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Abstract. The proper knowledge of spatial precipitation
structure is important as much as that of microphysics pro-
cesses for reliable quantitative precipitation forecasts. This
study considers some aspects of how precipitation is orga-
nized on meso- and fine-scales, within a cold front line and
how moisture transport is driven by these structures. Also,
a spectral space vision of the representativeness error is pro-
posed, which highlights uncertainties arising on the scales
lying between resolutions of different networks. This ap-
proach is used to explain an improper simulation of humidity
and precipitation fields in models whose resolution is coarser
than the scales being considered.

1 Introduction

Precipitation is one of the most complicated physical pro-
cesses in the atmosphere. It shows high variability in space
and time. This fact imposes tight requirements on an obser-
vation network to be properly arranged. The existing rain
gauge networks in most areas are rather coarse and not able
to provide a detailed description of the precipitation struc-
tures especially on meso-scale. The weather radar network,
on the other hand, operates by reflectivity with high temporal
and spatial resolutions (Collier, 1986; Crum et al., 1998), but
attempts to relate the measured reflectivity of the radar sam-
pling volume to the surface rain rate can lead to substantial
error by a factor of 2 (Austin, 1987). Additionally, strong
nonlinear dynamics of the water cycle in the atmosphere are
simplified and parameterized in numerical models, thus mis-
representing fields on a finite grid resolution. The above rea-
sons result in an inadequate description of precipitation, in
general, as well as improper forecasting of it. Furthermore,
in contrast to other atmospheric variables, precipitation fields

Correspondence to: S. Ivanov
(svvivo@te.net.ua)

are discontinuous, and their typical spatial scales are signif-
icantly smaller than, for example, those of temperature or
geopotential fields. This also sufficiently limits techniques
used for analysis of precipitation and does not allow us to
properly describe processes associated with those unresolved
scales.

Thus, the main focus of this study is to identify fine-scale
precipitation structures that occur within a cold front and de-
scribe moisture and energy transport driven by them. This
task is related to improving numerical prediction systems
through better understanding of the precipitation physics,
moisture and energy fluxes on synoptic and meso-scales.

2 Spatial precipitation structure

2.1 Precipitation scales on a cold front

Analyses of previous radar network observations have re-
vealed that precipitation within atmospheric fronts show
banded patterns (Browning, 1974; Kreitzberg and Brown,
1970; Houze and Hobbs, 1982; Hobbs et al., 1980): a frontal
zone includes a few 30–70 km bands with intensive pre-
cipitation alternating with wider bands of 60–120 km with
less intensive precipitation. The length of these bands is
about 100 km. NWP models currently with a horizontal res-
olution of the order of 10 km, which resolves these large
scale frontal features of precipitation (Jones and Macpher-
son, 1997). However, the complicate nature of precipitation
on meso-scales and uncertainties in its spatial distribution on
model grids lead to substantial misrepresentation of the fine
scale precipitation and associated processes (such as mois-
ture and energy fluxes) in simulations.

The present case study focuses on the cold front, which
crossed Central Europe on 1–2 January 2005 (Fig. 1a). The
weather in this region was determined by extensive deep low
near Iceland and anticyclone rapidly moving from the Azores
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Figure 1. (a) Analysis chart from UK MetOffice operational forecasts for 02/01/20Fig. 1. (a) Analysis chart from UK MetOffice operational forecasts
for 02/01/2005 00:00,(b) frontal precipitation from MIUB radar
for 02/01/05 00:41; the precipitation structures of radar reflectiv-
ity above 35 dBz (approximately 5 mm/h of precipitation rate) are
shaded.

to South Europe. The thermodynamical conditions and upper
level flow were favourable to sharpening of the polar front in
the trough over the Northern Atlantic. The front showed a
temperature contrast of 5–8 degrees and was moving with
the speed of about 15 m/s. Deep cloudiness and strong rain
showers accompanied its passage.

