N

N

OpenMI: the essential concepts and their implications
for legacy software
J. B. Gregersen, P. J. A. Gijsbers, S. J. P. Westen, M. Blind

» To cite this version:

J. B. Gregersen, P. J. A. Gijsbers, S. J. P. Westen, M. Blind. OpenMI: the essential concepts and
their implications for legacy software. Advances in Geosciences, 2005, 4, pp.37-44. hal-00296808

HAL Id: hal-00296808
https://hal.science/hal-00296808
Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00296808
https://hal.archives-ouvertes.fr

Advances in Geosciences, 4, &4-2005 "K .
SRef-ID: 1680-7359/adge0/2005-4-37 G Advances in

European Geosciences Union Geosciences
© 2005 Author(s). This work is licensed -

under a Creative Commons License.

OpenMI: the essential concepts and their implications for legacy
software

J. B. Gregerser}, P. J. A. Gijsbers’, S. J. P. Weste#, and M. Blind*

IDHI — Water & Environment, Agern A#l 5, 2970 Harsholm, Denmark

2WL/Delft Hydraulics, P.O. Box 177, 2600 MH Delft, The Netherlands

SWSL — Wallingford Software Ltd, Howbery Park, Wallingford, OX10 8BA, UK

4RIZA Institute for Inland Water Management and Waste Water Treatment, P.O. Box 17, 8200 AA Lelystad, The Netherlands

Received: 1 August 2004 — Revised: 1 November 2004 — Accepted: 15 November 2004 — Published: 9 August 2005

Abstract. Information & Communication Technology (ICT) Within the HarmonlT project about 20 legacy models will
tools such as computational models are very helpful in de-be migrated to the OpenMI platform. Since the standard
signing river basin management plans (rbmp-s). Howevershould survive the project, much effort is put into the post-
in the scientific world there is consensus that a single inteproject organisation of maintaining the standard. As a con-
grated modelling system to support e.g. the implementatiorsequence we believe that the number of OpenMI compliant
of the Water Framework Directive cannot be developed andnodels will keep growing beyond the timeframe of the Har-
that integrated systems need to be very much tailored to thenonIT project.
local situation. As a consequence there is an urgent need to Most existing hydrological decision support systems use
increase the flexibility of modelling systems, such that dedi-combined hydrological models as one of the main building
cated model systems can be developed from available buildblocks. Creation of such systems has so far been prerogative
ing blocks. The HarmonlIT project aims at precisely that. to the model suppliers. Now with OpenMI compliant models
Its objective is to develop and implement a standard inter-available also third parties can create such systems for their
face for modelling components and other relevant tools: Thespecific needs.
Open Modelling Interface (OpenMl) standard. The OpenMI In order to demonstrate the capabilities of OpenMI a com-
standard has been completed and documented. It relies eplex system of integrated catchment modelling is shown on
tirely on the “pull” principle, where data are pulled by one Fig. 1. Meteorological data from a number of measurement
model from the previous model in the chain. This paper givesstations are handled by a database system. This system will
an overview of the OpenMI standard, explains the foremostprovide precipitation and evaporation data to rainfall-runoff
concepts and the rational behind it. models. The rivers are modelled by a simple conceptual river
model that will obtain inflow data from the rainfall-runoff
models. For a particular river reach a more detailed represen-
tation of the river flow is required. This river reach is mod-
1 Introduction elled by a physically based hydrodynamic river model. The
river model will obtain inflow data for its upper boundary
The concept of integrated catchment management has ariséfPm the conceptual river model and will provide inflow data
because managing environmental processes independenti§r the conceptual river models that connects to the down-
does not always produce sensible decisions when the widegtream boundary of the hydrodynamic river model. Interac-
view is taken. Therefore, it becomes important to be abletion between ground water and surface water is considered
to model not only the individual catchment processes suctimportant at the location of the hydrodynamic model. The
as ground water, river flow, irrigation, etc, but also their in- underlying aquifer is modelled by a 2-D distributed ground
teractions. However, most existing models tend to addresgater model. The ground water model will receive leakage
only single issues. The objectives of the HarmonIT projectfrom the river model. The river model will calculate this
address these problems through the development of an opdfiakage based on information about the ground water level,
modelling interface (OpenMI) that will facilitate easy linking Which is obtained from the ground water model.
of existing and new models, promoting collaboration and use
of external (OpenMI-compliant) software.

