
HAL Id: hal-00296873
https://hal.science/hal-00296873

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic downscaling of LAM predictions: an example
in the Mediterranean area

N. Rebora, L. Ferraris, J. von Hardenberg, A. Provenzale

To cite this version:
N. Rebora, L. Ferraris, J. von Hardenberg, A. Provenzale. Stochastic downscaling of LAM predictions:
an example in the Mediterranean area. Advances in Geosciences, 2005, 2, pp.181-185. �hal-00296873�

https://hal.science/hal-00296873
https://hal.archives-ouvertes.fr


Advances in Geosciences, 2, 181–185, 2005
SRef-ID: 1680-7359/adgeo/2005-2-181
European Geosciences Union
© 2005 Author(s). This work is licensed
under a Creative Commons License.

Advances in
Geosciences

Stochastic downscaling of LAM predictions: an example in the
Mediterranean area

N. Rebora1, L. Ferraris 1,2, J. von Hardenberg1, and A. Provenzale3,1

1CIMA, University of Genoa and University of Basilicata, Savona, Italy
2DIST, University of Genoa, Genoa, Italy
3ISAC-CNR, Turin, Italy

Received: 29 November 2004 – Revised: 31 March 2005 – Accepted: 1 April 2005 – Published: 30 May 2005

Abstract. In the absence of a full deterministic modelling of
small-scale rainfall, it is common practice to resort to the use
of stochastic downscaling models to generate ensemble rain-
fall predictions to be used as inputs to rainfall-runoff models.
Here we present an application of a novel spatial-temporal
downscaling procedure based on a non-linear transformation
of a linearly correlated (gaussian) field. This procedure al-
lows for reproducing the scaling properties (if any) of the
rainfall pattern and it can be easily linked with meteorolog-
ical forecasts produced by limited area meteorological mod-
els.

1 Introduction

The knowledge of the precipitation field at scales of a few
square kilometers and tens of minutes is a crucial ingredi-
ent for forecasting floods in small catchments typical of the
mediterranean environment. Due to the short response time
of these basins, rainfall events have to be known in advance
in order to give early warning to the population1. To tackle
this issue it is common practice to resort to the use of limited-
area meteorological models (LAMs) that provide precipita-
tion forecasts on scales of about 100 km2 and a few hours.
For small Mediterranean basins [L∼100 km2] it is however
impossible to issue a reliable flood warning based on LAM
rainfall predictions (Ferraris et al., 2002). In this case the
scale of the meteorological forecasting is considerably larger
than the scale of the hydrological process.

One option to fill this scale gap is based on the use of
stochastic models for rainfall downscaling. A downscaling
procedure consists on a stochastic algorithm that is capa-
ble of generating a small-scale rainfall field starting from
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1The time-scale of the social response is of the order of twelve
hours; this indicates the time it takes for the population to receive
the warning message and to react by following the alert procedures

a smoother field predicted on larger scales. This approach
should provide precipitation fields that are consistent with the
known statistical properties of the small-scale rainfall distri-
bution and satisfy the large-scale constraints imposed by the
meteorological forecast (e.g., the total rainfall volume).

It is important to notice that a rainfall field produced by
a downscaling model is just one possible realization of the
small-scale field and cannot be considered as the “true” rain-
fall distribution. Therefore it should be clear that the down-
scaling procedure is a purely stochastic technique that allows
for generating an ensemble of possible realizations of the
small-scale rainfall field.

The aim of this work is to show the performance of a
downscaling algorithm which has been introduced recently
(Rebora et al., 20052), to generate small-scale rain rate fluc-
tuations that preserve the spatial-temporal evolution of rain-
fall pattern predicted by a LAM.

2 Operational rainfall downscaling

A downscaling model suitable for operational use in a hy-
drometeorological forecasting chain should be simple, ro-
bust and computationally fast and linked in a clear way to
the large-scale prediction.

Many procedures have been proposed for rainfall down-
scaling to this date. These algorithms can be grouped in
three main families: (1) multifractal cascades (Lovejoy and
Mandelbrot, 1985; Schertzer and Lovejoy, 1987; Gupta and
Waymire, 1993; Over and Gupta, 1996; Perica and Foufoula-
Georgiou, 1996; Menabde et al., 1999b, 1997, 1999a; Venu-
gopal et al., 1999; Deidda, 2000), (2) non-linearly trans-
formed autoregressive models (Mejia and Rodriguez-Iturbe,
1974; Bell, 1987; Guillot and Lebel, 1999) and (3) pro-
cesses based on the superposition of many rainfall cells (clus-
ter models) (Waymire et al., 1984; Rodriguez-Iturbe et al.,

