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Space gravity spectroscopy: the benefits of Taylor-Karman
structured criterion matrices

P. Marinkovic, E. Grafarend, and T. Reubelt

Department of Geodesy and GeoInformatics, Stuttgart University, Geschwister-Scholl-Str. 24D, 70174 Stuttgart, Germany

Abstract. As soon as a space gravity spectroscopy was
successfully performed, for instance by means of semi-
continuous ephemeris of LEO - GPS tracked satellites, the
problem of data validation appeared. It is for this purpose
that a stochastic model for the homogeneous and isotropic
analysis of measurements, obtained as “directly” measured
values in LEO satellite missions (CHAMP, GRACE, GOCE),
is studied. An isotropic analysis is represented by the ho-
mogeneous distribution of measured values and the statisti-
cal properties of the model are calculated. In particular, a
correlation structure function is defined by the third order
tensor (Taylor-Karman tensor) for the ensemble average of
a set of incremental differences in measured components.
Specifically, Taylor-Karman correlation tensor is calculated
with the assumption that the analyzed random function is of
a “potential type”. The special class of homogeneous and
isotropic correlation functions is introduced. Finally, a suc-
cessful application of the concept is presented in the case
study CHAMP and a comparison between modeled and esti-
mated correlations is performed.

Key words. data validation, 3D correlation tensor, homo-
geneous and isotropic correlation functions, Taylor-Karman
structure, CHAMP

1 Introduction

A significant problem of LEO satellites, both in geometry
and gravity space, is the association of quality standards to
Cartesian ephemeris in terms of variance-covariance matrix
valued functions. As a pessimistic measure of the quality
standards of LEO satellite ephemeris, a three-dimensional
Taylor-Karman structured criterion matrix has been pro-
posed, named in honor of Taylor (1938) and Karman (1938),
the founders of the statistical theory of turbulence.

Correspondence to:P. Marinkovic
(marinkovic@gis.uni-stuttgart.de)

The concept of the Taylor-Karman criterion matrices was
first introduced by Grafarend (1979) and subsequently fur-
ther developed by Schaffrin and Grafarend (1982), Wim-
mer (1982), and Grafarend et al. (1985, 1986). With this con-
tribution we extend the application of Taylor-Karman struc-
tured matrices to the third-dimension, namely to the long-arc
orbit analysis.

If we assume the vector-valued stochastic process to be the
gradient of a random scalar-valued potential, in particular its
longitudinal and lateral correlation function or “the correla-
tion function along-track and across-track”, what would be
the structure of a three-dimensional Taylor-Karman variance-
covariance matrix? In order to answer this question, a three-
dimensional correlation-tensor and its decomposition in the
case of homogeneity and isotropy is studied in Sect. 1, with
the emphasis onR3. Additionally, we deal with a special
class of homogeneous and isotropic tensor-valued correla-
tion functions. They are derived, analyzed and applied to
the data validation process. In Sect. 2, the theoretical con-
cept for the application of the previously discussed criterion
matrix in the geometric and gravitational analysis of LEO
satellite ephemeris is presented. Finally, in Sect. 3, the case
study CHAMP is used for the application of our theory con-
cept followed by the results and conclusions.

2 Homogeneous and isotropic variance-covariance ten-
sor and correlation functions in a three-dimensional
Euclidean space

2.1 Notions of homogeneity and isotropy

The notions of homogeneity and isotropy for functions on
Rn are briefly explained as following. The general context
for these two definitions involves the action of a transitive
group of motions on a homogeneous space and belongs to
the extensive theory of Lie groups (Warner 1983, Yaglom
1987). However, it is important to clarify that the different
notions of homogeneity and isotropy exist due to the vari-
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attached to the origin 0 of a three-dimensional Euclidean space. ‖x∗−x∗∗‖ denotes the Euclidean

distance r between the two points x∗ and x∗∗ of E3 := {R3, δij}. Longitudinal and lateral

correlation functions, Σl and Σm, are the structural elements of such a homogeneous and isotropic

tensor-valued variance-covariance function which appear in the spherical tensor Σm(r)δij as well

as in the oriented tensor [Σl(r)−Σm(r)]∆xi∆xj/r
2 for all i, j ∈ {1, 2, 3}, see Eq. (2) and Fig. (1).