Correspondence tal. B. Gregersen
(ibg@dhi.dk)

38 J. B. Gregersen et al.: OpenMI: the essential concepts and their implications for legacy software

‘ Meteorological database |

Evaporation and Precipitation
‘ Rainfall-runoff model |

Runoff
r
‘ Upper Conceptual River model ‘

Flow

Hydrodynamic River model ‘

lLeakage TGround water level
‘ 2D Ground water model |

I Flow

| Lower Canceptual River model |

" River model |* s

Fig. 1. Example of integrated catchment modelling that can be realised by combining OpenMI compliant models.

— The steps above are especially valid for complex legacy
Model Application software. We foresee that in time new models will be de-
veloped with OpenMI compliant user interfaces, and that
in time more and more “generic” OpenMI compliant post-

| User Interface | . : .
processing tools will become available.
Write
Input file 2 Existing Model Systems
Run g y
\I/Read Before going into detail about OpenMI some definitions of
the existing model systems are given.

Engine 4+

A model applicationis the entire model software system

Write that you install on your computer. Normally a model appli-
cation consists of a user interface and an engine. The engine
Output file _‘ is where the calculations take place. The user supplies infor-
' mation through the user interface upon which the user inter-

face generates input files for the engine. The user can run the
Fig. 2. Model application pattern. model simulation e.g. by pressing a button in the user inter-
face, which will deploy the engine (see FB). The engine
will read the input files, perform calculations and finally the
A model user that has access to OpenMI compliant modelsesults are written to output files. When an engine has read
needed for this particular system can establish such a systerits input files it becomes eodel In other words a model
The procedure the user needs to follow in order to establishis an engine populated with data. A model can simulate the
such systems is: behaviour of a specific physical entity e.g. the River Rhine.
If an engine can be instantiated separately and has a well-
pefined interface it becomes engine componentAn en-
gine component populated with data isn@del component
There are many variations of the model application pattern
2. The user will use an OpenMI configuration editor to described above, but most important from the OpenMI per-
query each model for providing data and accepting datsspective is the distinction between model application, engine,
and subsequently establish links between the models. model, engine component, and model component.

1. The user will populate each of the models with the re-
quired data through the preparatory user interfaces o
each individual model.

3. The user will run the linked system.

4. The user will investigate the results from the calcula-
tions through the preparatory user interfaces of each in-
dividual model.

J. B. Gregersen et al.: OpenMI: the essential concepts and their implications for legacy software

3 OpenMi water level as an average value over a polygon. A river
_ model may be requested for the flow at a particular calcu-

3.1 LinkableComponent lation node. These locations are defined in the ElementSet.

_ _ The ElementSet is a collection of Elements, where each el-
Basically, a model can be regarded as an entity that cament can be an ID-based entity like a particular node or a

provide data and/or accept data. Most models receive datgeometrical entity. A geometrical entity is either a point, a
files. However, the approach for OpenMl is to access theretyrns a ValueSet, which is an array of values or an array of

model directly at run time and not to use files for data ex-yectors. Each value in the returned ValueSet applies to one
change. In order to make this possible, the engine needs to h€jement in the target ElementSet.

turned into an engine component and the engine component

needs to implement an interface through which the data in-)

side the component is accessible. OpenMI defines a standargt® DataOperation (how)

interface for engine components (ILinkableComponent, see

Fig. 3) that OpenMI compliant engine components must im- The DataOperation object defines how the requested values
plement. When an engine component implements the ILink-should be calculated. Examples of data operations could be
ableComponent interface it becomes an OpenMI Linkable-time accumulated, spatially averaged, maximum values etc.
Component. There are

no OpenMI conventions for data operations. As for the
quantities, the data operations are simply defined by a text

One LinkableComponent can retrieve data from anotherStINd: Whichis recognizable by the source LinkableCompo-
LinkableComponent by invocation of the GetValues method."eNt: _ . 3 .

