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Abstract. A new calibration/validation experiment for
GOCE mission is proposed. Simultaneously with the satel-
lite mission another gradiometer will be flown on the board
of the stratospheric balloon on the altitude 20–40 km. The
measurements can be compared with satellite data. The ad-
vantage of this method is that the same functionals are com-
pared – gravity gradients. The post-mission external cali-
bration/validation is possible more directly than through the
comparison with the ground truth gravity anomalies or geoid
undulation. The calibrating gradiometer is less sensitive, but
thanks to the altitude difference, compatible in precision with
the orbiting GOCE gradiometer. Analytical procedure of the
downward continuation is presented which permits compari-
son of these observables, supported by numerical examples.
The threshold for the precision of the calibrating gradiome-
ter is indicated. Similar comparison can be done between
GOCE and GRACE missions.

1 Introduction

The calibration and validation of results of space missions
devoted to the gravity field investigation is of great impor-
tance because the measuring instrumentation is working on
limits of its capability. In the case of the GOCE mission
a number of approaches have been suggested, and among
them are the use of ground based gravity data and the data
from other gravity missions (Koop at al., 2001). It is under-
stood that the GOCE measurements can be compared with
the external data set converted into gravity gradients. Fortu-
nately during the current years we have a sequence of mis-
sions which can be used for comparison, e.g. CHAMP and
GRACE. The optimal approach would be to perform mea-
surements with an other independent gradiometer in the same
points as GOCE gradiometer. This is hardly possible, but
we can consider the application of the airborne gradiometer
flying at the altitude of 40–30 km on the board of a strato-
spheric balloon. In this study we discuss possibilities of the
comparison between the missions by the upward continua-
tion procedure. We concentrate on theoretical aspects of the
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experiment, leaving aside for the time being more technical
questions like measurement error characteristics.

2 Balloon-borne Gradiometer (BBG) and GRACE Mis-
sion

In the Institute for Space Physics CERN (Italy) the economic
and flexible accelerometer ISA (Italian Space Accelerome-
ter) has been developed which can be applied in a range of
missions. Its sensitivity is better than 10−12 g/

√
Hz. The

next application of it will be the ESA Beppi Colombo mis-
sion aimed to Mercury (Iafolla et al., 2000; Iafolla and Noz-
zoli, 2002). But another possibility of application is the con-
struction of the gravity gradiometer. It will consist of a clus-
ter of accelerometers connected to perpendicular axes yield-
ing the gravity gradient tensor components. An appropriate
geometrical arrangement of accelerometers and baselines al-
lows to perform the measurement of all elements of the grav-
ity gradient tensor, in principle. The expected precision of
the measurement is of the level of 0.01 EU (1 Eötvös Unit
= 10−9 m s−2/m). The mission, which was proposed for this
system, was the free fall drop from the stratospheric balloon.
Such implementation was proposed by the Italian Space
Agency ASI as a project called G-zero or GIZERO (Iafolla et
al., 1997). Essential for this project is a payload that allows
to achieve zero gravity with residual noises 10−13g/

√
Hz for

about 25–30 s. These circumstances became an inspiration
for the study by (Zielínski and Lorezini, 1998), with the main
task to consider the possibility of the application of the Fras-
cati accelerometr system inside the GIZERO capsule to the
Earth gravity field measurement. This project is called Free
Falling Gradiometer. Unfortunately, at the time being, the
GIZERO project is suspended. However, another possibility
can be considered, to fly the gradiometer on the stratospheric
balloon drifting with the wind along the trajectory at altitude
ca. 40 km (Balloon borne Gradiometer – BBG). Such flights
are realized from the Italian Balloon Launch Base Milo, in
Sicily. With the wind the balloon can fly westward from
Sicily, along the African coast, reaching eventually the At-
lantic Ocean. The trajectory could have about 2000 km, and
the flight duration about 24 h.



150 J. B. Zielínski and M. S. Petrovskaya: Calibration/validation of the GOCE data

For this kind of measurement the ISA gradiometer could
be used after some modifications enabling the housing of the
instrument in the balloon gondola and the filtering of accel-
erations resulting from the motion of the balloon. However,
this option has not yet been tested experimentally and re-
quires further development.

