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Abstract. The paper presents two different levels of re-
gionalization used to represent the spatial distribution of
landscape parameters for the hydrological modelling of the
Mulde.

The aim of this investigation was to find out how the dis-
cretisation level affects quality of modelling with the hydro-
logical modelling system J2000. Furthermore we improved
our understanding of the applicability and reliability of the
distributed model J2000 on the macro-scale.

Spatial information was aggregated in two different dis-
cretisation levels: subbasins (SB) and hydrological response
polygons (HRP). A J2000 simulation was carried out for both
discretisation levels based on a 1 year calibration and a 3 year
validation period.

Simulations performed well for both levels of spatial dis-
cretisation. The results seemed to be better in the more com-
plex discretisation approach, where the Nash-Sutcliffe coeffi-
cient was higher. We can conclude that our first results show
more accurate simulations produced by the HRP discretisa-
tion approach, the visual inspection shows a better applica-
tion of the SB approach to the reproduction of the base flow.

1 Introduction

The preliminary results of the modelling of the runoff re-
sponse of the Mulde catchment (∼7200 km2), a macroscale
sub-catchment of the Elbe, are presented here. We compared
two different levels of discretisation to the catchment for the
comparison of varying levels of complexity (Table 1). After
the recent flooding in Germany (e.g. Rhine 1993 and 1995,
Oder 1997, Elbe 2002, upper Danube 2005, Elbe and Danube
2006) there is a demand for provision management of ex-
treme floods. “Extreme” flood event are floods exceeding

Correspondence to:K. Fleischbein
(katrinf@gfz-potsdam.de)

the flood design level, which frequently has a return period of
100 years in South Germany. Distributed, physically-based
river basin models can be important to compensate for the
lack of extreme runoff data. Hydrological modelling allows
us to generate runoff data in order to make forecasts and cal-
culate the probable maximum flood (PMF).

Regarding the spatial description of processes, hydrolog-
ical models may be lumped while all parameters and vari-
ables represent average values over the entire area, or dis-
tributed if spatial variation of input parameters and variables
is accounted for (Krysanova et al., 1999). A catchment area
can be discretized with varying degrees of resolution (see Ta-
ble 1). The different discretisation levels are considered as
different levels of complexity (Reed et al., 2004).

The question: “how detailed should a hydrological model
be” is not trivial and model complexity is not an in itself. If
a complex phenomenon or process can be described mathe-
matically in a simplified form and parameterized using avail-
able information, this is preferable in comparison to another
one with a high level of detail especially if additional data is
lacking to support the higher complexity. In the latter case
parameterization of the model may be problematic, and con-
trol of the model behaviour may become difficult (Krysanova
et al., 2005).

The effect of landscape parameter resolution on simu-
lated water fluxes was investigated from various authors (e.g.
Krysanova et al., 1999; Hattermann et al., 2004; and Reed
2004). Krysanova et al. (1999) showed an intercomparison
of lumped and distributed versions of the HBV model ap-
plied to sub-basins (>1000 km2) and the whole German Elbe
basin (ca. 80 500 km2) in an upscaling approach. The model
performed well in both cases, the distributed version en-
abled better results. The distributed model intercomparison
project (DMIP) compared the application of 12 distributed or
lumped models in 10 basins (65–2484 km2). For the majority
of basin-distributed model combinations, the lumped model
showed better overall performance than distributed models
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Table 1. Increasing complexity levels of different discretisation schemes.

Complexity level Spatial unit

I lumped One sub-basin (not applied in this study)
II lumped/distributed Several sub-basins (SB) (according to gauges at the river network)
III distributed Hydrological Reponse Polygons (HRP) (according to sub-basins of the Strahler order 1 of the river network)

Fig. 1. Overview of the Mulde basin, its stream network, the climate
stations (black dots), and gauges (triangles). Runoff simulations re-
fer to gauge Bad D̈uben. Data source: River network Umweltbun-
desamt, Climate stations: Potsdam Institute for Climate Impact Re-
search (PIK), Mulde basin: based on the SRTM – Digital Elevation
Model (75 m).