δij denotes the Kronecker or unit matrix, ∆xi the Cartesian coordinate differences between the

points x∗ and x∗∗. These differences are also represented in terms of relative spherical coordinates

(α, β, r), Eq. (3). Finally, the continuity condition of a potential type is formulated by Eq. (4),

which provides the unique relation between the Σl and Σm (Taylor (1938), Obuchow (1958),

Grafarend (1979)).

Box 1.

Tensor-valued correlation function of the second order

”two-point correlation function”

Σ(x∗,x∗∗) =

3
∑

i,j=1

ei ⊗ ejΣij(x
∗,x∗∗) =

3
∑

i,j=1

Σij(x
∗,x∗∗)ei ⊗ ej (1)

r := ‖x∗ − x∗∗‖ and r := x∗ − x∗∗

Σij(r) = Σm(r)δij + [Σl(r)− Σm(r)]
∆xi∆xj

r2
, i, j ∈ {1, 2, 3} (2)

”Cartesian versus spherical coordinates”

∆x1 = ∆x := (x∗∗
1 − x∗

1) = r cosβ cosα

∆x2 = ∆y := (x∗∗
2 − x∗

2) = r cosβ sinα

∆x3 = ∆z := (x∗∗
3 − x∗

3) = r sinβ

(3)

”continuity condition of a potential type”

Σl(r) =
d [rΣm(r)]

dr
= Σm(r) + r

dΣm(r)

dr
(4)

4

Fig. 1. Graphical representation of the longitudinal and lateral cor-
relation functions.

ety of homogeneous spaces and transitive group actions on
these spaces. The terminology introduced associates the no-
tion of homogeneity and isotropy with the functions onRn

that are invariant under the translation group acting onRn.
The notion of isotropy is defined for functions onRn that are
invariant under the orthogonal group acting onRn.

2.2 Homogeneous and isotropic variance-covariance tensor
(correlation tensor)

Taylor (1938) proved that the homogeneous random field
X(t) correlation function6(r) = 〈X(t + r)X(t)〉 depends
only on the lengthr = ‖r‖ of the vectorr and not on its
direction, where〈. . .〉 denotes the ensemble average. If the
correlation function6(r) of the homogeneous random field
X(t) in Rn has this property, then the fieldX(t) is said to
be an isotropic random field inRn. The corresponding cor-

Fig. 2. Graphical representation of the correlation tensor transfor-
mation.

relation function6(r) is then called an isotropic correla-
tion function inRn (or ann-dimensional isotropic correlation
function). Processes, which satisfy the introduced postulates
of homogeneity and isotropy, are said to be (widely) station-
ary (Yadrenko 1983). Note that for an isotropic random field
in Rn, all directions in space are obviously equivalent.

The decomposition of a homogeneous and isotropic
variance-covariance tensor-valued function, shown in Box 1,
was introduced by von Karman and Howarth (1938) by
means of a more general and direct method than the one used
by Taylor (1938). Additionally, Robertson (1940) refined and
reviewed the Karman-Howarth equation in the light of a clas-
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Fig. 3. The behavior of Tatarski’s correlation function for different values of the shape parameterν (d = 900) and scale parameterd

(ν = 3/2).

sical invariant tensor theory.

The decomposition of6ij (‖x∗
−x∗∗

‖), with a special em-
phasis onn = 3, is performed in terms of Cartesian coordi-
nates and with respect to the orthonormal frame of reference
{e1, e2, e3|0} attached to the origin 0 of a three-dimensional
Euclidean space.‖x∗

−x∗∗
‖ denotes the Euclidean distancer

between the two pointsx∗ andx∗∗ of E3
:= {R3, δij }. Lon-

gitudinal and lateral correlation functions,6l and6m, are
the structural elements of such a homogeneous and isotropic
tensor-valued variance-covariance function which appear in
the spherical tensor6m(r)δij as well as in the oriented ten-
sor [6l(r) − 6m(r)]1xi1xj/r2 for all i, j ∈ {1, 2, 3}, see
Eq. (2) and Fig. (1).δij denotes the Kronecker or unit matrix,
1xi the Cartesian coordinate differences between the points
x∗ andx∗∗. These differences are also represented in terms
of relative spherical coordinates(α, β, r), Eq. (3). Finally,
the continuity condition of a potential type is formulated by
Eq. (4), which provides the unique relation between the6l

and6m (Taylor, 1938; Obuchow, 1958; Grafarend; 1979).