However, this is only possible if the two components have The Link class defines a specific connection between two
information about each other’s existence and have a cleakinkableComponents. For two specific LinkableCompo-

definition of the kind of data that is requested. This infor- nents many possible links may exist.

mation is contained in a class that implements the OpenMI

|L|n.k mter.face. Before invocation of the GetValues method 3 ¢ Exchangeltem (what can be exchanged)

a Link object must be created, populated and added to the

two components by use of the AddLink method.)))
The Link object holds a reference (handle) to the two When model links are created and populated, information

linked components. The Link object also contains informa-2P0ut which quantities, locations and operations each Link-
tion aboutwhatis requestedwherethe requested values ap- ableComponent will support is needed. This information

ply, andhow the requested data should be calculated. Thisc@n be obtained by querying the LinkableComponents for
information is included in the OpenMI Quantity class, the INPUtExchangeltems and the OutputExchangeltems. Each
OpenMI ElementSet class, and the OpenM| Dataoperatior{nputExchangeItem contains a Quantity and an ElementSet

3.2 Link (what is exchanged)

class, respectively. (see the ILink interface on Bignd4). describing what can be accepted at which location. Each
OutputExchangeltem contains a Quantity and an ElementSet
3.3 Quantity (what) describing what can be provided at which location. Out-

putExchangeltems also contains information about available
The Quantity object defines what should be retrieved. ThisDataOperations. OpenMI configuration editors will typically
could be e.g. water level or flow. The Quantity class repre-query the ILinkableComponent interfaces in order to display
sents this information simply as a text string (the Descriptionpotential input and output exchange items to the user for each
property). OpenMI does not provide any naming conventionmodel in a configuration. This will enable the user to select
for quantities. The Link class has a target Quantity objectthe desired connections (Links).
and a source Quantity object. The quantity description in the
source Quantity object must be recognizable by the SOUrcq 7 Time
LinkableComponent and the quantity description in the tar-
get Quantity object must be recognizable by the target Link-]]] _)
ableComponent. It is the responsibility of the person thatTime in OpenMl is defined either by a TimeStamp interface

configures the linked system to ensure that the combinatiol?" & TimeSpan interface, both interfaces inherited from the

of the two particular quantities makes sense physically. ~ OpenMI Time interface. A time stamp is a single point in
time whereas the time span is a period from a begin time to
3.4 ElementSet (where) end time. Each of these times is represented by the Modified

Julian Date. A modified Julian date is the Julian date minus
The ElementSet object defines where the retrieved value2400000.5. A modified Julian date represents the number of
must apply. A ground water model may be requested for ei-days since midnight 17 November 1858 Universal Time on
ther the ground water level at a particular point or the groundthe Julian calendar.

39

40 J. B. Gregersen et al.: OpenMI: the essential concepts and their implications for legacy software

winte rfa G2 interEie
Values org.0pe el Stz ad sl Va de Sat g Openid Stands - Vecter
+ apmpedye Count() . int g E

: = progerhee X000 fpomend) Cdowhle
+ mlialidielens stk 2) cbool + Epmperhs YOb s read() dochie
+ apmoperee Aooapone sl o eble

+

wirte rfaces winterdce s
org.Ope mfil Sz mdl a1 S 2l ek et g Dpen Ml Standand: W ectorSe t
+ Geticalarg ke menthdes dnt) o dowble + Gedlle donklems rhboe < drd) e cor
wintertace
When erg.Opentl. Stand ard-d Time
dnterfaczy ainterface
org. e Al 55 ao'a e Thre S @ g o Open Ml Stands A TirmeSpan
+ apmpedue Mhalfeddalia il 1) - doeble + apmperhe Stat : Mne Staap
+ apoperee Srd(): M Samsn
What
dnterfaces wintert e w2 MU Mmerations
org.Opentll Stan dand - Kwantity org.Ope rfl 5 moiz s init org.Opent | Stardard::
+ apmpertw K Rring + apmperhes KX shing DimersionEs ze
+ gpmpertyr Demapion) siimg + spmopers Cbadpiion) o feeg Cematficite
+ smpedyr ValweTwe(l ValweTwe | |+ spmpers ComemionfackeTosh) doabte | |7 Meng. m”-_ﬂ;
+ g peitye Cinersion) - Eiersio n + apmpehe CfetTo S {] Cdowble : Ti?‘nsé.' Iint_' 2
e Uimitf) o Mt ST
= qnped dad) + ElecticCument: int= 3
+ Tempe@ture: int=4
+ AmountOfSubstance: int =5
+ Luminoushtensty: int= 6
winterfaces w2 UM 34 0 N + Cumeney: int= 7
om.Openfll Stand o Dive rsion ong. OpenM | 5ta ndard: val ue Typs + HUM_BASE DIMENS IONS: int
+ GetPowerbase Quantily DiwensionBas) int| |4 Sealar int=1
+ Gyualsiothe iisenson faenson) boo! + edor int=2
Where
wintzraces R UMeEtion s
ey e Ml Standa Bl rrentset org.OpenM |.5tandard::
+ apropeds) sting El & rmert Type
+ apmpedyr Ceaviption]) o sing + IDBamd: int=0
+ spmpedyr SpadalRefermrce): Kpalal B d m o + ¥Y¥Point: int=1
+ apmpedye SenentType) : Elens ot Type + K¥line:int=2
+ apropedye Eleme atlount() - int + KT¥Polyline: int=3
+ apmpedys Ve int + XYPolyon: int=4
+ GetBless ke gelese D sting) Cint + XY¥ZPoint: int=5
+ GetBeme ntiDE ke meniivdes fnd) o Rivg + H¥Zline: int=6
+ GetlfepexCount g b aentbides int) it + K¥ZPolyline: int=7
+ Getface Courdiele mentio'ex dad) Cint + K¥ZPolygon: int= &
+ Getfacel/ere mhdices bl senthdes int, face ke x dat) - intl] + XYZPolyhedmn: int=19
+ GetXChominate @k sentidles i, vere e int) Cdooble
+ GetYloominate @k sentides dnt, vere e iat) Cdowble
+ Getdloominaie gk aenthides int, vere shd'ex dnt) codoghle