(Reed, 2004). These results lead to the conclusion that the
model complexity should generally be defined as a com-
promise solution. However, the screening of the literature
showed us that there is no clear and transferable statement to
favour a lumped or distributed approach in the Mulde basin.
The spatial and temporal resolution of the model should be
appropriate for its use, which also depends on data availabil-
ity and resolution and required computing time.

With our study we would like to improve our under-
standing of the applicability and reliability of the distributed
model J2000 at the macroscale (>102–104 km2, Dyck and
Peschke, 1995).

Following Schreider et al. (2000) empirical models do not
describe the physical processes of flood events sufficiently
to prognosticate in time frames that do not coincide with the
calibration period. However, they are computationally too
intensive to be used on the macroscale. Following the def-
inition of Krysanova et al. (1999) a physically-based model
should be capable of relating its parameters to physical prop-
erties of the modelled area and usually it has to be fully dis-
tributed.

A good fit between the modelled and the measured river
flow within a split sample test (Klemes, 1986) shows the
successful representation of the flood relevant physical pro-
cesses in the macroscale basin. Beside the goodness of fit the
computing time needed to run the model should be regarded.

Our aim was to find an appropriate level of spatial discreti-
sation to provide reasonable and stable results within a rea-
sonable computation time with the modelling system J2000
(Krause, 2000).

2 Methods

2.1 Pre-processing

For the application we selected daily data from 51 climate
and precipitation stations from the network operated by the
German weather service and corrected by the Potsdam In-
stitute for Climate Impact Research (PIK). The stations are
located across the entire Mulde catchment (Fig. 1).

The modelling concept underlying the two spatial repre-
sentations is physically-based. Since landscape parameters
of the subbasins (SB) are highly aggregated, this concept
can be considered as being lumped. We distinguished 56
subbasins corresponding to 56 gauges in the Mulde river
network and 456 hydrological response polygons (HRP)
(Fig. 2) representing subbasins in the catchment discretized
to a Strahler stream order of one. A digital elevation map
with a horizontal resolution of 50 m was used to define the
stream order. We allocated the majority of the particular
landscape parameters to each SB and HRP. This input was
derived from a digital soil map, a hydrogeological map, both
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from the Federal Institute for Geosciences and Natural Re-
sources (BGR) in the scale of 1:1 000 000 and with the digital
land-cover classification CORINE Land Cover (CLC2002,
scale: 1:100 000). The hydrological network is based on the
network of the Umweltbundesamt (German Federal Environ-
ment Agency, UBA) and was delineated using ArcHydro.
The connections between the polygons were achieved using
either ARC Macro Language scripts (amls) or arcgis appli-
cations.

2.2 J2000 Model

J2000 is a process-oriented modelling system for physically-
based simulations of hydrological processes in large catch-
ments. It is kept open for different distributions, e.g. sub-
basins or raster cells. The system is complemented by hy-
drological process modules which implement evapotranspi-
ration, interception, snow, soil water, groundwater, and flood
routing. The potential evapotranspiration is calculated fol-
lowing the approach of Penman-Monteith (Monteith, 1975)
which is reduced to an actual evapotranspiration (ETa) using
an empirical formula. The precipitation (P) is regionalised
with inverse distance weighting (IDW). Both fluxes are deter-
mined during the pre-processing of J2000 for each discretisa-
tion unit. The interception module follows Dickinson (1984);
interception is treated as storage dependent on the leaf area
index of the vegetation cover. The snow module of the J2000
can be classified as a semi-complex conceptual application.
It considers snow accumulation, snow metamorphosis and
snow melt. The basic concept follows Knauf (1980). The
soil water balance module is based on two soil water stor-
ages determined by the pore volumes of the macropores and
the middle pores of the soil type. Groundwater accumulation
and flow is simulated by two storages which represent differ-
ent parts of the saturated zone. The four runoff components –
overland flow, interflow, and two groundwater outflows – are
lumped together for the calculation of flood routing. These
surface water fluxes of the lateral routing module are mod-
elled as flow cascades from the headwaters down to the con-
nected stream segment. Flood routing in the stream segments
is implemented by a kinematic wave approach.

