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Abstract. When insurance firms, energy companies, gov-
ernments, NGOs, and other agents strive to manage climatic
risks, it is by no way clear what the aggregate outcome
should and will be. As a framework for investigating this
subject, we present the LAGOM model family. It is based
on modules depicting learning social agents. For managing
climate risks, our agents use second order probabilities and
update them by means of a Bayesian mechanism while dif-
fering in priors and risk aversion. The interactions between
these modules and the aggregate outcomes of their actions
are implemented using further modules. The software sys-
tem is implemented as a series of parallel processes using
the CIAMn approach. It is possible to couple modules ir-
respective of the language they are written in, the operating
system under which they are run, and the physical location
of the machine.

1 Introduction

The experience of the Kyoto protocol shows how difficult
it is to establish a plausible climate policy in the short-term
(Michel, 2004). At the same time even if the Kyoto protocol
had been implemented quickly and successfully, it would be
far from solving the long-term challenge of climate change
(Hasselmann et al., 2003). For the future evolution of climate
policy, it will be vital to develop complementary approaches
to trigger a sustained process of social learning in the face of
this global challenge.

So far, scientific thinking about climate policy has been
mostly framed in terms of a single goal function that is as-
sumed to be somehow appropriate for humankind as a whole.
We will call such a function a Leviathan function, follow-
ing Hobbes’ classical view of a super-agent taking care of
co-ordination problems shared by society as a whole. In re-
search on climate policy, two kinds of Leviathan functions
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are currently used. On the one hand, natural scientists of-
ten assume that some quantitative measure of a stable cli-
mate can be given as a guideline for policy-making. In this
spirit, increases in global mean temperature of 1/10 degree
Celsius per decade have been proposed as a limit for the
stress ecosystems can cope with (WMO, 1988). A total in-
crease of one to two degrees Celsius has been proposed as
an additional limit (Rijsberman and Swart, 1990; Hare et al.,
2004). The resulting goal function is pretty simple, yielding
only one of two values – 1 and 0, or “acceptable” and “in-
acceptable” – for possible trajectories of the climate system.
On the other hand, economists often assume that a slightly
more complex goal function is appropriate. In this case, a
discounted time-integral of global Gross Domestic Product
is proposed as Leviathan function. Climate change then is to
be avoided to the extent to which it lowers GDP. Non-market
effects are taken into account by monetary correction terms,
sometimes including highly controversial estimates of differ-
ent economic values of human lives in different countries.

In the future, it will be increasingly important to model
the climate problem in a multi-agent setting where different
goal functions are associated with different agents. As Tes-
fatsion (2006) argues, agent based computational economics
has reached a degree of maturity where this seems a feasible
goal. However, two kinds of challenges have to be met if use-
ful insights are to be obtained. The first kind arises from the
need to identify and represent social agents in a suitable way
(Sect. 2). The second is the need to find a reasonable rep-
resentation of learning processes in the face of far-reaching
uncertainties (Sect. 3). On this basis, it is possible to gain
substantial new insights on pitfalls and opportunities in the
management of climate risks (Sect. 4).

2 Agents

The definition of agents for the present purpose requires a
balance between standard economic concepts of utility, prob-
ability, and constraints on one hand, and more Artificial
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Intelligence oriented concepts of rule following on the other
hand (Sect. 2.1). The design of suitable modelling tools in
turn requires a series of choices about how to implement soft-
ware agents in a modular and integrated way (Sect. 2.2).

2.1 Human Agents

There are two major approaches for modelling human agents,
be they individuals or organisations: maximising expected
utility and rule following.

In economics, the standard concept states that agents do
have preferences about the possible consequences of alterna-
tive choices. In practice (although not necessarily in theory)
it is assumed that these preferences can be represented by
an ordinal utility function. When confronted with an uncer-
tain outcome from choices, agents are depicted as combining
their preferences with their expectations for the occurrence
of different outcomes. This is represented by a cardinal util-
ity function combined with a probability distribution. Hu-
man agents are supposed to be able to identify and choose
a single action which maximises their expected utility under
constraints given by the situation they find themselves in.