A completely different possibility of the validation of
GOCE offers the mission GRACE. It was launched on 17
March 2002, its successful performance so far permits to ex-
pect the positive outcome of the whole mission when it ter-
minates after five years. It is composed of two sub-satellites
separated by ca. 200 km, following each other along the same
circular orbit with an altitude of about 500 km. The data from
this mission can provide the “comparison from above” for
GOCE. In both cases the procedure of the upward continu-
ation has to be applied. Let us consider the analytical and
the numerical approach, the second one based on collocation
using as the signal the components of the gravity gradient of
the field described by a model:

T (r, θ, λ) =
µ

a

N∑
n=2

n∑
m=−n

(a

r

)n+1
Cn,mY n,m(θ, λ) . (1)

In this expressionT denotes the disturbing potential, where:

Y n,m(θ, λ) = P n,|m|(cosθ)Qm(λ),

Qm(λ) =

{
cosmλ, m ≥ 0,

sin|m|λ, m < 0,

P n,|m|(cosθ) andCn,m are the fully normalized associated
Legendre functions andr is the geocentric distance,θ andλ

are the polar angle and the longitude, a the semimajor axis of
the normal ellipsoid, and the mass of the Earth multiplied by
the gravitational constant.

3 Analytical solution

In the GOCE satellite gradiometry mission the diagonal sec-
ond order derivatives of the disturbing potentialTxx , Tyy ,
andTzz, coud be inferred. It is expected that from them a
new geopotential model will be constructed of high accuracy
and resolution. This procedure can be performed e.g. by the
space-wise approach if there are analytical relations between
the spectral coefficients of the observables and the geopoten-
tial coefficientsCn,m. Such relations were derived for by the
authors in Petrovskaya et al. (2001).

The observables in the balloon mission can be presented
in terms of the geopotential coefficients. IfCn,m evaluated
from GOCE measurements are substituted into the analytical
expressions for the balloon observables then the discrepan-
cies can be estimated between the real balloon data and the
same quantities generated by the GOCE geopotential model.
This procedure is developed in the present paper.

A gradiometer inside a balloon consists of two accelerom-
eters measuring the differences between the components of
the accelerations of two proof masses keeping a constant dis-
tance between each other (the baseline of a gradiometer).

The differences between the acceleration components pro-
vide the differences between the components of the gravity
disturbances at the locations of two masses. We assume here
that the non-gravitational effects can be eliminated with suf-
ficient accuracy.

By dividing such a difference by the distance between the
masses, the corresponding second order potential derivative
is estimated in the centre of the baseline. This procedure
provides the balloon gradiometry data.

It is convenient to use the local ellipsoidal reference frame
x, y, z with the origin in the centre of the gradiometer, where
z is extended outward along the ellipsoidal normal,x is di-
rected to the north andy points to the east, completing the
left-handed system. There are the following relations be-
tween the partial derivatives of the Earth’s disturbing poten-
tial T with respect to coordinatesx, y, z and the spherical
coordinatesr, θ, λ (Heck, 1990):

Tz = Tr −
1

r
e2 sinθTθ ,

Tx = −Tθ − e2 sinθ cosθTr ,

Ty =
1

r sinθ
Tλ . (2)

Heree is the first eccentricity of the normal ellipsoid.
In the right hand sides of Eq. (2) we confine ourselves

by taking into account only the principal terms and omit the
terms proportional toe2. They will be considered in the fu-
ture, if necessary. Formula (1) has the same form if the nor-
malised coefficients and spherical functions are changed to
the non-normalised ones. After this transformation, we sub-
stitute the series Eq. (1) in the right hand sides of Eqs. (2). It
gives

Tz = −
µ

a2

N∑
n=2

n∑
m=−n

(n + 1)
(a

r

)n+2
Cn,mPn,|m|(cosθ)Qm(λ), (3)

Tx = −
µ

a2

N∑
n=2

n∑
m=−n

(a

r

)n+2
Cn,m

dPn,|m|(cosθ)

dθ
Qm(λ), (4)

Ty = −
µ

a2

N∑
n=2

n∑
|m|=1

m
(a

r

)n+2
Cn,−m

Pn,|m|(cosθ)

sinθ
Qm(λ), (5)