For the purpose of identification of meso- and fine-scale
features on the front, high-resolution (125 m radial and 1
degree azimuthal) X-band radar data are used (http://www.
meteo.uni-bonn.de/forschung/gruppen/radar/). The Plan Po-
sition Indicator with a 5-min scan interval monitors an area
of 100 km radius.
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Fig. 2. The averaged spatial spectra of radar intensity at various
directions. The north-east (NE) and south-west (SW) directions are
in parallel with the front line, while the north-west (NW) and south-
east (SE) directions are normal to the front line.

Spectral analysis has been applied to radar data in order to
estimate dominant spatial variations of reflectivity and their
characteristics in the frontal area, particularly parallel and
normal to the front. Fortunately, the front passed over the ex-
act radar location. It sufficiently simplified the use of the
Fourier transforms to radar data collected along the beam
lines. Such an approach is based on evenly distributed along-
beam data and provides results which are free from smearing,
due to polar-Cartesian transform. Also, this method, in con-
trast to the statistical modelling of cloud and precipitation
fields (Venema et al., 2006; Scheirer and Schmidt, 2005),
allows us to consider asymmetric and heterotropic precipita-
tion structures, for example, separately in parallel and normal
to the front.

The main features of the precipitation structures are shown
in Fig. 1b and their spectral distribution along the front
line are summarized in Fig. 2. All spectra display some
“red noise” (Fraedrich and Ziehmann-Schlumbohm, 1994;
Tanaka and Kimura, 1998), i.e. the longer the scale the larger
the amplitude. The spectra can be separated in two groups.
The first group includes the spectra computed along the front
moving direction, i.e. northwestward and southeastwards.
These spectra show that there are no dominant scales in these
directions, and the power is about one order less than for the
whole dataset. In fact, there are no significant regular precipi-
tation structures ahead and behind the front line, but only the
smallest (of size of 1 km) and weakest solitary forms. The
second group of spectra consists of the estimates of spatial
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variability along the front line that is in northeastward and
southwestward directions. Unlike the first group, these spec-
tra show two significant peaks exceeding the 95% confidence
level. These peaks correspond to the front line formations,
whose spatial dimensions are 2–3 and 7–10 km. The proper-
ties of spatial precipitation spectra have a power-law depen-
dence on scale, in accordance with the multifractal paradigm
(Turcotte, 1997) and its applications to the cloud sciences
(Evans and Wiscombe, 2004; Scheirer and Schmidt, 2005),
but also assume the existence of a few dominant scales (Man-
delbrot, 1982).

Further, the larger structures are observed on the entire
front line, while the smaller ones are mostly closer to the
cyclone center and to the lesser extent to its periphery. Both
groups of spectra also reflect the presence of smaller scale
precipitation structures of order of 1 km and less, but their
significance was not confirmed. The subsequent analysis,
which is not considered here, showed that the temporal be-
havior of these smallest patterns is rather intermittent and in-
consistent. One possible explanation of it, is that their life-
time is volatile and less than the scanning interval, i.e. 5 min.

The above results provide robust estimates for the whole
range of available spatial scales down to theoretical 250 m.
But they are obtained only for those scans when the front
was located over the radar position. One may ask a ques-
tion: how permanent are these precipitation structures during
a front lifetime? To respond to this question, a selected do-
main with the dimension size of 130×20 km moving together
with the frontal precipitation patterns is also considered, in
order to provide a better understanding of evolutions of the
rain structures.

This procedure includes the coordinate transform and
smoothing of the original precipitation field, from radar data
for the homogeneous coverage on a regular net. The smooth-
ing radius is chosen so that it ensures that the polar-to-
Cartesian transform does not result in the loss of any grid
points. Thus, to meet this requirement at the outer area of
radar measurement, the radius should be at least about 800–
900 m. This value suppresses the smallest and intermittent
precipitation structures but does not sufficiently affect larger
scales. The spectra estimated in such a way are similar to
those shown in Fig. 2 for the northeast and southwest direc-
tions, i.e., they indicate the presence of the significant spa-
tial structures of 2–3 and 7–10 km scales, but cut-off smaller
structures smoothed by the coordinate transform procedure.