In this approach, the agent’s attitude towards risk can be
handled in two ways. First, the shape of the utility function
can be used to represent risk averse, neutral, or risk seeking
behavior. Second, when maximising utility, additional con-
straints can be added to depict an agent’s behavior towards
risk. We use, for example, a non-ruin constraint stating a
maximally accepted probability for going into ruin.

In information sciences, agents are often conceived as rule
following entities. When confronted with a decision situa-
tion, they choose an action using a set of rules. These rules
typically are if-then statements which trigger an action once
a condition is met. In a decision situation, the core chal-
lenge for this approach is to come up with a single action as
typically several conditions are met and the resulting set of
stated actions has more than just one element. A standard
mechanism to tackle this problem is to attach weights to the
rules and apply the one with the highest weight. The weights
themselves are adjusted in a learning process like the bucket
brigade mechanism suggested by Holland (1992).

These two ways of modelling the decision processes of
agents are most often perceived as alternatives. We interpret
them slightly different. Each constraint of a maximisation
problem can be interpreted as a rule the agent has to obey. In
the case of the non-ruin constraint applied in our work, the
rule is: whatever you do, the probability of going into ruin
shall not exceed a specified threshold. The expected utility
then can be used to come up with a single action amongst
those satisfying the rules relevant for the situation at hand.

It is important to realise that even if each agent comes up
with a single action in a given situation, this by no means
implies the existence of a single optimal equilibrium for the
whole range of agents. This hints at the potential richness
of such a perspective as it opens up the way to hybrid mod-
els achieving greater descriptive and normative content by

linking standard approaches of economics and of informa-
tion sciences.

2.2 Software Agents

Human agents can be modelled by suitable software agents.
We have done so with the model family LAGOM (LAGOM
is a Swedish word denoting a sense of balance and harmony,
perhaps akin to the chinese “Tao”). One way of designing
the required software agents is to look at them as functions
linking specific data types. It is useful to think about the
building blocks of the program in terms of a hierarchy of
such data types. At the most general level, we can distinguish
between perception types and action types. A human agent,
then, is implemented as a function whose domain consists of
one or several perception types while the range consists of
one or several action types.

In order to represent the uncertainties the agent is faced
with, a third data type is needed, namely expectations. Hu-
man agents form expectations by comparing a given state of
affairs with their previous expectations. Expectations are a
state variable of the agent in question. This is reminiscent
of Turing machines, as these map a perception into an action
on the basis of an inner state which is redefined at each step
of their operation. Accordingly, we use functions mapping
perceptions and expectations to actions and expectations:

Human Agent:
[[Perceptions], [Expectations]]

→ [[Actions], [Expectations]]

The perceptions of standard economic agents are charac-
terised by two data types: the prices found on the market
and the resources owned by the agent. Their actions relate
to two more types: supply quantities and demand quantities.
Economic agents can then be further specified into firms and
households of various kinds. In a typical version of LAGOM,
the economic agents are producers, households, and insur-
ance companies. LAGOM relies on a general purpose op-
timisation algorithm (produced by Dan Ontanu, Bukarest,
and Cezar Ionescu, Potsdam) that can handle an extremely
large class of optimisation problems. In the future, additional
modules may implement “fast and frugal” searching algo-
rithms needed to model choices of non-optimising agents
(Gigerenzer and Selten, 2001).

Human actions have consequences, and in social interac-
tions these consequences depend on the actions of several
agents. This pattern can be modelled by a second kind of
software agent representing various kinds of social and bio-
physical contexts. A context can be implemented as a func-
tion mapping states of affairs and actions into new states of
affairs:

Context:
[[State of Affairs], [Actions]]

→ [State of Affairs]
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The standard economic context is a market mapping sup-
ply and demand under given prices and a given resource
allocation into new prices, traded quantities and the result-
ing resource allocation.