Equations (4) and (5) contain either the singularity sin−1 θ

for θ = 0, π or the derivative of the Legendre function. Suit-
able transformations will be performed in order to exclude
these expressions. In Petrovskaya (1996) a number of known
transformation formulas are given. We shall apply formulas
(45), (47), (48) and (50):

dPn,0

dθ
= −Pn,1

and for 1≤ |m| ≤ n

dPn,|m|

dθ
= −

1

2
Pn,|m|+1+

1

2
(n+|m|)(n−|m|+1)Pn,|m|−1,(6)
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dPn,|m|

dθ
= |m| cotθPn,|m| − Pn,|m|+1 , (7)

dPn,|m|

dθ
= n cotθPn,|m| −

1

sinθ
(n + |m|)Pn−1,|m| . (8)

From the last two equations it is derived

m
Pn,|m|

sinθ
=

n − |m| + 1

n + |m| + 1

dPn+1,|m|

dθ
+

n + 1

n + |m| + 1
Pn+1,|m|+1 . (9)

Then from Eqs. (6)–(8) and (9) follows

|m|
Pn,|m|

sinθ
=

1

2
Pn+1,|m|+1

+
1

2
(n − |m| + 1)(n − |m| + 2)Pn+1,|m|−1, m 6= 0 (10)

From Eqs. (4)–(8) and (10) it is obtained, after introducing
normalized quantities,

Tz = −

N∑
n=2

n∑
m=−n

Cn,mt
n,m
z ,

Tx =

N∑
n=2

n∑
m=−n

Cn,mt
n,m
x ,

Ty =

N∑
n=2

n∑
m=−n

signmC−n,mt
n,m
y . (11)

In the last equationm 6= 0 and signm = m/|m|. In Eq. (11),
the functions on the right hand side are given by:

t
n,m
z =

µ

a2
(n + 1)

(a

r

)n+2
P n,|m|(cosθ)Qm(λ),

t
n,0
x =

µ
√

2a2
ax(n, 0)P n,1,

t
n,m
x =

µ

2a2

(a

r

)n+2 [
ax(n, |m|)P n,|m|+1(cosθ)

−bx(n, |m|)P n,|m|−1(cosθ)
]
Qm(λ),

t
n,m
y =

µ

2a2

(a

r

)n+2 [
ay(n, |m|)P n+1,|m|+1(cosθ)

+by(n, |m|)P n+1,|m|−1(cosθ)
]
Qm(λ). (12)

In two last expressionsm 6= 0, and the coefficients are:

ax(n, |m|) =

√
(n + |m|)(n + |m| + 1),

bx(n, |m|) =
√

1 + δ|m|,1 ax(n, −|m|),

ay(n, |m|) =

√
2n + 1

2n + 3

√
(n − |m| + 1)(n + |m| + 2),

by(n, |m|) =
√

1 + δ|m|,1 ay(n, −|m|). (13)

Hereδ|m|,1 = 1 for |m| = 1 andδ|m|,1 = 1 for |m| 6= 1. Af-
ter calculating the quantities (12)–(13) at the locations of the
two proof masses they are substituted at the right hand sides
of Eq. (11), as well as the coefficientsCn,m of a geopotential
model. By performing the summation of series, the differ-
ences between the components of the gravity disturbances at
the ends of the baseline can be calculated and then from them
the corresponding values of the diagonal derivatives will be
evaluated.

By comparing the values of the derivatives which are mea-
sured by the balloon gradiometer and the same derivatives
which are estimated with the use of formulae (11)–(13) from
the geopotential model, derived from the GOCE mission, the
validation of the satellite gradiometer can be studied on the
basis of the balloon data.

The problem of such a comparison can be strictly solved
by applying the results from (Petrovskaya et al., 2001),
where simple basic relations were derived between the
geopotential coefficientsCn,m, entering (11) and the spher-
ical harmonic coefficients of GOCE observables. Of these
observables, the most important are the diagonal derivatives
Txx, Tyy, Tzz, which refer to the local north-oriented triad
{x, y, z} centred at the satellite, wherez is directed radi-
ally outward,x points to the north andy to the west (the
right handed system). There are linear relations between the
derivativesTxx, Tyy, Tzz and the derivativesTuu, Tvv, Tuv, re-
ferred to the local orbital frame in which GOCE measure-
ments will be performed. These relations were derived inde-
pendently at least by two authors (Vermeer, 1990; Belikov,
1994).