Further, phase relations demonstrate that these wave-like
structures move along the front line and are responsible for
the moisture transfer at that direction. This will be discussed
in the next section.

2.2 Moisture transport

Another result outlined in this study is that the above fine-
scale structures are responsible for the moisture transport
along the front line. The use of the threshold value of 35 dBZ
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Figure 3. (a) The water contents (in x 10
5
 m

3
) (a) and (b) area (in kmFig. 3. (a) The water contents (in×105 m3) (a) and (b) area (in

km2) associated with different radar reflectivity (precipitation rate)
during the cold front event.

for reflectivity allowed us to pinpoint the trajectories of pre-
cipitation maxima. These trajectories deviated anticlockwise
from the front motion by an angle of 40–50 degrees. Such
behavior can be considered as the relative motion of the pre-
cipitation structures along the moving front. This process ac-
counts for moisture transport from the periphery of a cyclone
towards its center, with subsequent release of energy in the
form of latent heat fluxes. This process may reinforce a cy-
clonic circulation throughout the upscale energy exchange.
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Figure 4. The ratio of water contents (solid) and Fig. 4. The ratio of water contents (solid) and area (dash) included
into the structures with the precipitation rate above by 5 mm/h to
total corresponding values of the cold front during the event.

The following example illustrates the importance of the
meso-scale precipitation structures for the moisture trans-
port. Figure 3 shows the temporal change of the water con-
tent and the area covered by precipitation of different rate
versus radar reflectivity. The maximum of water content
within the front is associated with cells of relatively high rain
rate values of over 5 mm/h (approximately 35 dBz of radar
reflectivity). They contain about 50% of total frontal rain wa-
ter (Fig. 4) but occupy only 10–15% of the frontal domain,
while the maximum of the spatial coverage corresponds to
less intensive precipitation with rates about 0.3–0.7 mm/h
(15–20 dBz) (Fig. 3b). Thus, mass and energy fluxes associ-
ated with those meso-scale precipitation structures are three-
four times higher than the averaged background estimates for
the front. This well known fact, however, is still not properly
simulated in models (Claussen, 1991; Roach, 1997; Gilmore
et al., 2004) because of two reasons. First, models fail to re-
produce strong non-linearity in severe storms. Second, the
so-called effective values (Roach, 1998), i.e., the averaged
values for the model grid, are sensitive to resolution.

These results are rather descriptive and definitely require a
comprehensive diagnosis and quantitative estimates of fluxes
on the above scales, which will be a focus of further research.
Nevertheless, at the moment, they highlight the necessity to
properly account for the processes on sub-grid scales, espe-
cially when their energetic characteristics are several times
higher than the background. These details are not included
in simplified parameterization schemes for a coarse resolu-
tion run (see, for example, Zehnder, 2001). The parameter-
ization schemes for microphysics (Tao and Simpson, 1993;

Schultz, 1995; Reisner et al., 1998) used in current opera-
tional forecasting models simulate meso-scale precipitation
structures of extra-tropical fronts, but the spatial distribution
and magnitude of these structures are still improper. On the
other hand, the importance of this problem and the potential
misrepresentation caused by data assimilated from networks
of different resolution, are explained in the next section.

3 The representativeness error problem

In this section, we attempt to estimate a potential contribu-
tion of the network’s resolution as one source of error. As
pointed out by Palmer (2001) and Jung (2005), the method-
ology used to approximate the equations of motion by ne-
glecting the variability of unresolved scales is itself a source
of systematic errors. This is a difficult problem because the
error is never observed directly and can only be estimated in
a statistical sense. Moreover, decomposition of the error into
its components depending on the sources seems to be a very
theoretical task, based on certain conjectures.