Finally, a third kind of software agent is needed to get a
fully specified model. These are the program components
enabling the software agents representing human agents and
contexts to run in an appropriate way. They are bundled
in a driver performing the following steps. First, the driver
launches the other modules as parallel processes. Second, it
gives each one of them the addresses it is supposed to talk
or listen to. All modules have variables for input and output
ports. The driver assigns values to these (modifying them at
runtime if needed), thereby making it easy to exchange mod-
ules of the same kind in a plug and play mode. Third, the
driver listens to selected modules in order to relaunch a next
iteration until the goal of the simulation has been reached.
And finally, it shuts down the whole process.

Figure1 shows a typical LAGOM implementation (pro-
ducers have been left out to avoid overcrowding the diagram,
the expectation manager will be discussed in the next sec-
tion). There are two layers of communication between the
different modules. On one layer, the driver performs his busi-
ness as described above. On the other layer, the different
modules interact in a structured manner.

In the present example, there is a climate module (dubbed
“stormy weather” in the figure) that damages households and
is observed by the expectation manager and is influenced
by actions of households. The expectation manager helps
insurers and households to up-date their respective – usu-
ally different – expectations on the basis of new observa-
tions. The Walras finder, representing the “invisible hand”
of the market, finds prices matching demand and supply for
weather insurance by running through a fast (hence the short
dashes) sequence of interactions with households and insur-
ers. LAGOM operates at multiple time scales. Market in-
terchanges can be and usually are much faster than climate
change. Industrial production introduces a third time scale,
usually lying between those two. By running a set of such
agents recursively – i.e., feeding their output of step n as in-
put into step n+1 – one gets a dynamic system. Computer
experiments with LAGOM have shown that this format can
be used to represent economic agents according to standard
economic theory. An economic equilibrium then is a fixed
point of the recursive mapping defined above. In systems
with several fixed points, non-equilibrium dynamics can ob-
tain when the initial conditions are not identical to a fixed
point. They are particularly interesting when combined with
some stochastic process (Haas, 2001).

The design pattern of LAGOM is based on the CIAMn

software platform (CIAMn is an acronym for “Commu-
nity Integrated Assessment Modules to the power ofn” and
refers to a software platform that we developed together
with other researchers at PIK and in the broader context
of the European Climate Forum – cf. the link “CIAMn” at
www.european-climate-forum.net). The platform combines
an understanding of software management as a social process

Driver

Insurers
Households

Walras-

Finder

Expectation

Manager

Stormy

Weather

Fig. 1. Scheme of typical LAGOM implementation.

(Jaeger et al., 2002) with a logical analysis of the plurality
of domains of discourse required for integrated assessment
modelling (Jaeger, 2003). It provides algorithms for coupling
modules programmed in a dynamical simulation mode with
modules programmed in intertemporal optimisation mode – a
key problem when combining natural science and economic
models (Leimbach and Jaeger, 2004).

Using this platform requires the user to do three things:
assign each piece of code to exactly one module, provide a
driver module suitable for the problem at hand, and program
input and output to each module according to a shared proto-
col for typed data transfer – TDT.

The TDT protocol (see the CIAMn link indicated above as
well as www.pik-potsdam.de/software/tdt) provides a sim-
ple way of handling input and output to each module by
means of two functions, one for writing and one for read-
ing. These functions take addresses as parameters and work
across different programming languages, different operating
systems, and different machines in different physical loca-
tions. Computer experiments with LAGOM and other mod-
els have shown that drivers using this protocol can effectively
co-ordinate highly heterogeneous multi-agent systems.

3 Bayes

As mentioned above, human agents often act on the basis
of expectations that they try to improve in the course of
action. To model such processes of expectation formation,
some kind of Bayesian reasoning is needed.

