&&a[6]!=x&&a[7]!=x)

For the Why framework, we used the binary search version given in their distri-
bution. This program uses an assert statement to give a loop invariant.

Note that CPBPV does not require any additional information: no invariant
and no limits on loop unfoldings. During execution, it selects a path by nonde-
terministically applying the semantic rules for conditional and loop expressions.

Table 1 reports the experimental results. Execution times for CPBPV are
reported as a function of the array length for integers coded on 31 bits.3 Our
implementation is neither optimized for time or space at this stage and times
are only given to demonstrate the feasibility of the CPBPV verifier.

The “Why” framework [16] was unable to verify the correctness without the
loop invariant; 60% of the proof obligations remained unknown.

The CBMC framework was not able to do the verification for an instance of
length 32 (it was interrupted after 6691,87s).

ESC/Java was unable to verify the correctness of this program unless com-
plete loop invariants are provided 4.

An Incorrect Binary search Table 2 reports experimental results for an in-
correct binary search program (see Figure 1, line 11) for CPBPV, ESC/Java,
CBMC, and Why using an invariant. The error trace found with CPBPV has
been described in Section 2. The error traces provided by CBMC and ESC/Java
only show the decisions taken along the faulty path can be found in [13]. In con-
trast to CPBPV, they do not provide any value for the array nor the searched
data. Observe that CPBPV provides orders of magnitude improvements in effi-
ciency over CBMC and also outperforms ESC/Java by almost a factor 8 on the
largest instance.

3 The commercial MIP solver fails with 32-bit domains because of scaling issues.
4 a version with loop invariants that allows to show the correctness of this program

has been written by David Cok, a developper of ESC/Java, after we contacted him.

10 Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck

CPBPV ESC/Java CBMC WHY with invariant BLAST

length 8 0.027s 1.21 s 1.38s NOT FOUND UNABLE

length 16 0.037s 1.347 s 1.69s NOT FOUND UNABLE

length 32 0.064s 1.792 s 7.62s NOT FOUND UNABLE

length 64 0.115s 1.886 s 27.05s NOT FOUND UNABLE

length 128 0.241s 1.964 s 189.20s NOT FOUND UNABLE

Table 2. Experimental Results for an Incorrect Binary Search

CPBPV ESC/Java CBMC Why BLAST

time 0.287s 1.828s 0.82s 8.85s UNABLE

Table 3. Experimental Results on the Tritype Program

The Tritype Program The tritype program is a standard benchmark in test
case generation and program verification since it contains numerous non-feasible
paths: only 10 paths correspond to actual inputs because of complex conditional
statements in the program. The program takes three positive integers as inputs
(the triangle sides) and returns 2 if the inputs correspond to an isosceles triangle,
3 if they correspond to an equilateral triangle, 1 if they correspond to some other
triangle, and 4 otherwise. The tritype program in Java with its specification in
JML can be found in[13]. Table 3 depicts the experimental results for CPBPV,
ESC/Java, CBMC, BLAST and Why. BLAST was unable to validate this ex-
ample because the current version does not handle linear arithmetic. Observe
the excellent performance of CPBPV and note that our previous approach us-
ing constraint programming and Boolean abstraction to abstract the conditions,
validated this benchmark in 8.52 seconds when integers were coded on 16 bits
[12]. It also explored 92 spurious paths.

An Incorrect Tritype Program Consider now an incorrect version of Tritype
program in which the test “if ((trityp==2)&&(i+k>j))” in line 22 (see [13])
is replaced by “if ((trityp==1)&&(i+k>j))”. Since the local variable trityp is
equal to 2 when i==k, the condition (i+k)>j implies that (i,j,k) are the sides
of an isosceles triangle (the two other triangular inequalities are trivial because
j>0). But, when trityp=1, i==j holds and this incorrect version may answer
that the triangle is isosceles while it may not be a triangle at all. For example,
it will return 2 when (i,j,k)=(1,1,2). Table 4 depicts the experimental results.
Execution times correspond to the time required to find the first error. The error
found with CPBPV corresponds to input values (i, j, k) = (1, 1, 2) mentioned
earlier. Once again, observe the excellent behavior of CPBPV compared to the
remaining tools. 5

5 For CBMC, we have contacted D. Kroening who has recommended to use the option
CPROVER assert. If we do so, CBMC is able to find the error, but we must add

A Constraint-Programming Framework for Bounded Program Verification 11

CPBPV ESC/Java CBMC WHY

time 0.056s s 1.853s NOT FOUND NOT FOUND

Table 4. Experimental Results for the Incorrect Tritype Program

CPBPV ESC/Java CBMC EUREKA

length 8 1.45s 3.778 s 1.11s 91s

length 16 2.97s UNABLE 2.01s UNABLE

length 32 UNABLE UNABLE 6.10s UNABLE

length 64 UNABLE UNABLE 37.65s UNABLE

Table 5. Experimental Results for Bubble Sort

Bubble Sort with initial condition This benchmark (see [13]) is taken from
[2] and performs a bubble sort of an array t which contains integers from 0 to
t.length given in decreasing order. Table 5 shows the comparative results for this
benchmark. CPBPV was limited on this benchmark because its recursive imple-
mentation uses up all the JAVA stack space. This problem should be remedied
by removing recursion in CPBPV.