Let us assume that for each potential derivative from
GOCE mission a set of observational data is created, reg-
ularly gridded over a mean orbital sphere of radiusr = rs .
For simplicity, we shall write simplyr instead ofrs . Then the
corresponding spectral coefficients of the potential deriva-
tives can be evaluated, either by the least squares adjustment
or by the numerical quadrature technique. Then the above
mentioned basic relations allow to recover the geopotential
coefficientsCn,m from GOCE data.

The procedure of application of the basic relations is as
follows.

The potential derivatives are presented in form of trun-
cated spherical harmonic series:

Tzz =

N∑
n=2

n∑
m=−n

Rn,mY n,m(θ, λ),

Txx =

N∑
n=0

n∑
m=−n

H n,mY n,m(θ, λ),

Tyy =

N∑
n=0

n∑
m=−n

Gn,mY n,m(θ, λ). (14)

where the coefficients and spherical functions are fully nor-
malised.For the coefficients ofTzz there is the relation

µ

a3
(n + 1)(n + 2)

(a

r

)n+3
Cn,m = Rn,m (15)

from which a geopotential model can be easily constructed.
For the other two diagonal derivatives the following basic
relations were derived in (Petrovskaya et al., 2001):

an,mCn−2,m − bn,mCn,m + cn,mCn+2,m

= an,mH n−2,m − bn,mH n,m + cn,mH n+2,m (16)

−dn,mCn−2,m + cn,mCn,m

= an,mGn−2,m − bn,mGn,m + cn,mGn+2,m

|m| = 0, 1 . . . , N, n = |m|, |m| + 1, . . . , N. (17)
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Here an,m, bn,m, etc., are numerical constants similar to
Eq. (13), which depend only onn andm. Each of the above
relations represents a set of linear equations with respect to
the potential coefficientsCn,m for a fixedm and variablen.
The set of Eqs. (17) can be solved by a recurrent procedure
with respect toCn,m in terms of the coefficientsGn,m of
GOCE mission observableTyy . The set Eq. (16), contain-
ing three unknown potential coefficients, can be presented in
form of a linear matrix equation. The latter can be solved
with respect toCn,m in terms of the coefficientsH n,m of ob-
servableTxx .

The geopotential coefficientsCn,m recovered from each of
Eqs. (15)–(17) will be substituted in the right hand sides of
Eqs. (11). In this way the derivativesTx , Ty andTz will be
estimated from GOCE observables at the positions of two
probe masses in the balloon gradiometer. It will allow to per-
form the calibration/validation of the satellite gradiometer.

4 Least Squares Collocation solution

Collocation enables local solutions including application of
discrete measurements. The problem that must be solved
here is the comparison of measurements done in two dif-
ferent places in space, at the altitudes differing by at least
200 km. Similar problem has been discussed by Albertella
et al. (2000). To solve this problem we can use the ap-
proach proposed by Arabelos (2001), Arabelos and Tchern-
ing (1998) modified according to the needs of the applied
technique.

Let us remind after (Zielínski, 1974) the basic formulae
of the prediction method by collocation. We assume that an
“observation”x consists of the “signal”s and the “noise”n.
In vector notation we get

x = s + n. (18)

Then, we can calculate the signal in the pointP :

sP = CPC−1x (19)

where: CP – covariance matrix between the signal inP

and observations;
C – covariance matrix between observations;
x – vector of observations.

A similar expression allows to estimate the prediction er-
ror:

εP = C0 − CPC−1CT
P (20)

where: C0 – variance of the signal.
According to the classical formulation the covariance func-
tion of the disturbing potentialT is:

Kn(9) = 6n=2knPn(cos9)

(
R2

rprq

)n+1

, (21)

kn =
GM

R
6m=0

(
C

2
nm + S

2
nm

)
, (22)

whereC
2
nm, S

2
nm are fully normalized coefficients of the dis-

turbing potential.
From Eq. (21) expressions for covariance functions be-

tween any functionals can be derived. For example, Latka
(1978) presents the following formula for the covariance
function between two vertical components of the gravity gra-
dient:

cos
(
T zz

P , T zz
Q

)
=

(
1

rP rQ

)2

N∑
n=0

kn(n + 1)2(n + 2)2

(
R2

rP rQ

)n+1

Pn(cosφ). (23)

In the same work we can find the expressions for all the
combinations of the components of the gravity gradient.