Fig. 3. Most essential org.OpenMI.Standard interfaces.

J. B. Gregersen et al.: OpenMI: the essential concepts and their implications for legacy software

How

winterfacen
e Ooeri Slandard. 0 afalperafion

sriti @i el uaent[f) o wodd

sprmoe e 00 - S

apmoe e AmpesretCownt) o it

SetAmeramet () Mo et

fzliahid firout Exc hangeden, iICutoutExchangeden, Dgta COperation) ool

+ o+ o+ o+

Component interface for generic component access

WFublisher

ainterfaces wcinterfaces

ong CoenW SfandandILirkableCompanent org D peal Sfandar 1A rgument
dritigdize fAmuwerif) o vodd
ooty Cowpore O - shing
gompeityr GowpomentOesorotion () © stimg
gomaeiys bd eliD0 sty
gomaedyr Wb elDesordobion () stimg
gomoeityr fmoutEschamgeden Gownt) © int
GetinputExcha ngeten frt) @ SrowtExchangebean
gomaedyr CutputExchangeten Count) @ int
GetCutoutEsaah argetdes fat) - OulputEcchamgeten
somooeityr Tiwesorzor () iTine Span
AdoLimhiidml) s void
Removelink(img) vodd
lYzlidate) siimy
Preoae) @ woi
GetlialwesTae, shing) @ ialve Set
sompeityr Eartestinout Tae) - Mme Stamo
Digpose() woid
Finish () : wid

gomaetye ey o sting
gomaetie Valwe] : sting
gomaerty e Regd Oy - bood
gomoetie Deseration () - sbiag

+ 4+ + o+

R EE

Exchanged data

zintarfaces
o Doen Sfandam Link

apmpetoe 0 shimg

apmpedie O sedobion) o stimg

spmperie Ceis CoemtiorsCount]) - imt

GetData Cherz for fnt) | 10tz Qperation

apmpertie T3 medGuantity () @ iGeartity

spmpedie TFmoetslement St [Element Set
sompetie SoomeEleremt it | Element St
apmperts Soume Comporent) @ ilinkable Compoment
spmpeityr Sowrce Quantity() | Muantity

gompete T&medComooment @ inkable Component

ok FF o+ o+

Data that can be exchanged

ainterfaces
org Oosr . Siardand. | Exchargefent

+ spmpentyr Guartityl Suaabity
+ spmperyr Elemert et | Elewment Set

wintarfaces winterfacen
arg Ooerl Sfar dard:: NrpufErchangelien erg . Ope Wl LS fard2rd W0 wipuiExchangelfen

+ gpmpe it Datz Opeadion Coumtl) imt
+ GetlxzCpeation (i) @ Dztz Qoemtion

Fig. 4. Most essential org.OpenMI.Standard interfaces.

42

Quantity. TargetQuantity Quantity: SourcetQuantity
ID = ‘Flow ID = '‘Discharge’

I !

Link: RRtoRiver
ID =‘RR_RIVER'

. 1.

ElementSet: TargetElementSet
ID = Flow

ElementSet:SourceElementSet

— 71

Element:element
ID = ‘323

Element:element
ID = ‘kd83902' 2

Fig. 5. The populated Link class.

