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Abstract. Atmospheric circulation indices can be used to ex-
plain the variability of runoff on a continental scale. Beside
well-known regional anomalies of precipitation and runoff
that correlate with phases of the North Atlantic Oscilla-
tion (NAO) there are also drifting fields of annual discharge
anomalies. Following the trend of the NAO, these fields
move along a longitudinal axis from western Europe to the
Lena catchment in Siberia and back again. The same pat-
tern is observable in the changing flow regimes. This paper
describes the origin and causes of these anomaly fields and
explains them as the results of important climate variations
in the northern hemisphere.

1 Introduction

The stream discharge, which forms part of the water cycle, is
one of the fastest mass and energy fluxes on earth. Discharge
can be understood as a spatial integral consisting of climatic
processes and direct anthropogenic impacts like river reg-
ulation. Discharge changes are expressions of changes in
the components of that integral. Thus, global environmental
changes can be detected as discharge effects. For this pur-
pose, direct anthropogenic effects have to be singled out and
subtracted in the analysis.

On a continental scale, changes of hydrological processes
can be observed as trends or anomalies in discharge time
series. The decadal and multi-decadal discharge variations
in large-scale catchment areas are commonly studied using
annual time series. The large-scale variability of annual
global discharges is described by Peel et al. (2001). Det-
tinger and Diaz (2000) introduce a global data set of interan-
nual discharge variability and correlate these data with atmo-
spheric circulation indices like the El Niño/Southern Oscilla-
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tion (ENSO) index, the North Atlantic Oscillation (NAO) in-
dex and with climatic indices of the North Pacific region. The
discharge amounts particularly of the South and North Euro-
pean river catchments are closely correlated with the phases
of the NAO (Popova and Shmakin, 2003; Arnell, 1997).

However, on a continental scale, such correlations of cli-
matic indices with annual discharges mostly are unsatisfac-
tory. Only few time series clearly correlate with essential
features of the climatic variability. Figure 1 shows that posi-
tive correlations of discharge data with the NAO are most fre-
quent in northern Europe, while negative correlations clearly
prevail in southern Europe. Arnell (1997) found the same ba-
sic pattern in the correlation of European winter discharges
with the NAO index.

Nevertheless, the data from only one quarter (24%) of
Eurasia’s gauging stations exhibit significant correlations be-
tween annual discharges (period 1950–1990) and the NAO
index (Hurrel, 1995). This kind of correlation analysis pre-
supposes an unchanging delimitation of the large-scale re-
gions in which local discharges react uniformly to climatic
fluctuations. If the region boundaries shift, then time-space
processes provide a better explanation of the correlation be-
tween large-scale climate variability and river flows.

1.1 Data

This study is based on 3597 Eurasian discharge time se-
ries provided by GRDC (Global Runoff Data Centre) and
adopted from NCAR (National Center for Atmospheric Re-
search) ds552.1 and ds553.2 (Bodo, 2001) as well as from
ArcticRiverNet (R-ArcticNET, 2005). Only years with com-
plete monthly records were included in the analysis.

Nearly 70% of the time series span more than 30 years,
but only 70% include the years until 1984, and only 40%
until 1985. Detail studies were conducted using data from the
climatological normal period (1960–1990). In addition, the
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Fig. 1. Significant correlations of Eurasian annual discharges time series with the NAO index 1950–1990 (NAO index after Hurrel, 1995).

 

Fig. 2. Impoundment coefficients for Eurasia in 1990.

dfjm NAO index by Hurrel (1995) was employed to describe
the phases of the NAO.

2 Methods

Successive changes in annual discharge amounts can be un-
derstood as trends in the discharge time series. If the dis-
charges of individual catchments correlate with the climate
variations generated by the NAO, this dependence should
be detectable as deviations from the long-term average of
the annual discharge. To determine the size of an anomaly,
the long-term average annual discharge (Qaverage) was sub-
stracted from the individual annual discharge (Qyear) and the
result (the size of the anomaly) was standardised byQaverage.
Because time series of different length,Qaveragewas calcu-
lated based on all available values in a given time series in-
stead of using only the values from a fixed standard period.

Spatial clusters of positive and negative discharge anoma-
lies were detected by means of a hierarchical cluster analysis.
The variables were the geographical latitude and longitude
and the discharge anomaly. The standardised anomalies of
each year were classified using Squared Euclidian Distance
and Complete Linkage. Subsequently, the spatial centroids
of each cluster were determined by computing the weighted
average of latitude and longitude. Anomalies above 0.5 were
weighted with the factor 0.6, those between 0.25 and 0.5
were weighted with the factor 0.3, and those between 0.1

and 0.25 were weighted with the factor 0.1. Figures 3 and 4
show some centroid longitudes.

2.1 Elimination of impoundment effects

Many runoff time series are affected by impoundments. To
assess the intensity of the impoundment impact on each of
the 3647 gauging stations, their impoundment coefficients
were computed. The impoundment coefficient is the ratio
of the cumulated upstream reservoir capacity to the annual
discharge. To assess the cumulated upstream reservoir ca-
pacity, reservoirs from the ICOLD database (ICOLD, 1998)
in Europe and Russia were geo-referenced. The relevant up-
stream reservoirs and their cumulated capacity were deter-
mined using a digital elevation model and a digital river net-
work (Rödel and Hoffmann, 2005).