Because the repetition of measurements in the same place
by two independent methods is clearly impossible, let us try
to compare the measurements made at two different levels:
the orbit level and the balloon level. This comparison can be
done by two steps: first, the upward continuation procedure
enabling to transfer the values of a gradient from the low
to the orbital altitude along the radial direction, second, to
calculate the gradient from the satellite measurements at the
same point. Suppose we have a number of satellite measure-
ments at pointsS1, S2, ... Sq . Also, we have balloon measure-
ments at pointsB1, B2, ... Bp. Each balloon measurement
is projected by the upward continuation on the sphere of the
satellite orbit and we get pointsSB1, SB2, ... SBp. For this
points we calculate gradient values from satellite measure-
ments using expression (19) and compare with the projected
balloon values. In this way the satellite measurements could
be verified.

Just now we are trying to go test this procedure by using
the set of the simulated data generated by Ilk et al. (2000).
This is a file containing the global coverage of the 30 days of
observations. In our collocation approach we have to work
with a the local or regional solution, therefore it was neces-
sary to extract a sub-set limited in space.

5 Accuracy requirements

In the upward continuation process the most significant effect
is related to the attenuation of the amplitudes of terms of the
geopotential model with increasing height. For the second
gradient it is proportional to Sneeuw (2000):(

R

r

)n+3

.

If we denote the geocentric distance to the satellite asrs and
the geocentric distance to the balloon asrb, we can write:(

R

rb

)n+3

/

(
R

rs

)n+3

=

(
rs

rb

)n+3

= α. (24)

Takinghb = 40 km andhs = 250 km we get the functionα
growing quickly withn. Forn = 70 we getα ∼ 10, while for
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n = 140α attains 100. Forn = 360 the parameterα exceeds
105. It means that the gradiometers having the same sensi-
tivity could sense different frequencies at the altitude of the
balloon and on the satellite orbit. On the contrary, in order
to observe the terms of the same frequency we need different
accuracy of the two instruments. If we want to measure and
to compare terms of the order close ton = 70, then we must
takeα = 10, what means that the balloon instrument can be
10 times less sensitive than the satellite gradiometer. For the
terms of the ordern > 140, the balloon measurements could
be even 102 less sensitive.

6 Concluding remarks

In the situation of the GOCE mission, we will get very re-
liable information covering the lower part of the spectrum
of the geopotential derived from the CHAMP and GRACE
data. As concerning GRACE, the optimal resolution in the
interval 50 < n < 120 is expected (Jekeli, 2000). There-
fore, the most interesting part for the calibration by balloon
is for n > 100. From Eq. (23) we can calculate that for
n = 100,α ≈ 30. Supposing the GOCE’s gradiometer sen-
sitivity equal to 5× 10−3 EU/

√
Hz we may assume that the

airborne measurements at the balloon altitude with the accu-
racy not worse than 1.5×10−1 EU can provide very interest-
ing material for comparison and validation. This is encour-
aging for the further work on the balloon gradiometer system
development.

Theoretical considerations presented above might be ap-
plied to the comparison of other measurements done at two
different levels. If we take the GRACE data, they are located
on the quasi-sphere 250 km higher than GOCE. Then, the
high sensitivity of the GOCE gradiometer is compatible with
the sensitivity of the satellite-to-satellite tracking system of
GRACE.
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ering the Earth’s potential spectral characteristics from GOCE
mission, Adv. Space Res., 30, 2, 221–226, 2002.

Schrama, E. J. O.: Collinear Track Calibration of the GOCE Gravity
Gradiometer, Presented at IAG 2001 Scientific Assembly – “Vis-
tas for Geodesy in the New Millennium” Budapest, Hungary, 2–7
September, 2001.

Sneeuw, N.: A semi-analytical approach to gravity analysis
from satellite observations, Deutsche Geodaetische Kommission,
Reihe C. Nr. 527, 2000.

Vermeer, M.: Observables quantities in satellite gradiometry, Bull.
Geod., 64, 347–361, 1990.
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