2.3 Calibration and validation procedure

The calibration of J2000 was based on daily discharge
data from the gauge in Bad Düben for the time period
01/11/1985–31/10/1986. The validation period was the time
between 01/11/1986–31/10/1989.

Following the procedures used by WMO (1986) in their
intercomparison of snowmelt runoff models, several numeri-
cal and graphical measures of goodness of fit were produced.
Balancing the yearly water budget according to Eq. (1) was
one step in calibrating the model. The catchment water bal-
ance equation (Ward and Robinson, 1990) is

P = q + ET a + 1S (1)

Fig. 2. Different levels of discretisation(a) HRP, (b) SB of the
Mulde catchment.

whereP is the incident precipitation,q is the volume of sur-
face flow leaving the catchment, andET a is the reduced po-
tential evapotranspiration according to Monteith (1975).1S

is the storage change represented by the sum of the changes
in soil moisture, groundwater storage, and the leakage into
or out of the catchment over the period of measurement. The
surface flow q was modelled with J2000. The model specific
1S was considered for the comparison of the two modelling
approaches.

Several objective functions were used to measure simula-
tion efficiency: i) Nash-Sutcliffe coefficient (Nash and Sut-
cliffe, 1970) with normal (NS) and logarithmic (logNS) val-
ues, ii) linear regression with the coefficient of determination
and its gradient, iii) double sum analysis of simulated and iv)
observed runoff and the index of agreement sensu Willmot
and Wicks (1980). In addition, visual inspection of the dis-
charge curves is another helpful method for the evaluation
of the model performance. However, the primary criterion
used here was the Nash-Sutcliffe efficiency, which is found
to be the best objective function for reflecting the fit of the
flood peak discharge (Gan, et al., 1997; Maréchal and Hol-
man, 2005). Two different regionalisation levels according
to their goodness of fit were compared.

3 Results

Although several performance statistics were computed, only
the NS-efficiencies for the hydrograph and the differences in
the water balance will be presented here. The values of NS
in Table 2 show that the HRP application was able to pro-
vide reasonable fits to the hydrograph during calibration. The
HRP approach resulted in NS-efficiencies>0.7 and logNS-
efficiencies around 0.7. The results are stable over the cali-
bration and validation period (1986–1989).
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Table 2. Comparison of model performance using the Nash-
Sutcliffe coefficient with normal (NS) and logarithmic (logNS) val-
ues with two different regionalisation approaches, subbasins (SB)
and hydrological response polygons (HRP), of two model applica-
tions, of the Mulde River catchment area.

Year SB HRP

NS logNS NS logNS

calibration period 1986 0.70 0.71 0.76 0.68
validation period 1987 0.43 0.45 0.76 0.68

1988 0.18 0.53 0.70 0.70
1989 0.60 0.74 0.75 0.69

The Nash-Sutcliffe coefficients that represent the fit of the
runoff peaks are consistently larger for the HRP approach.
The SB approach shows a consistently lower quality. The
logarithmic NS that represents the reproduction of the base
flow shows similar results, but the values are higher for the
SB approach in comparison with the NS-coefficient. The val-
idation with the NS-coefficients shows that the optimised pa-
rameter set of the SB approach is not suitable for the transfer
to other time periods.

From visual inspections two main differences of the two
hydrographs in comparison with the observed flow exist
(Fig. 3). The peak flows were better reproduced with the
HRP approach and base flow was better reproduced with the
SB approach. Both simulations show an underestimation of
the flood events. We can conclude that our first results show
more accurate simulations produced by the HRP discretisa-
tion approach (Fig. 3c), the visual inspection shows a bet-
ter application of the SB approach to the reproduction of the
base flow.