Figure 2 shows the impoundment coefficients for Eurasia
in 1990. Only 19 gauging stations had impoundment coeffi-
cients above 1, and, therefore, the influence of impoundment
on long-term annual discharges of Eurasia was neglected.
Normally impoundment coefficients below 1 indicate that the
water is redistributed only intra-annually (due to hydropower
generation and flood protection). However, this applies more
in humid than in arid regions.

For an analysis of the temporal variability of flow
regimes, 354 gauging stations which were classified as dam-
influenced (impoundment coefficients above 0.001) were re-
moved from the data set.
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Fig. 3. Upward trend of the NAO – Left: A field of positive anomalies (wetter than average) in the annual discharges drifts from Europe
to eastern Siberia. Right: Spatial clusters of positive anomalies (blue and green signatures) and longitudes of their centroids. Clusters of
negative anomalies are shown in yellow and red. The longitudinal position of the clusters can be understood as a process response to the
NAO. The arrow colour indicates the NAO trend.

2.2 Balance point drift of discharge regimes

Beside the temporal variability of annual discharges, Burn
and Soulis (1992) focus on seasonal discharge variability as
well as on the occurrence of extreme discharges and snow-
melt induced floods. These floods react most obviously to
climatic variability. In addition to the seasonal fluctuation
in the hydrograph, the discharge regime is overlaid with
the long-term variability of flow regimes themselves. Flow
regimes change with the climate, and therefore it is possi-
ble to detect climate fluctuations in their time series. The
stability of a flow regime can be defined as its appearance
frequency (Krasovskaia, 1997; Krasovskaia et al., 1999).

For analysing regime changes, annual flow regimes were
determined as an order of discharge coefficients,qi (Eq. 1):

qi = Qi/QYear with
n∑

i=1

qi=1 qi ≥ 0, i=1, . . . , 12 (1)

whereQYear is the annual discharge andQi is the monthly
discharge. When the monthly discharges are standardised in
this way, the transitions between the regimes of successive
years appear abrupt. Unless the discharge sums of two suc-
cessive years are virtually the same, the last month of year
one and the first month of year two will have different co-
efficients, even if discharge is the same in both months. To
minimise this distortion, the one-year period that the descrip-
tion of the runoff regimes was based on, was delimited in a
way resembling the method used for hydrological years. The
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Fig. 4. Downward trend of the NAO – Left: A field of negative anomalies (dryer than average) of the annual discharges moves from
western Siberia to eastern Siberia (NAO index: Hurrel, 1995). Right: Spatial clusters of negative anomalies (yellow and red signatures) and
longitudes of their centroids. Clusters of positive anomalies are shown in blue and green. The longitudinal position of the clusters can be
understood as a process response to the NAO. The arrow colour indicates the NAO trend.

beginning of the annual cycle was defined by that monthi

which had the lowest square deviation from its average dis-
charge value over the whole time series (Eq. 2):∑ (

Qi − Qi

)2
→ Min! (2)

Finally, changes in flow regimes were determined as an in-
terannual shift of the balance point. Using the sum curves
of the flow regimesqi , the balance point is reached in that
monthi for which

i∑
1

qi ≥ 0.5 (3)

If the monthly discharge is constant (1/12 of the annual dis-
charge), the balance point falls exactly in the sixth month of
the cycle. To analyse the long-term variability of the balance
point, the mode of balance points was calculated for each
time series. Annual deviations from the mode were treated
as positive or negative shifts of the balance point.

Negative balance point shifts co-occur with steep-shaped
or early runoff maximum peaks. Negative shifts are typical

for years with an above-average temperature and an earlier-
than-usual snow melt in northern Eurasia. Positive balance
point shifts are typical for flat-shaped runoff maximum peaks
that occur later in the year than usual. In northern Eurasia,
these shifts frequently occur in years in which the tempera-
ture is relatively low during the flood formation phase (the
snow melt).

3 Large-scale patterns at the trend level

Time series from gauging stations in Eurasia were examined
with regard to anomalies in the annual discharge and dis-
charge seasonality, as well as their correlation with the NAO.
The analysis revealed a pattern of regions in which local dis-
charges react uniformly to climate fluctuations. But the re-
gion boundaries shift from year to year.

Figures 3 and 4 show the changes of the annual discharges
during a downward and upward NAO trend, respectively.
The uniform reaction regions lack the spatial stability de-
manded in Sect. 1. Beside the dipole structure, with higher
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Fig. 5a. Downward trend of the NAO – a field of negative-shifted balance points drifts from north-western Russia to eastern Siberia. Strong
runoff maxima which occur earlier than usual drift to eastern Siberia (NAO index: Hurrel, 1995). The small arrows indicate the location of
gauging station SU91216 – see Fig. 5b.

runoffs in northern Europe and lower runoffs in southern
Europe during a significantly positive NAO phase (Arnell,
1997), drifting fields of anomalies in the annual runoffs can
be observed. These fields drift with the NAO trend along a
longitudinal axis.