2Rebora, N., Ferraris, L., von Hardenberg, J., and Provenzale,
A.: The RainFARM: Downscaling LAM predictions by a Filtered
AutoRegressive Model, Sub judice, still in review, 2005.
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Fig. 1. Example of possible ranges of scales of a power spectrum
obtained from the spatial analysis of a LAM prediction: (a) reliable
scales, (b) unreliable scales and (c) unresolved scales.

ever, linking these models with the features of the large scale
fields is not that easy. Many downscaling procedures cur-
rently available for operational purposes account only for the
total precipitation predicted by the LAM, while some other
models are based on CAPE predictions (Perica and Foufoula-
Georgiou, 1996; Venugopal et al., 1999). Other information
provided by the meteorological model is not preserved. For
example, the spatial-temporal structure of the rainfall field is
crucial for reliably predicting sudden floods in small moun-
tain catchments and urban areas. Such features become es-
sential in the downscaling of fields predicted in a complex
orography environment where flash floods are more likely.

In this work a new downscaling procedure is used. This
approach is able to account for the reliable features of the
meteorological prediction and its parameters can be directly
derived from the large-scale field with no need for calibra-
tion.

3 Downscaling with a filtered autoregressive model

Ferraris et al. (2003a,b) have shown that the multifractal
properties of radar-measured rainfall fields are compatible
with those obtained from a nonlinearly transformed autore-
gressive process. Starting from these results a new downscal-
ing model has been developed. This procedure is calledthe
RainFARM, Rainfall Filtered AutoRegressive Model, and it
was proposed by Rebora et al. (2004) to which we refer for a
complete description and further details. The RainFARM be-
longs to the family of algorithms called metagaussian models
(see, e.g. Guillot and Lebel 1999) and it is based on a non-
linear transformation of a linearly correlated process. This
approach is closely related to the Turning Bands Method
(Matheron, 1973) and has been used both for satellite-based
rainfall measurement validation and for stochastic rainfall
modelling (Bell and Kundu, 2003; Bell, 1987; Lanza, 2000).
The model is able to generate small-scale rainfall fields that
take into account not only the total amount of precipitation
predicted by the meteorological model but also its (linear)
correlation and the position of the main rainfall patterns. Due

to the straightforward link between the model parameters and
the large-scale field, this model is suitable for operational
downscaling procedures.

The RainFARM uses the spectral information of large-
scale meteorological predictions. The basic idea is to pre-
serve amplitudes and phases of the original field at the scales
at which we are confident in the LAM prediction and to re-
construct the Fourier spectrum at smaller scales.

A major concern is to figure out which are the reliable
scales. Their definition depends upon the meteorological
model we are downscaling and it is related to the predictabil-
ity of the meteorological scenario we are considering. It is
well known that due to numerical diffusion, a meteorological
model is not reliable at scales lower than six to four times its
resolution (Patterson and Orszag, 1971). To this end we de-
fine three different scale regimes (fig.1): (a) reliable scales,
(b) unreliable scales, that is the scales resolved by the model
but unreliable due to numerical issues and to the lack of as-
similation procedures on these scales; (c) unresolved scales,
which are the scales not resolved by the model and where we
need to know a possible rainfall prediction for hydrological
purposes.

The transition from reliable to unreliable scales is some-
how subjective and it depends on the model characteristics,
the resolution of the network used for data assimilation and
the type of meteorological conditions (e.g., convective vs.
stratiform).

The RainFARM procedure can be summarized as follows:

1. gaussianization of the LAM spatial-temporal predic-
tion;

2. Fourier transform of the gaussianized field;

3. extrapolation of the Fourier spectrum to higher
wavenumbers; random phases are chosen at the unre-
liable and unresolved scales;

4. Fourier anti-transform of the resultant spectrum;

5. non-linear transformation of the high-resolution gaus-
sian field.

In the next section we show the performance of the Rain-
FARM model applied to the downscaling of an intense rain-
fall event predicted by a Limited Area Meteorological Model
in the Mediterranean area.

4 Stochastic downscaling in the Mediterranean area

We consider an intense rainfall event forecasted by the Lokal
Model (Deutscher Wetterdienst) over North-Western Italy.
This event was predicted on October 30th 2004 starting from
00.00 GMT and has a total duration of 42 hours. The down-
scaling domain is a square area of side 448 km that contains
the Liguria, Lombardia, Piemonte and Valle d’Aosta regions
(fig. 2).

The predicted LAM field has a spatial resolution of 7 km
by 7 km and a time step of 3 hours while the downscaled

Fig. 1. Example of possible ranges of scales of a power spectrum
obtained from the spatial analysis of a LAM prediction:(a) reliable
scales,(b) unreliable scales and(c) unresolved scales.