The representativeness error problem arises when precip-
itation estimates from different data sources at different res-
olutions are compared, i.e., from satellites with a resolution
of 20–30 km and radars with a resolution of about 100 m to
a raingauge network with a separation between stations of
about 150 km and often to a model grid resolution from a few
km to tens and hundreds km. Thus, the multi-scale inher-
ent characteristics of atmospheric flow become to be scale-
dependent on the resolution of a data source. Mahfouf and
Noilhan (1991) proposed to avoid the representativeness er-
ror of the on-site estimates by deploying several instruments
within a relatively small area. This approach increases the
cost of the measurements but only narrows the limits toward
the size of the area. Tustison et al. (2001) pointed out the im-
portance of taking into account the multi-scale variability of
precipitation. They showed that the resolution of data intro-
duces the representativeness error, which is non-zero even in
cases of perfect model or instrumental error estimates. Bor-
mann et al. (2003) estimate the parts of the observation er-
ror by extrapolating the separation/correlation relationship
to zero separation on the base of the observational method
(Hollingsworth and Lonnberg, 1986).

We propose an approach in which the precipitation ob-
servation errorε includes the following components. First,
the instrumental errorεran takes into account known or sug-
gested statistics. For direct observations these statistics sat-
isfy Gaussian distribution (mean zero and unity variance)
(Hollingsworth and Lonnberg, 1986), while remotely sensed
data, i.e. those obtained from radars and satellites, may con-
tain certain bias (Eyre, 1997). Nevertheless, the instrumental
error is a priori determined and stable, and relates to the in-
strumental quality.

The second part is the representativeness errorεrep. It
means a measure of accuracy with which the data gathered
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at a single point are able to describe a field over some area
around the point. This error comes from the fact that the spa-
tial separations between observation points exceed the spatial
variability of the atmospheric properties; hence the latter is
not captured by the observational network. The impact from
unresolved atmospheric variability is manifested in spurious
oscillations superimposed on the data in form of some noise.
These oscillations do not correspond to any real physical
process and introduce different errors to data obtained from
different resolution networks, even if the same instruments
are used in those networks. This happens because the unre-
solved atmospheric scales are of continuous nature while we
intend to reproduce them by means of discretization whose
step is larger than those scales. In the spectral analysis this
problem is well-known as the Gibbs effect (Chen and Kuo,
1992), when high-frequency unresolved components mani-
fest themselves in the form of false components, which are
accounted for by numerical effects rather than natural phe-
nomena. The error statistics of those components are far
from to be known. We might assume that the statistics in-
clude some residual spatial correlations. One would like to
assess how strongly this representativeness error is related
to the observation net resolution. The expectation of total
observation error covariance stratified against separation at
locationsi andj has the following form

εiεj =
(

εran
i + ε

rep
i

)

(

εran
j + ε

rep
j

)

=

= εran
i εran

j + εran
i ε

rep
j + ε

rep
i εran

j + ε
rep
i ε

rep
j =

= εran
i εran

j + 0 + 0 + ε
rep
i ε

rep
j

(1)

If one assumes that there is no correlation between the
random instrumental error at one location and the representa-
tiveness error at the other location, then the two middle terms
on the second line vanish.

If i=j, i.e. we consider the total observation error covari-
ance at overlaying locations, then one can expect that the rep-
resentativeness error diminishes, as the smallest scales are
resolved. The error covariance matrix then becomes

εiεj = εiεi = εran
i εran

i = σ 2
i (2)

i.e., we obtain the pure statistics for the instrumental error.
If i 6=j , i.e. we take into account the potential contribution

of unresolved scales to the total error, then the error covari-
ance is also defined by the representativeness part of the error

εiεj = σ 2
i +

(

ε
rep
i

)2
(3)

Figure 5 shows the spectral space vision of this problem
implemented for the case when data from two and more in-
formational sources of different resolutions are blend in one
batch. This is the case of data assimilation. It follows that the
contribution of the representativeness error toward the larger
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Figure 5. Spectral space vision of the rep
Fig. 5. Spectral space vision of the representativeness error prob-
lem. The solid line is a “true” spectrum, dash line is a coarse-
resolution estimate of “true” spectrum, dot line is a fine-resolution
estimate, dash-dot line is resulted estimate. TSB means the “true
scale band”, DSB is the “disturbed scale band”, USB is the “unre-
solved scale band”.