A reasonable management of climatic risks is impossible
without some way of making the relevant expectations of
various agents – including scholars engaged in climate re-
search – explicit. With LAGOM, we tackle this problem in
two steps. First, we represent heterogeneous expectations of
a variety of agents, accepting that they may have perfectly
reasonable ways to entertain different expectations. Second,
given these expectations, we model how learning agents can
update their expectations on the basis of further experience.

www.european-climate-forum.net
www.pik-potsdam.de/software/tdt
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Whether this updating will lead to converging expectations,
and if so, at what speed, then becomes a question amenable
to scientific inquiry.

For this purpose, it is necessary to consider not only fre-
quentist probabilities, but also guesses about them. Every
child learns to deal with relative frequencies: it learns to
distinguish fast rythms from slow ones, it learns that certain
teams win more often than other ones, it learns how to roll a
dice, etc. Relative frequencies can be observed, they can be
forecast, and they matter for many actions. The mathematics
of probability measures can be used to deal with relative fre-
quencies where a more in-depth analysis is required. Prob-
abilities then appear as limits of relative frequencies defined
over sequences of events.

Children also learn to make guesses about things they do
not know, and to take action on the basis of such guesses –
one may guess that a certain branch of a tree will not crack
and climb on it, etc. Often, guesses have nothing to do with
relative frequencies, as when one guesses what is the capi-
tal of some foreign country. But sometimes, we need to take
action in the face of a situation where unknown relative fre-
quencies matter. In these cases, guesses about frequentist
probabilities occur.

The mathematics of probability measures turns out to be
helpful for analysing guesses about frequentist probabilities,
too. This is due to a result known as de Finetti’s theorem
(see Bernardo and Smith, 1994 for an exposition). The the-
orem shows how an unknown probability distribution can be
approximated if additional samples become available step by
step. For practical purposes, an important point is that the
approximation can start from very different initial guesses as
long as these guesses do not exclude the limiting distribution.

To apply this framework, one must distinguish between
first order and second order probabilities and consider up-
dating schemes for the latter ones. If two possibilities are
given with unknown probabilities, then the relevant first or-
der probabilities are given by the open interval (0,1). Com-
plete ignorance then implies a distribution of second order
probabilities corresponding to the probability density func-
tion y=1 over this interval.

An agent can improve upon this initial distribution under
two conditions. First, she must be able to gather additional
evidence. Second, she must have some opinion about the
structure of the underlying process, which may be quite com-
plex. If she is willing to consider key parameters of the pro-
cess as characterized by some unknown frequentist probabil-
ity, then the following updating scheme can be shown to be
efficient.

p2,t+1(pi(s))

= p2,t (pi(s)) ·
pi(s)∫

i∈I
(p2,t (pi(s)) · pi(s))dpi(s)

.

p2 stands for second order probabilities,t for time,p for first
order probabilities,P for the set of all first order probabilities
suitably indexed by an index setI, pi for a specific member of

the set of first order probabilities, ands for a specific situation
obtained at timet out of a set of all possible eventsS.

In LAGOM, this updating mechanism has been imple-
mented in a separate module, the expectation manager. It
may be used as a skeleton for representing scientific commu-
nities along with mass-media amplifying their claims, as both
decision-makers and the general public update their expec-
tations concerning climate change by interacting with these
institutions.

The updating process is similar to the formula known as
Bayes’ rule. But there is an important difference between
Bayes’ rule as applied to a static situation and this dynamic
updating process. In a static situation, Bayes’ rule follows
immediately from the definition of conditional probabilities.
The updating mechanism introduced above can be shown to
be efficient for dynamic processes with a limiting frequentist
probability, but this is far from being trivial.

Therefore, it is important to notice that the model design
used for the updating of expectations in LAGOM can also
be applied to non-Bayesian updating schemes, as when one
agent imitates the behavior of another one.