1986; Eagleson et al., 1987; Northrop, 1998; Wheater et al.,
2000; Willems, 2001). All these models have been proven
to score fairly well in reproducing the small-scale statistical
properties observed for precipitation (Ferraris et al., 2003b).
However, linking these models with the features of the large
scale fields is not that easy. Many downscaling procedures
currently available for operational purposes account only for
the total precipitation predicted by the LAM, while some
other models are based on CAPE predictions (Perica and
Foufoula-Georgiou, 1996; Venugopal et al., 1999). Other in-
formation provided by the meteorological model is not pre-
served. For example, the spatial-temporal structure of the
rainfall field is crucial for reliably predicting sudden floods
in small mountain catchments and urban areas. Such features
become essential in the downscaling of fields predicted in a
complex orography environment where flash floods are more
likely.

In this work a new downscaling procedure is used. This
approach is able to account for the reliable features of the
meteorological prediction and its parameters can be directly
derived from the large-scale field with no need for calibra-
tion.

3 Downscaling with a filtered autoregressive model

Ferraris et al.(2003a,b) have shown that the multifractal
properties of radar-measured rainfall fields are compatible
with those obtained from a nonlinearly transformed autore-
gressive process. Starting from these results a new downscal-
ing model has been developed. This procedure is called the
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longs to the family of algorithms called metagaussian models
(see, e.g.Guillot and Lebel1999) and it is based on a non-
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approach is closely related to the Turning Bands Method
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take into account not only the total amount of precipitation
predicted by the meteorological model but also its (linear)
correlation and the position of the main rainfall patterns. Due
to the straightforward link between the model parameters and
the large-scale field, this model is suitable for operational
downscaling procedures.

The RainFARM uses the spectral information of large-
scale meteorological predictions. The basic idea is to pre-
serve amplitudes and phases of the original field at the scales
at which we are confident in the LAM prediction and to re-
construct the Fourier spectrum at smaller scales.

A major concern is to figure out which are the reliable
scales. Their definition depends upon the meteorological
model we are downscaling and it is related to the predictabil-
ity of the meteorological scenario we are considering. It is
well known that due to numerical diffusion, a meteorological
model is not reliable at scales lower than six to four times its
resolution (Patterson and Orszag, 1971). To this end we de-
fine three different scale regimes (Fig.1): (a) reliable scales,
(b) unreliable scales, that is the scales resolved by the model
but unreliable due to numerical issues and to the lack of as-
similation procedures on these scales; (c) unresolved scales,
which are the scales not resolved by the model and where we
need to know a possible rainfall prediction for hydrological
purposes.

The transition from reliable to unreliable scales is some-
how subjective and it depends on the model characteristics,
the resolution of the network used for data assimilation and
the type of meteorological conditions (e.g., convective vs.
stratiform).

The RainFARM procedure can be summarized as follows:

1. gaussianization of the LAM spatial-temporal predic-
tion;

2. Fourier transform of the gaussianized field;

3. extrapolation of the Fourier spectrum to higher
wavenumbers; random phases are chosen at the unre-
liable and unresolved scales;

4. Fourier anti-transform of the resultant spectrum;

5. non-linear transformation of the high-resolution gaus-
sian field.

In the next section we show the performance of the Rain-
FARM model applied to the downscaling of an intense rain-
fall event predicted by a Limited Area Meteorological Model
in the Mediterranean area.

4 Stochastic downscaling in the Mediterranean area

We consider an intense rainfall event forecasted by the Lokal
Model (Deutscher Wetterdienst) over North-Western Italy.
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Fig. 2. The downscaling domain over North-Western Italy.
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Fig. 3. Temporal evolution of the instantaneous spatial average of
the large scale, LAM field (dashed line) and of one realization of
the stochastic field (solid line).

This event was predicted on 30 October 2004 starting from
00:00 GMT and has a total duration of 42 h. The downscal-
ing domain is a square area of side 448 km that contains
the Liguria, Lombardia, Piemonte and Valle d’Aosta regions
(Fig. 2).

The predicted LAM field has a spatial resolution of 7 km
by 7 km and a time step of 3 h while the downscaled field has
a resolution of 1.75 km by 1.75 km in space and 10 min in
time.

Our aim is to illustrate the application of the RainFARM
procedure to LAM forecasts. We preserve the large scale
structure of the precipitation event predicted by the meteoro-

N. Rebora et al: Downscaling LAM predictions 3

Fig. 2. The downscaling domain over North-Western Italy.