The annual water balance of the simulation is given by
P−ET a−q−1S=0. To get initial conditions for the hydro-
logical modelling the simulation of the first year (1985) was
not considered. As P and ETa were identical for both sim-
ulations, only storage change (1S) needs to be considered
for comparison; Runoff calculates as the remainder term of
the water balance. In 1987 simulated storage changes where
−62 mm for the SB approach and−79 mm for the HRP ap-
proach, which is in the order of−6 and−8%. In 1987 and
1989 the differences for the SB approach were negative and
smaller than 100 mm; in 1988 the difference was slightly
higher than 100 mm. The values of the differences of the
HRP approach were all smaller than±100 mm, in 1987 the
value was negative and in the following two years positive
(Table 3). Therefore both approaches behave similar with re-
spect to the annual water balance with only small differences
between the SB and HRP approach.

Fig. 3. The graphical user interface of the J2000, showing mod-
elling results of the validation period 31/10/1987–01/11/1989 at the
gauge Bad D̈uben:(a) mean regionalised rainfall,(b) measured and
simulated streamflow of the discretisation in SB and(c) measured
and simulated streamflow of the HRP-discretisation.

4 Discussion and outlook

The comparison of regionalised precipitation in the Mulde
basin with the mean precipitation in the German Elbe basin
(Table 3) showed a difference due to the higher precipita-
tion input of up to an annual mean of 1100 mm in the more
mountainous Mulde basin (Menzel and Bürger., 2002). The
mean annual evapotranspiration for the period 1961–1990
was slightly higher than our calculated values. The pre-
processed input fluxes seemed to be realistic.

The application of the SB and the HRP approach in our
study has been demonstrated to be a useful tool for hydrolog-
ical modelling of the flood peaks and the low flow conditions
in the Mulde basin.

Reasons for the improved results using the distributed
HRP version may be:

– more detailed representation of catchment characteris-
tics by spatial data (land-use, soils, hydrogeology, to-
pography), which results in a more detailed identifica-
tion of elevation and vegetation zones,

– better distributed precipitation input (for every HRP),
and

– larger extent of the routing network.

The improvement of model performance possibly resulting
from these differences is difficult to distinguish from each
other due to their interactions. The computing time of the
HRP approach on a PC with a computing frequency of
2.7 GHz was about 30 s for each year. For the SB-approach
the required time was 15 s. In this study a distributed
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Table 3. Annual difference of the water balance for the Mulde River: comparison of the precipitation (P ), simulated actual evapotranspiration
(ETa) and the storage change (1S) with two different regionalisation approaches.

Year P ETa SB HRP

1S [mm/a] 1S [% of P] 1S [mm/a] 1S [% of P]

1987 1009 598 −62 −6 −79 8
1988 736 586 106 14 82 11
1989 778 595 −50 −6 18 2

Meana 687 527

a 1961–1990 German Elbe basin (Hattermann et al., 2005).

physically-based model with a HRP approach was not too
CPU-intensive to model on the basin scale.

Although the HRP approach requires more computation
time which is relevant for Monte-Carlo-Analysis, and the
decreasing influence of land use on the generation of ex-
treme flood events on the macroscale (Kleeberg, 1996), this
approach is preferred for future work, because the focus
on the macroscale needs special attention. Regarding the
macroscale longer lasting precipitation events and their spa-
tial distribution is more relevant than landscape parameter
information (Uhlenbrook and Leibundgut, 1997). The more
distributed precipitation input for the HRP seems to influence
to improvement of results more than the SB approach.

It should be noted, however, that the J2000 was calibrated
in our study based on data without an extreme flood event.
The next step is to include documented flood events in model
calibration. The sample size for model validation will be
small since only a few extremeflood events are rcorded with
a daily time resolution (1954, 1958, 1974, and 2002).
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