4 Climatic Risks

The various IPCC publications (for an overview see Watson,
2001) are the authoritative source on climatic risks. They
show beyond reasonable doubt that humankind is altering
the global climate system in ways that can lead to serious
damages to humans and to things they value – by sea-level
rise, droughts, floods, storms, and the like. These publica-
tions derive their authority to a considerable extent from the
fact that their production is controlled by a carefully crafted
consensus-building mechanism. This, however, makes it im-
possible to reach an in-depth assessment of these risks. There
are two reasons for this state of affairs: the difficulty to reach
an agreement on the value to be attached to non-marketable
goods like human lives or the beauty of coral reefs, and the
difficulty to reach an agreement on the likelihood to be at-
tached to events without statistical track record. A good ex-
ample for these difficulties as well as for their importance
is the Pentagon study on abrupt climate change (Schwartz
and Randall, 2003). The study considers the possibility that
anthropogenic climatic change will lead to a shut-down of
the thermohaline ocean circulation in the North Atlantic. It
does so by taking as an analog a similar shift in ocean cur-
rents that occurred about 8000 years ago, looking at its ef-
fects then, and asking what might be the worst conceivable
implications of these events in today’s world. This leads to
scenarios of social turmoil and international tensions, includ-
ing violent conflict and dramatic losses of welfares in Eu-
rope and North America. Similar scenarios, geared to events
like shifting monsoon patterns, melting permafrost, intensi-
fied El Niño events, and the like, can be produced for other
parts of the world. While the available evidence is suffi-
cient to reach agreement on the fact that these scenarios de-
scribe possible courses of events, there is no way to attach
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any frequentist probability measures to them; nor is there a
meaningful Leviathan function providing the one and only
yardstick for the evaluation of such risks.

With the model of learning agents presented in this paper,
another approach is feasible: One can study the options of
agents acting on the basis of heterogeneous expectations and
evaluations in the face of climatic risks. In particular, one
can study to what extent their expectations may converge on
the basis of additional evidence and what sort of compromise
they may find in order to reduce the risks about which they
care most. While it is extremely unlikely that problems of
this kind have a single optimal solution, it is almost certain
that stepwise improvements can be achieved through a com-
bination of negotiations and learning by doing.

Along these lines, the model can be used to study the man-
agement of climatic risks without the need to assume an un-
warranted Leviathan function. This is not to say that no agent
can play the role of Hobbes’ Leviathan. Quite the opposite,
the model can be used to study how a specific agent may ac-
quire that role, which is then not assumed, but explained. The
model can also be used to study multilateral constellations
where climate risks are managed without any agent assum-
ing the Leviathan role. Simulations show that such constel-
lations are hardly ever characterised by a single fixed point
of the relevant dynamics. Therefore, a multilateral solution
of the climate problem will need to rely on some selection
mechanism, most likely of the kind described by Schelling
as a focal point (Schelling, 1960).

This state of affairs implies that processes of supply and
demand – even if amended by instruments like carbon taxes
and emissions permits – will be insufficient to bring about a
solution. For this purpose, economic mechanisms and pol-
icy instruments must be complemented by suitable processes
of expectation formation. While Bayesian learning is by no
means the only mechanism of this kind, it provides a useful
starting point for multi-agent modelling of climate risks.

5 Conclusion

Modular multi-agent models representing learning agents
faced with climatic risks are both desirable and feasible.
They are desirable because climate risks are not amenable
to a purely frequentist analysis and because the use of a
Leviathan function dodges the question of how to reach
agreement over the valuation of non-marketable goods.
They are feasible because software tools are available to
couple highly heterogeneous software agents, because
mathematical concepts like second order probabilities can be
used to represent learning agents, and because the scientific
evidence on climatic risks is sufficient to identify salient
risks. In addition, modular modelling has the advantage of
facilitating co-operation between researchers with different
fields of expertise, thereby improving the reliability of the
resulting computations.
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