Selection Sort We now present a benchmark to highlight both modular veri-
fication and the element constraint of constraint programming to index arrays
with arbitrary expressions. The benchmark described in [13]. Assume that func-
tion findMin has been verified for arbitrary integers. When encountering a call
to findMin, CPBPV first checks if its precondition is entailed by the constraint
store, which requires a consistency check of the constraint store with respect to
the negation of the precondition. Then CPBPV replaces the call by the post-
condition where the formal parameters are replaced by the actual variables. In
particular, for the first iteration of the loop and an array length of 40, CPBPV
generates the conjunction 0 ≤ k0 < 40 ∧ t0[k0] ≤ t0[0] ∧ . . . ∧ t0[k0] ≤ t0[39]
which features element constraint [25]. Indeed, k0 is a variable and a constraint
like t0[k0] ≤ t0[0] indexes the array t0 of variables using k0.

The modular verification of the selection sort explores only a single path, is
independent of the integer representation, and takes less than 0.01s for arrays
of size 40. The bottleneck in verifying selection sort is the validation of function
findMin, which requires the exploration of many paths. However the complete
validation of selection sort takes less than 4 seconds for an array of length 6. Once
again, this should be contrasted with the model-checking approach of Eureka
[2]. On a version of selection sort where all variables are assigned specific values
(contrary to our verification which makes no assumptions on the inputs), Eureka
takes 104 seconds on a faster machine. Reference [2] also reports that CBMC

some assumptions to mean that there is no overflow into the sums, in order to prove
the correct version of tritype with this same option.

12 Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck

takes 432.6 seconds, that BLAST cannot solve this problem, and that SATABS
[9] only verifies the program for an array with 2 elements.

Sum of Squares Our last benchmark is described in [13] and computes the
sum of the square of the n first integers stored in an array. The precondition
states that n is the size of the array and that t must contain any possible
permutation of the n first integers. The postcondition states that the result
is n × (n + 1) × (2 × n + 1)/6. The benchmark illustrates two functionalities
of constraint programming: the ability of specifying combinatorial constraints
and of solving nonlinear problems. The alldifferent constraint[23] in the pre-
condition specifies that all the elements of the array are different, while the
program constraints and postcondition involves quadratic and cubic constraints.
The maximum instance that we were able to solve with CPBPV was an array
of size 10 in 66.179s.

CPLEX, the MIP solver, plays a key role in all these benchmarks. For in-
stance, the CP solver is never called in the Tritype benchmark. For the Binary
search benchmark, there are length calls to the CP solver but almost 75% of the
CPU time is spent in the CP solver. Since there is only path in the Buble sort
benchmark, the CP solver is only called once. In the Sum of squares example,
80% of the CPU time is spent in the CP solver.

6 Discussion and Related Work

We briefly review recent work in constraint programming and model checking
for software testing, validation, and verification. We outline the main differences
between our CPBPV framework and existing approaches.

Constraint Logic Programming Constraint logic programming (CLP) was
used for test generation of programs (e.g., [17,20,24,19]) and provides a nice
implementation tool extending symbolic execution techniques [4]. Gotlieb et al.
showed how to represent imperative programs as constraint logic programs and
used predicate abstraction (from model checking) and conditional constraints
within a CLP framework. Flanagan [15] formalized the translation of imperative
programs into CLP, argued that it could be used for bounded model checking,
but did not provide an implementation. The test-generation methodology was
generalized and applied to bounded program verification in [11,12]. The imple-
mentation used dedicated predicate abstractions to reduce the exploration of
spurious execution paths. However, as shown in the paper, the CPBPV veri-
fier is significantly more efficient and often avoids the generation of spurious
execution paths completely.