0 10 20 30 40
0

1

2

3

4

5

6

7

8

t [h]

av
er

ag
e 

pr
ec

ip
ita

tio
n 

[m
m

/h
]

LAM
RainFARM

Fig. 3. Temporal evolution of the instantaneous spatial average of
the large scale, LAM field (dashed line) and of one realization of
the stochastic field (solid line).

field has a resolution of 1.75 km by 1.75 km in space and 10
minutes in time.

Our aim is to illustrate the application of the RainFARM
procedure to LAM forecasts. We preserve the large scale
structure of the precipitation event predicted by the meteoro-
logical model and we generate small-scale fields that are con-
sistent with the LAM in terms of rainfall volume and spectral
properties. The three scale regimes are defined as:

– reliable scales: L> 28km, T> 12h,

– unreliable scales: 7km< L < 28km, 3h< T < 12h,

– unresolved scales: 1.75km< L < 7km, 10min< T <
3h.
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Fig. 4. Time average of the original, LAM field (panel a) and of
one realization of the stochastic field generated by the RainFARM
(panel b). The values indicate the average precipitation in mm/h.

First we calculate the temporal evolution of the spatial-
averaged rainfall intensity of a precipitation fieldp(x, y, t):

p(t) = 〈p(x, y, t)〉xy =
1

NxNy

Nx∑
x=1

Ny∑
y=1

p(x, y, t). (1)

whereNx = Ny = 256 grid points for the downscaled
field andNx = Ny = 64 grid points for the LAM prediction.
Figure 3 reports the resulting time series in both cases.

We then calculate and compare the temporal averages:

p(x, y) = 〈p(x, y, t)〉t =
1
Nt

Nt∑
t=1

p(x, y, t) (2)

whereNt = 252 for the RainFARM field andNt = 14
for the LAM forecasts. Figure 4 compares the resulting spa-
tial fields. In both cases the graphical comparison shows a
very good agreement between the LAM field and that origi-
nated by the RainFARM. These figures indicate also that the

Fig. 4. Time average of the original, LAM field (panel a) and of
one realization of the stochastic field generated by the RainFARM
(panel b). The values indicate the average precipitation in mm/h.

logical model and we generate small-scale fields that are con-
sistent with the LAM in terms of rainfall volume and spectral
properties. The three scale regimes are defined as:

– reliable scales: L>28 km, T>12 h,

– unreliable scales: 7 km<L<28 km, 3 h<T<12 h,

– unresolved scales: 1.75 km<L<7 km, 10 min<T<3 h.
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averaged rainfall intensity of a precipitation fieldp(x, y, t):
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whereNx=Ny=256 grid points for the downscaled field and
Nx=Ny=64 grid points for the LAM prediction. Figure3
reports the resulting time series in both cases.

We then calculate and compare the temporal averages:

p(x, y) = 〈p(x, y, t)〉t =
1
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p(x, y, t) (2)
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Fig. 5. Example of downscaling. The LAM field (panel a) indicates
the rainfall predicted from t=33h to t=36h. The field generated by
the RainFARM (panel b) shows the fine-scale precipitation map at
t=34h30m with a temporal resolution of 10 minutes. The values
indicate the precipitation in mm/h.

procedure is able to preserve the position of the rainfall pat-
terns over the Alps and the Apennines since it preserves the
large-scale Fourier spectrum.

In figure 5 we show one frame of the disaggregated field
(panelb) compared to the corresponding large-scale predic-
tion (panela). Since the downscaling of the LAM field is
both in space and time, figure 5b represents one of the eigh-
teen fields derived from the coarse-scale image. The Rain-
FARM stochastically increases the resolution of the LAM
prediction by creating rainfall fluctuations at the scale of
hydrological processes. These stochastic predictions can
be used for generating ensemble flood forecasting in small
catchments within the downscaling domain.

5 Conclusions

In this work we show an application of the RainFARM, a
novel rainfall downscaling method, based on nonlinearly fil-

tering a random Gaussian process, which is capable of truly
downscaling the large-scale information provided by mete-
orological models. This procedure represents a significant
improvement over commonly available downscaling models
used for operational purposes. It is able to:

1. conserve the total amount of precipitation predicted by
the meteorological model;

2. take into account anisotropy between space and time (if
any).

3. conserve the correlations of meteorological rainfall
fields both in space and in time;

4. conserve the position of large rainfall structures, to take
into account the effects of orography.

The features of the model make it suitable for operational
applications. In particular they allow for a real time estimate
of the parameters by starting directly from the large scale rain
field. In this way the model is (self-)consistent and it does
not need calibration. The model is clearly dependent on the
structure of rainfall fields predicted over the reliable scales
(see fig 1). Future work will be devoted to investigate the
influence of large-scale uncertainty on the spectral estimates.
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any).
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