Due to its complexity, it is necessary to further elaborate
on the previous equation set. The correlation tensor6ij (r)

was transformed to a special coordinate systemO ′x′

1x
′

2x
′

2 in
R3 instead of the initial setOx1x2x3. The new setO ′x′

1x
′

2x
′

3
is selected in such a way so that its originO ′ is shifted by
the vectorx∗∗ with respect to the originO, as illustrated in
Fig. (2). This means thatO ′ coincides with the terminal point
of the vectorx∗∗ that refers to the initial coordinates, while
the axisO ′x′

1 lies along the vectorx∗
− x∗∗.

6′

ij (r), introduced here as explanatory functions, are the
components of the correlation tensor6ij (r) in the new set
of coordinates. The functions6′

ij (r) clearly depend only on
the lengthr = ‖r‖ of the vectorr , since the direction ofr

is fixed in the new set of coordinates. In the spaceR3 exists
a reflection which leaves the pointsx∗ andx∗∗(= O ′) un-
moved and replaces the axisO ′x′

j by −O ′x′

j , wherej 6= 1
is a fixed number. However, it does not change the directions
of all other coordinate axesO ′x′

l , l ∈ {1, 2, 3} andl 6= j . It
follows that

6′

ij (r) = −6′

ij (r) = 0 for i 6= j. (5)

Hence, only the diagonal elements6′

ii(r) of 6ij (r) can dif-
fer from zero. Further more, ifi 6= 1 andj 6= 1, then the
axisO ′x′

i , by its rotation around the axisO ′x′

j , can be trans-
formed to the axisO ′x′

1. Hence

6′

22(r) = 6′

33(r). (6)

The tensors6′

ij and, consequently,6ij are symmetric and
their components6′

ij (r) can take at most only two non-equal
non-zero values at the already introduced longitudinal corre-
lation function6′

11(r) = 6l(r) and the lateral correlation
function 6′

22(r) = 6′

33(r) = 6m(r), which specify in a
unique way the correlation tensor. In order to obtain the ex-
plicit form for 6ij (r), as the function of6l(r) and6m(r),
the unit vectors of the old coordinate axesOx1, Ox2, Ox3
along the axes of the new systemO ′x′

1, O
′x′

2, O
′x′

3 must
be resolved and then6ij (r) can be represented as a linear
combination of the functions6′

kl(r), (k 6= i, l 6= j and
k, l ∈ {1, 2, 3}), which leads to Eqs. (1) and (2).

2.3 Homogeneous and isotropic correlation functions

It was shown in the previous section that for a homogeneous
and isotropic random field defined on the Euclidean space
Rn, the correlation betweenx∗ andx∗∗ depends only on the
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the first kind of order (n − 2)/2 and Γ stands for the Gamma function. Hence, in for geodesy

relevant spaces R2 and R3, Eq. (9) reduces to the form presented in Eqs. (10).

Box 2.

Isotropic correlation function and Schoenberg’s characterization

”homogeneous and isotropic correlation function”

Σ(x∗,x∗∗) = Σ(‖x∗ − x∗∗‖), x∗,x∗∗ ∈ Rn (7)

r := ‖x∗ − x∗∗‖

”the characterization of the Φn class”

Σn(r) =

∫

[0,∞)

Ωn(rν)dW (ν) (8)

Ωn(r) = Γ(n/2)

(

2

r

)(n−2)/2

J(n−2)/2(r) (9)

”reduction of the Ωn for n = 2 and n = 3”

Ω2(r) = J0(r) and Ω3(r) = r−1 sin r (10)

1.4 Tatarski’s class of homogeneous and isotropic correlation functions

Many analytical candidate models for Σ have been suggested in the literature (for example,

Buell (1972) and Haslett (1989)), but we refer to Tatarski (1961) as being the first who elaborated

on such correlation functions which fulfil all the conditions presented in the previous section. The

Tatarski’s correlation function class is shown in Box 3 and illustrated by Fig. 3. In addition to

Tatarski’s class, a very general family of correlation function models due to Shkarofsky (1968) is

introduced, that came as the generalization of Tatarski’s correlation function family. These two

classes, which have been proved to be the members of Φ3 (Shkarofsky 1968) and of Φ∞ classes

(Gneiting et al. (1999)), can be applied to many geodetic problems, e.g. Grafarend (1979),

Meier (1981), Wimmer (1982), Grafarend (1985).