separations increases, when a background cascade distribu-
tion of energy on a range of scales is implied. Addition-
ally, it shows that the band of scales between the coarse and
fine resolutions is subject to major distortions. This example
is very illustrative because it shows that the quality of nu-
merical forecast might depend on the choice of a model grid
in addition to physical and dynamical model formulations.
The knowledge of scales of predominant precipitation meso-
structures would help us to make a proper choice of model
resolution and reduce the forecast error.

4 Conclusions

The characteristics and behaviour of meso-scale precipita-
tion structures on a cold front have been studied in this re-
search. Two organized wave-like patterns of rain intensity
with scales of 2–3 and 7–10 km were identified. The meso-
scale precipitation structures with the maximum rain rate
contain about half of the moisture brought with the front,
while their total size does not exceed 10–15% of the frontal
precipitation area. These patterns move along the front line
from the cyclone periphery toward its centre. As a result, the
trajectories of precipitation maxima deviate from the front
direction by about 40–50 degrees anticlockwise. We contend
that such meso-scale precipitation is important for account-
ing for mass and energy balances and should be properly

www.adv-geosci.net/10/3/2007/ Adv. Geosci., 10, 3–8, 2007
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described in model formulations. The forecast error may in-
crease due to the increase in the representativeness compo-
nent, if the model resolution is incompatible with unresolved
processes. The source of the representativeness error is also
described.

Edited by: S. C. Michaelides and E. Amitai
Reviewed by: anonymous referees

References

Austin, P. M.: Relation between measured radar reflectivity and sur-
face rainfall, Mon. Wea. Rev., 115, 1053–1070, 1987.

Bormann, N., Saarinen, S., Kelly, G., and Thépaut, J.-N.: The spa-
tial structure of observation errors in atmospheric motion vectors
from geostationary satellite data, Mon. Wea. Rev., 131, 706–718,
2003.

Browning, K. A.: Mesoscale structure of rain system in the British
Isles, J. Meteorol. Soc. Japan, 11, 52, 314–327, 1974.

Claussen, M.: Estimation of areally averaged surface fluxes,
Boundary-Layer Meteorol., 54, 387–410, 1991.

Chen, Q. and Kuo, Y.: A harmonic-sine series expansion and its ap-
plication to partitioning and reconstruction problems in a limited
area, Mon. Wea. Rev., 120, 91–112, 1992.

Collier, C. G.: Accuracy of radar estimates by radar. Part I: Calibra-
tion by telemetring raingauges, J. Hydrol., 83, 207–223, 1986.

Crum, T. D., Saffle, R. E., and Wilson, J. W.: An update on the
NEXRAD program and future WSR-88D support to operations,
Wea. Forecast., 13, 253–262, 1998.

Evans, K. F. and Wiscombe, W. J.: An algorithm for generating
stochastic cloud fields from radar profile statistics, Atmos. Res.,
72, 263–289, 2004.

Eyre, J. P.: Variational assimilation of remotely-sensed observations
of the atmosphere, J. Meteorol. Soc. Japan, 75, 331–338, 1997.

Fraedrich, K. and Ziehmann-Schlumbohm, C.: Predictability exper-
iments with persistence forecasts in a red-noise atmosphere, Q.
J. R. Meteorol. Soc., 120, 387–428, 1994.

Gilmore, M. S., Straka, J. M., and Rasmussen, E. N.: Precipitation
uncertainty due to variations in precipitation particle parame-
ters within a simple microphysics scheme, Mon. Wea. Rev., 132,
2610–2627, 2004.

Hobbs, P. V., Matejka, T. J., Herzegh, P. H., Locatelly, J. D., and
Houze, R. A.: The meso-scale and microscale structure and or-
ganization of clouds and precipitation in midlatitude cyclones.
Part I. A case study of a cold front, J. Atmos. Sci., 37, 568–596,
1980.