3.8 GetValues

Now let us move back to the essence of OpenMl, the GetVal-

ues method. When one LinkableComponent invokes the Get- 3.

Values method of another LinkableComponent, the source
LinkableComponent must return the values for the specified
quantity, the specified time stamp or time span, and at the
specified location. If the LinkableComponent is of the time

stepping kind of numerical model it will do no calculation

until it receives a GetValues call. Once the GetValues method
is invoked, it will calculate as long as it is necessary to obtain

the needed data. Usually it will be necessary for the source 4.

component to interpolate or extrapolate its internal data in
time and space before these can be returned.

The OpenMI architecture puts a lot of responsibilities on
the LinkableComponents. One of the reasons for this is that
we feel that any data conversion like interpolations can be
done in the most optimal way by the source component. If
the source component is e.g. a ground water model any inter-

polations of the ground water levels are most safely done by 6.

the ground water model itself rather than some external tool.
The OpenMI framework is very simple or you may say

that there is no framework. All there is, is LinkableCompo-

nents. Once the system of linked model components is cre-

ated, the invocation of GetValues methods from one model 7.

component to another is driving the calculations. Since the
ILinkableComponent interface (Fi@.and4) does not have

any methods that can be used to start the chain of calcula-
tions, a trigger component is needed. The trigger component
is a Linkable component that has an additional method for
starting calculations (see example below). 9

4 Example

10.

Let us look at a very simple example: A conceptual lumped
rainfall runoff (RR) model provides inflow to a river model.
The populated link class is shown in Fhy.

The sequence diagram in Fiyshows the calling sequence
for a configuration with a river model linked to a rainfall-

J. B. Gregersen et al.: OpenMI: the essential concepts and their implications for legacy software

runoff model. The diagram demonstrates how things would
look if a “hard-coded” configuration was used. For normal
usage of OpenMI a configuration editor would assist you in
creating the configuration.

The sequence diagram has the following steps:

The River Model object and the RR Model object are
instantiated. Then the Initialize method is invoked for
both objects. Models will typically read their private

input files when the Initialize methods is invoked. In-

formation about name and location of the input files can
be passed as arguments in the Initialize method.

. The River model is queried for InputExchangeltems

and the RR model is queried for OutputExchangelt-
ems. The InputExchangeltems and OutputExchangelt-
ems objects contain information about which combina-
tions of Quantities and ElementSets (locations) can be
accepted by the components as input or output, respec-
tively.

A Link object is created and populated based on the
obtained lists of InputExchangeltems and OutputEx-
changeltems. In this example we are using a hard-
coded configuration. However, if a configuration edi-
tor was used the OutputExchangeltem and the InputEx-
changeltems would be selected by the user using e.g. a
selection box.

The trigger component is created. This component is a
very simple LinkableComponent whose only purpose is
to trigger the calculation chain.

5. Link objects are added to the LinkableComponents.

This will enable the LinkableComponents to invoke the
GetValues method in the LinkableComponent to which
they are linked to.

The Prepare method is invoked in all LinkableCom-
ponents. This will make each LinkableComponent do
whatever preparations are needed before calculations
can start.

Invoking the RunSimulation method in the trigger ob-
ject starts the calculation chain.

8. The trigger object invokes the GetValues method in the

River Model and the River model will calculate until it
has reached the EndTime specified in the argument list.

. Before the River Model can make a time step it must

update its inflow boundary condition. In order to do this
the GetValues method in the RR model is invoked.

The RR model will repeatedly perform time steps until
it has reached or exceeded the time for which it was re-
guested for values. If the River Model and the RR model
are not synchronous with respect to time stepping, the
RR Model must interpolate the calculated runoff in time
before the values can be returned.

J. B. Gregersen et al.: OpenMI: the essential co

Maln

ncepts and their implications for legacy software

Flvear
NEwW ILInKa Bla

com ponand

Mok |

10 M lI=2 iprope Meg

W

L :
.i:.']] RR.ho k|

L B o pore il

In Hal e prope Meds

— T Iit= I patEcchance femConets

A B

SO]

[Ford =0 b hptErckan e Remacon et H]: * LISk anie fem = GaHap sk aige em &

Tit= 00 13 PEECCh a0 g2 Hem Co v i :

.::.:_.._.._.._.._..-....._.-.