7

Box 3.

Special classes of correlation functions

”Tatarski’s class”

Σ[ν](r) =
21−ν

Γ(ν)

(r

d

)ν
Kν

(r

d

)

(11)

”Shkarofsky’s class”

Σ[ν,δ](r) =

(

r2

d2
+ δ2

)ν/2

Kν

(

(

r2

d2
+ δ2

)1/2
)

δνKν(δ)
(12)

In equation Box 3, Kν stands for a modified Bessel function of order ν, d > 0 is a scale

parameter, and δ > 0 and ν are shape parameters. In the case of δ = 0 Shkarofsky’s class

reduces to Tatarski’s class.

The special case of Tatarski’s class appears if the shape parameter ν is the sum of a non-

negative integer k and 1/2. Then the right-hand side of the equation can be written as a product

of exp(−r/d) and a polynomial of degree k in r/d (e.g. Gneiting (1999)). In particular, in the

case of n = 3 dimensional Markov process of the p = 1 order, shown in Fig. 4, the shape

parameter is expressed as ν = (2p+ 1)/(n− 1) = 3/2 and results in the following simplification

of Eq. (11):

Σ[3/2](r) =
(

1 +
r

d

)

exp
(

−
r

d

)

. (13)

2 Three-dimensional Taylor-Karman criterion matrix in the geomet-

ric and gravitational analysis of LEO satellite ephemeris

We have so far analyzed the theoretical background and solution for design of the homogeneous

and isotropic Taylor-Karman correlation tensor. The question is, how this theoretical concept

applies to the geometric and gravitational analysis of LEO satellite ephemeris.

The basic idea is, that the errors in position vectors of LEO satellites constitute a vector-

valued stochastic process. Following this concept, a satellite orbit of LEO - GPS tracked satellites

8

Euclidean distance‖x∗
− x∗∗

‖. Therefore, as shown in Box
2, we can distinguish a homogeneous and isotropic correla-
tion function onRn with the real-valued function6(r) de-
fined on[0,∞) and we denote by8n the class of all con-
tinuous permissible functions6(r). 8n is the class of all
continuous functions6(r) : [0, ∞) → such that6(0) = 1
(we are working in terms of correlation not covariance) and
the symmetric function6(‖ · ‖) is a positive definite onRn.
The characterization of the classes8n, also shown in Box 2,
is a well-known result of Schoenberg (1938). The function
6(r) : [0, ∞) → R is an element of8n if and only if it
admits a representation in the form of Eq. (8), whereW is a
probability measure on[0, ∞), J(n−2)/2 is the Bessel func-
tion of the first kind of order(n − 2)/2 and0 stands for the
Gamma function. Hence, in for geodesy relevant spacesR2

andR3, Eq. (9) reduces to the form presented in Eqs. (10).

2.4 Tatarski’s class of homogeneous and isotropic correla-
tion functions

Many analytical candidate models for6 have been suggested
in the literature (for example, Buell, 1972; Haslett, 1989), but
we refer to Tatarski (1961) as being the first who elaborated
on such correlation functions which fulfill all the conditions
presented in the previous section. The Tatarski’s correlation
function class is shown in Box 3 and illustrated by Fig. 3. In
addition to Tatarski’s class, a very general family of correla-
tion function models due to Shkarofsky (1968) is introduced,
that came as the generalization of Tatarski’s correlation func-
tion family. These two classes, which have been proved to
be the members of83 (Shkarofsky, 1968 and of8∞ classes;
Gneiting et al., 1999), can be applied to many geodetic prob-
lems, (e.g. Grafarend, 1979; Meier, 1981; Wimmer, 1982;
Grafarend, 1985).
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In equation Box 3,Kν stands for a modified Bessel function
of orderν, d > 0 is a scale parameter, andδ > 0 andν are
shape parameters. In the case ofδ = 0 Shkarofsky’s class
reduces to Tatarski’s class.