Hollingsworth, A. and Lonnberg, P.: The statistical structure of
short-range forecast errors as determined from radiosonde data,
Tellus, 38A, 111–136, 1986.

Houze, R. A. and Hobbs, P. V.: Organization and structure of pre-
cipitating cloud systems, Adv. Geophys., 24, 225–315, 1982.

Jones, C. D. and Macpherson, B.: A latent heat nudging scheme
for the assimilation of precipitation data into an operational
Mesoscale model, Meteorol. Appl,, 4, 269–277, 1997.

Jung, T.: Systematic errors of the atmospheric circulation in the
ECMWF forecasting system, Q. J. R. Meteorol. Soc., 131, 1045–
1073, 2005.

Kreitzberg, C. W. and Brown H. A.: Mesoscale weather systems
within an occlusion, J. Appl. Meteorol., 9, 417–432, 1970.

Mahfouf, J.-F. and Noilhan, J.: Comparative study of various for-
mulations of evaporation from bare soil using in-situ data, J.
Appl. Meteorol., 30, 1354–1365, 1991.

Mandelbrot, B. B.: The Fractal Geometry of Nature, W H Freeman,
New York, USA, 460 p., 1982.

Palmer, T. N.: A nonlinear dynamical perspective on model error:
A proposal for non-local stochastic-dynamic parameterization in
weather and climate prediction models, Q. J. R. Meteorol. Soc.,
127, 279–304, 2001.

Reisner, J., Rasmussen R. J., and Bruintjes R. T.: Explicit forecast-
ing of supercooled liquid water in winter stroms using the MM5
mesoscale model, Quart. J. Roy. Meteor. Soc., 124B, 1071–1107,
1998.

Roache, P. J.: Quantification of Uncertainty in Computational Fluid
Dynamics, J. Fluid Mech., 29, 123–160, 1997.

Roache, P. J.: Verification and Validation in Computational Science
and Engineering, Hermosa Publishers, Albuquerque, New Mex-
ico, 1998.

Scheirer, R. and Schmidt, S.: CLABAUTAIR: a new algorithm for
retrieving three dimensional cloud structure from airborne mi-
crophysical measurements, Atmos. Chem. Phys., 5, 2333–2340,
2005,
http://www.atmos-chem-phys.net/5/2333/2005/.

Schultz, P.: An explicit cloud physics parameterization for opera-
tional numerical weather prediction, Mon. Wea. Rev., 123, 3331–
3343, 1995.

Tao, W.-K. and Simpson, J.: Goddard Cumulus Ensemble Model.
Part I: Model Description. Terrestrial, Atmos. Oceanic Sci., 4,
35–72, 1993.

Tanaka, H. L. and Kimura, K.: Time series analysis of natural
variability in barotropic energy of the atmosphere with ECMWF
global analysis, J. Meteorol. Soc. Japan, 76, 267–274, 1998.

Turcotte, D. L.: Fractals and Chaos in Geology and Geophysics,
Cambridge University Press, U.K., 412p., 1997.

Tustison, B., Harris, D., and Foufoula-Georgiou, E.: Scale issues
in verification of precipitation forecasts, J. Geophys. Res., 106,
11 775–11 784, 2001.

Venema, V., Meyer, S., Gimeno Garcı́a, S., Kniffka, A., Simmer, C.,
Crewell, S., L̈ohnert, U., Trautmann, U., and Macke, A.: Surro-
gate cloud fields generated with the Iterative Amplitude Adapted
Fourier Transform algorithm, Tellus 58A, 104–120, 2006.

Zehnder, J. A.: A comparison of convergence- and surface-flux-
based convective parameterizations with applications to tropical
cyclogenesis, J. Atmos. Sci., 58, 283–301, 2001.

Adv. Geosci., 10, 3–8, 2007 www.adv-geosci.net/10/3/2007/

http://www.atmos-chem-phys.net/5/2333/2005/