Model Checking It is also useful to contrast the CPBPV verifier with model-
checking of software systems. SAT-based bounded model checking for software[6]
consists in building a propositional formula whose models correspond to exe-
cution paths of bounded length violating some properties and in using SAT

A Constraint-Programming Framework for Bounded Program Verification 13

solvers to check whether the resulting formula is satisfiable. SAT-based model-
checking platforms [6] have been widely popular thanks to significant progress
in SAT solvers. A fundamental issue faced by model checkers is the state space
explosion of the resulting model. Various techniques have been proposed to ad-
dress this challenge, including generalized symbolic execution (e.g., [21]), SMT-
based model checking, and abstraction/refinement techniques. SMT-based model
checking is the idea of representing and checking quantifier-free formulas in a
more general decidable theory (e.g. [18,14,22]). These SMT solvers integrate
dedicated solvers and share some of the motivations of constraint programming.
Predicate abstraction is another popular technique to address the state space
explosion. The idea consists in abstracting the program to obtain an abstract
program on which model checking is performed. The model checker may then
generate an abstract counterexample which must be checked to determine if it
corresponds to a concrete execution path. If the counterexample is spurious, the
abstract program is refined and the process is iterated. A successful predicate
abstraction consists of abstracting the concrete program into a Boolean program
(e.g., [5,7,8]). In recent work [3,2], Armando & al proposed to abstract concrete
programs into linear programs and used an abstraction of sets of variables and
array indices. They showed that their tool compares favourably and, on some
of the programs considered in this paper, outperforms model checkers based on
predicate abstraction.
Our CPBPV verifier contrasts with SAT-based model checkers, SMT-based model
checkers and predicate abstraction based approaches: It does not abstract the
program and does not generate spurious execution paths. Instead it uses a
constraint-solver and nondeterministic exploration to incrementally construct
abstractions of execution paths. The abstraction uses constraint stores to rep-
resent sets of concrete stores. On many bounded verification benchmarks, our
preliminary experimental results show significant improvements over the state-
of-the-art results in [2]. Model checking is well adapted to check low-level C
program and hardware applications with numerous Boolean constraints and bit-
wise operations: It was successfully used to compare an ANSI C program with a
circuit given as design in Verilog [7]. However, it is important to observe that in
model checking, one is typically interested in checking some specific properties
such as buffer overflows, pointer safety, or user-specified assertions. These prop-
erties are typically much less detailed than our post-conditions and abstracting
the program may speed up the process significantly. In our CPBPV verifier, it
is critical to explore all execution paths and the main issue is how to effectively
abstract memory stores by constraints and how to check satisfiability incremen-
tally. It is an intriguing issue to determine whether an hybridization of the two
approaches would be beneficial for model checking, an issue briefly discussed in
the next section. Observe also that this research provides convincing evidence of
the benefits of Nieuwenhuis’ challenge [22] aiming at extending SMT6 with CP
techniques.

6 See also [1] for a study of the relations between constraint programming and Satis-
fiability Modulo Theories (SMT)

14 Hélène Collavizza, Michel Rueher, Pascal Van Hentenryck

7 Perspectives and Future Work

This paper introduced the CPBPV framework for bounded program verification.
Its novelty is to use constraints to represent sets of memory stores and to explore
execution paths over these constraint stores nondeterministically and incremen-
tally. The CPBPV verifier exploits the fact that, when variables and arrays are
bounded, the constraint store can always be checked for feasibility. As a result, it
never explores spurious execution path contrary to earlier approaches combining
constraint programming and predicate abstraction [11,12] or integrating SMT
solvers and the abstraction/refinement approach from model checking [2]. We
demonstrated the CPBPV verifier on a number of standard benchmarks from
model checking and program checking as well as on nonlinear programs and
functions using complex array indexings, and showed how to perform modular
verification. The experimental results demonstrate the potential of the approach:
The CPBPV verifier provides significant gain in performance and functionalities
compared to other tools.

Our current work aims at improving and generalizing the framework and im-
plementation. In particular, we would like to include tailored, light-weight solvers
for a variety of constraint classes, the optimization of the array implementation,
and the integration of Java objects and references. There are also many research
avenues opened by this research, two of which are reviewed now.

Currently, the CPBPV verifier does not check for variable overflows: the
constraint store enforces that variables take values inside their domains and ex-
ecution paths violating these constraints are thus not considered. It is possible
to generalize the CPBPV verifier to check overflows as the verification proceeds.
The key idea is to check before each assignment if the constraint store entails that
the value produced fits in the selected integer representation and generate an
error otherwise. (Similar assertions must in fact be checked for each subexpres-
sion in the right hand-side in the language evaluation order. Interval techniques
on floats [4] may be used to obtain conservative checking of such assertions.

An intriguing direction is to use the CPBPV approach for properties check-
ing. Given an assertion to be verified, one may perform a backward execution
from the assertion to the function entry point. The negation of the assertion is
now the pre-condition and the pre-condition becomes the post-condition. This
requires to specify inverse renaming and executions of conditional and iterative
statements but these have already been studied in the context of test generation.

Acknowledgements Many thanks to Jean-Franois Couchot for many helps on
the use of the Why framework.