E LT R
CEak Lk e ot

=0 1= oapriEccharce temaSon o EEniErchanc rt@l'l'I:'Gl?!L"l SREErch angelem b
P ¥ i ¥ g

O e oy R L ! by T ool PRIt £yl o

LibraCl
e w ' ALInk abls Com pions

AcklLlnkiR RRack Mok ke Lk

| BN _:E'T____________________.._.J_l

M BcKILINKRFMack ToRKe LK

s
AL ST nogge 1L ks

'Cﬂ'""""""""""""

T

ActelL InkiTrgge ik

PIEpAE i

PEPAE i

B
El -=E%---------------------...J:l

-

-.r:;:-------------------------
— RO in vationg

R — |

. : e,

rl

x 1 5
i Walless te Getvalesdime = ExdTime, ki Dy i,
_I..‘ + [ﬂ

.g:’._.._.._.._.._._...
Pe fonn Thn & Step

tFuer=1RIver + DtRKe 1

Flalshiy

[I el B T b e e
i(E D ke i

Flulshi

ey

B o i S R S A

o

Fig. 6. Sequence diagram for OpenMI configuration with a Rainfall-runoff model linked to a river model.

43

44 J. B. Gregersen et al.: OpenMI: the essential concepts and their implications for legacy software

Model engines that are doing time step based computa-

== [Linkable Comporert== tions have many thing in common. It was therefor possible
to develop a generic wrapper that can be used for these en-

O gines. This wrapper provides a default implementation of the

ILinkableComponent interface. The generic wrapper class

| will take care of all the bookkeeping associated with han-

=W 32 APT=+= dling links, all event and exception handling and (basically)

e Wrapper Access > all the interpolation in time and space. We estimate that mi-

gration of models will take between a few weeks to a few
months of work, depending on how well organized the origi-
nal program code is.

OpenMI also provides software class libraries for build-
ing configurations editors, advanced control features like it-
eration and optimization controllers and many other multi-
purpose tools for visualising results, assessing performance
etc.

Brzie Core DI

Fig. 7. Model engine wrapping design pattern.

6 Conclusions
11. The River model has now obtained its inflow boundary
value and can perform a time step. The River Model The OpenMI standard and associated tools and utilities will
will repeatedly invoke the GetValues method in the RR be an attractive means for model providers and model users
model and perform time steps until it has reached orto create systems for integrated catchment management. One
exceeded the EndTime, where after it will return control of the major benefits is that once a model has been migrated
and values to the trigger object. to OpenMl it can be used in a large number of different com-
binations with other OpenMI compliant models. However,
12. The trigger object returns control to the main program. ths js only true if there is a significant number of compliant
models available and if the OpenMI standard and associated
tools are supported in the future.

The commercial partners of the HarmonlIT project, DHI —
Water & Environment, WL — Delft Hydraulics, and WSL —
Wallingford Software Ltd are currently working on commer-
cial releases of OpenMI compliant versions of some of the
most widely used hydraulic and hydrological model systems.
Also the non-commercial HarmonIT partners and universi-
5 OpenMl utility and tools ties around the World will make OpenMI compliant models

available.
At first hand it may seem like a huge challenge to turn a An OpenMI consortium will be established and will have
model engine into an OpenMI compliant LinkableCompo- the task of maintaining and supporting the OpenMI standard
nent. However, it is not so difficult. OpenMI provides guide- and associated tools. The standard, utilities, guidelines and
lines for migration of models and a great number of softwaredocumentation will be freely available to the public.
tools and utilities that will make migration easier [1]. These More information about OpenMI and HarmonIT is
tools and utilities can be used by anyone who is migratingprovided on our web sitattp://www.OpenMI.org
a model but are not required in order to comply with the
OpenMI standard. The implemented utilities and tools areEdited by: P. Krause, S. Kralisch, and Wugel
available as open source in a C# and Java version (OpenMReviewed by: anonymous referees
2005).

For existing model engines wrapping is the_ recommendecheferences
technology. If a model engine is e.g. a numerical model pro-
grammed in Fortran this engine can be compiled into a dy-The OpenMI web sitehttp://www.OpenMI.org 2005.
namic link library (dll). This dll can then be accessed from a
wrapper class that implements the ILinkableComponent in-
terface (see Figr).

13. The main program will invoke the Finish and the Dis-
pose method in all LinkableComponents. Linkable-
Components will typically close output files when the
Finish method is invoked. The Dispose method will
typically be used by the LinkableComponents to de-
allocate memory.

http://www.OpenMI.org
http://www.OpenMI.org