During an upward NAO trend (Fig. 4), these fields of re-
duced discharges move out of Siberia in a westward direc-
tion. At the same time, a field of increased discharges drifts
eastward as far as the Lena catchment. The westwards mov-
ing fields of increased discharges co-occur with increased
discharges in northern Europe during a positive NAO phase
(Arnell, 1997; Timmermann and Latif, 1998). The periodi-
cal increase of discharges in eastern Siberia can be explained
by the dependence between the NAO variability and the vari-
ability of the discharges.
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Fig. 5b. Standardised monthly flows (flow regime) for gauging sta-
tion SU91216 Malaya Kuzhba, Vychegda (data from Bodo, 2001).
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Fig. 6. Upward trend of NAO. A field of positive-shifted balance points drifts westwards and leaves eastern Siberia. 1983–1986: Transition
to a different NAO phase. north-western Eurasia is characterised by the field of positive shifted balance points. A field of negative-shifted
balance points replaces the fields of positive shifted balance points (observable until 1983) over eastern Siberia (NAO index: Hurrel, 1995).

During a downward NAO trend, fields of reduced dis-
charges (represented as negative deviations from the long-
term average of the annual discharges) drift eastwards from
western Russia as far as the Lena catchment in eastern
Siberia (Fig. 4).

Mysak (1999) stated that fluctuations of annual dis-
charges in large-scale catchments are strongly correlated
with decadal climate fluctuations. He suggests that the long-
term variation in the discharge volumes of the Mackenzie
catchment area is the major reason for the formation of great
ice and salt anomalies (GISA) in the North Atlantic. These

anomalies influence the intensity of oceanic circulation with
a delay of three to four years and control the climate of the
northern hemisphere through the NAO and the Arctic Oscil-
lation. Reduced salinity causes a weaker thermohaline cir-
culation in the North Atlantic (negative NAO index) (Tim-
mermann and Latif, 1998). Although Mysak (1999) focuses
on increased discharges in the Mackenzie catchment area,
he also points out that increased discharges from Siberian
streams contribute to the formation of ice covers in the Arc-
tic Ocean.
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4 Large-scale spatial patterns of seasonal discharge
variability

Figure 5a shows that the shifts in the balance points of flow
regimes form a spatial pattern of drifting fields. This is the
same basic phenomenon as that observed in the deviations of
the annual discharges from their long-term average (Sect. 2).
Fields of increased discharges drifting to Siberia are followed
by fields of negative-shifted balance points. The balance
point fields seem to drift in correlation with the phases of
the NAO.

During a downward trend of the NAO, a field of negative-
shifted balance points drifts eastwards as far as the Lena
catchment (Fig. 5a). This field is caused by a positive NAO
phase lasting from 1972 until 1975. Figure 5b shows the
flow regimes connected with negative shifts of the balance
points. In 1973 and 1975 – during mild winters – the runoff
maxima occur earlier than usual. The flow regimes in 1974
and 1976 are characterised by steep-shaped runoff maximum
peaks. When the pattern of a positive NAO phase (a dipole
pattern of annual discharges in Europe) dissolves, the field of
negative-shifted balance points drifts eastwards. During an
extreme negative phase of the NAO, a field of positive-shifted
balance points can be observed in north-western Russia. This
field is characterised by a flat-shaped runoff maximum peak
occurring later than usual. Figure 5b shows such a typical
flow regime (in the year 1978). The causes of this effect are
the relatively low temperatures during the flood formation
phase (the snow melt).

During an upward trend of the NAO (Fig. 6), the balance
point fields move in the opposite direction. Fields of nega-
tive shifted balance points drift back westwards from eastern
Siberia. At the same time, the annual discharges in northern
Europe are higher than average.

5 Conclusions

Assuming that the NAO is the driving process for drifting
fields of discharge anomalies and that discharge represents
the response of river flow to the NAO, the centroid longitudes
of discharge anomaly clusters were identified (cf. Figs. 3 and
4). For example, in the analysis of a time series segment co-
inciding with an upward trend of the NAO, the easternmost
cluster of positive discharge anomalies is singled out at each
timestep (Fig. 7). This leads to an understanding of clus-
ter shifting as an autoregressive process. Thus, the location
of a cluster can be determined from its location att−1 and
the drifting direction. The drifting direction itself can be ob-
tained from the NAO index.

The results presented here lead to the hypothesis that dis-
charge variability reflects large-scale hemispheric climate
variability better than previously assumed (cf. Arnell, 1997;
Dettinger and Diaz, 2000; Popova and Shmakin, 2003).
Anomalies in annual discharges and shifts of the balance
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Fig. 7. Longitudinal drifting of large-scale patterns of discharge
anomalies in Eurasia (lines) and the NAO index (bars).

points of annual flow regimes point to those regions which
are important for processes of climate variability in the north-
ern hemisphere. The NAO provides a basis for explaining
large-scale anomalies of the annual discharges and of the
river flow regimes in Eurasia.
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