References

1. Aït-Kaci H., Berstel B., Junker U., Leconte M., Podelski A. : Satisfiability Modulo
Structures as Constraint Satisfaction : An Introduction. Procs of JFLA 2007.

2. Armando A., Benerecetti M., and Montovani J. Abstraction Refinement of Linear
Programs with Arrays. Proceedings of TACAS 2007, LNCS 4424: 373–388.

A Constraint-Programming Framework for Bounded Program Verification 15

3. Armando A., Mantovani J., and Platania L. Bounded Model Checking of C Pro-
grams using a SMT solver instead of a SAT solver. Proc. SPIN’06. LNCS 3925,
Pages 146-162.

4. Botella B., Gotlieb A., Michel C. Symbolic execution of floating-point computa-
tions. Software Testing, Verification and Reliability. 16:2:97–121.2006.

5. Thomas Ball, Andreas Podelski, Sriam K. Rajamani Boolean and Cartesian Ab-
straction for Model Checking C Programs. Proc. of TACAS 2001.

6. E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded Model Checking using Satis-
fiability Solving. FMSD, 19(1):7–34, 2001.

7. Clarke E., Kroening D., Lerda F. : A Tool for Checking ANSI-C programs. Tacas
2004, LNCS 2988, pp 168-176, 2004

8. Clarke E., Kroening D., Sharygina N., Yorav K. : Predicate abstraction of ANSI-C
Programs using SAT. FMSD, 25:105–127, 2004

9. Clarke E., Kroening D., Sharygina N., Yorav K. : SATABS: SAT-Based Predicate
Abstraction for ANSI-C. TACAS’05, 570–574, 2005.

10. Cytron R., Ferrante J., Rosen B., Wegman M., and Zadeck K. : Efficently Com-
puting Static Single Assignment Form and the Control Dependence Graph. Trans-

actions on Programming Languages and Systems, 13(4):451–490, October 1991.
11. Collavizza H. and Rueher M. : Software Verification using Constraint Programming

Techniques. Procs of TACAS 2006, LNCS 3920: 182-196.
12. Collavizza H. and Rueher M. : Exploring different constraint-based modelings for

program verification Procs of CP 2007, LNCS 3920: 182-196
13. Collavizza H. Rueher M., Van Hentenryck P. : Comparison be-

tween CPBPV with ESC/Java, CBMC, Blast, EUREKA and Why.
http://www.i3s.unice.fr/˜rueher/verificationBench.pdf

14. Bruno Dutertre and Leonardo Mendonca de Moura. A fast linear-arithmetic solver
for DPLL(T). CAV 2006, pages 81–94. LNCS 4144.

15. Cormac Flanagan, ”Automatic software model checking via constraint logic”
(2004). Science of Computer Programming. 50 (1-3), pp. 253-270.

16. Fillitre J.C., Claude March.The Why/Krakatoa/Caduceus Platform for Deductive
Program Verification Proc. CAV’2007, LNCS 4590. pp 173-177.

17. Gotlieb A., Botella B. and Rueher M : Automatic Test Data Generation using
Constraint Solving Techniques. Proc. ISSTA 98, ACM SIGSOFT (2), 1998.

18. Ganzinger H., Hagen G., Nieuwenhuis R.,Oliveras A., and Tinelli C.: DPLL(T):
Fast Decision Procedures. Proc. of CAV 2004, 175-188, 2004.

19. P. Godefroid, M. Y. Levin, D. Molnar: Automated Whitebox Fuzz Testing, NDSS
2008, Network and Distributed System Security Symposium.

20. Daniel Jackson and Mandana Vaziri, Finding Bugs with a Constraint Solver, ACM
SIGSOFT Symposium on Software Testing and Analysis, 14–15, 2000.

21. Khurshid, S., Pasareanu, C.S., and Vissser, W. “Generalized Symbolic Execution
for Model Checking and Testing”, in TACAS 2003, Warsaw, Poland.

22. R. Nieuwenhuis, A. Oliveras, E. Rodrguez-Carbonell and A. Rubio: Challenges in
Satisfiability Modulo Theories. Invited Talk. RTA 2007, LNCS 4533, pp 2-18.

23. J-C. Régin. A filtering algorithm for constraints of difference in CSPs. AAAI-94,
Seattle, WA, USA, pp 362–367, 1994.

24. Sy N.T. and Deville Y.: Automatic Test Data Generation for Programs with Integer
and Float Variables. Proc of. 16th IEEE ASE01, 2001.

25. VanHentenryck P. (1989) Constraint Satisfaction in Logic Programming, MIT
Press.

26. Numerica: A Modeling Language for Global Optimization Pascal Van Hentenryck,
Laurent Michel, Yves Deville. MIT Press, 1997.