The special case of Tatarski’s class appears if the shape
parameterν is the sum of a non-negative integerk and
1/2. Then the right-hand side of the equation can be writ-
ten as a product of exp(−r/d) and a polynomial of degree
k in r/d (e.g. Gneiting, 1999). In particular, in the case
of n = 3 dimensional Markov process of thep = 1 or-
der, shown in Fig. 4, the shape parameter is expressed as
ν = (2p + 1)/(n − 1) = 3/2 and results in the following
simplification of Eq. (11):

6[3/2](r) =

(
1 +

r

d

)
exp

(
−

r

d

)
. (13)

3 Three-dimensional Taylor-Karman criterion matrix
in the geometric and gravitational analysis of LEO
satellite ephemeris

We have so far analyzed the theoretical background and so-
lution for design of the homogeneous and isotropic Taylor-
Karman correlation tensor. The question is, how this the-
oretical concept applies to the geometric and gravitational
analysis of LEO satellite ephemeris.

The basic idea is, that the errors in position vectors of LEO
satellites constitute a vector-valued stochastic process. Fol-
lowing this concept, a satellite orbit of LEO – GPS tracked
satellites is an inhomogeneous and anisotropic field of error
vectors and the error situation is described by the covariance
function. As it is well known, the error situation of a newly
determined position in a three-dimensional Euclidean space
is the best, when the error ellipsoid is a sphere (isotropy)
with a minimal radius and if the error situation is uniform
over the complete satellite orbit (homogeneity). This “ideal”
situation can be explained by the three-dimensional Taylor-
Karman structured criterion matrix of Baarda-Grafarend (po-
tential) type. Then the correlations between the vectors of
pseudo-observations of satellite ephemeris are described by
the longitudinal and lateral correlation functions.

The characteristic correlation functions can be estimated
by matching the correlation tensor with a three-dimensional
Markov process of the 1st order and with the introduction of
some additional information about the underlying process.
The correlation analysis is performed with the assumption
that the vector valued three-dimensional random function is
of “potential type” (Grafarend, 1979), i.e. is the gradient of
a random scalar function “signals(x)”. The structure of the
random functions(x) is outlined as an-dimensional Markov
process of thep-th order. Figure 4 illustrates the casen = 3
andp = 1.

One of the simplest differential equation of such a process
has the form given by

(∇2
− α2)ps(x) = e(x) (14)

wheree(x) is a white noise. If the Laplace operator can be
applied to the homogeneous random scalar function, then it

Fig. 4. The six point interaction in the grid; the three-dimensional
Markov process of the 1st order (autoregressive process); the gray
rectangle represents the same process in two-dimensions.

transforms this function into a new homogeneous random
function, having the spectral density that corresponds to the
spectral density of the correlation function of Eqs. (11) and
(12), see Whittle (1954), Heine (1955) and Whittle (1963).
Hence the homogeneous solution of Eq. (14) (if it exists)
must have the spectral density that corresponds to the spec-
tral density of the correlation function.

Box 4 summarizes the representation of the homogeneous
and isotropic correlation functions of type (i) signal correla-
tion function6, (ii) longitudinal correlation function6l and
(iii) lateral correlation function6m.

4 Results and conclusions

4.1 Case study: CHAMP

As the numerical test in this study, we processed two
data sets: the two three-dimensional{x(tk), y(tk), z(tk)}

and {x(td), y(td), z(td)} Cartesian ephemeris time-series of
CHAMP satellite orbit for the test period from the day 140
to 150 of 2001 (20 May to 30 May, both inclusive). We ana-
lyzed in total 27 360 triples of satellite positions. Both time
series are indexed with a 30 second sampling rate and refer-
enced to a kinematic (indexk) and a dynamic CHAMP orbit
(indexd). The dynamic orbit, used as a reference, provides
us with ephemeris differences between the two orbits. The
estimation of (“real”) auto and cross correlations between the
vectors of pseudo-observations as functions of time, can be
performed as in Priestley (1981).

According to Box 1 and Box 4 the Taylor-Karman struc-
tured (“ideal”) correlations are computed from the three-
dimensional{x(tk), y(tk), z(tk)} time series. The adopted
scale parameter isd = (2/3)Rchar , whereRchar is the char-
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Box 4.
Longitudinal and lateral correlation function for a homogeneous and isotropic

vector-valued random field of potential type, 1st order Markov process

”condition for a process of potential type”

Σ(x) −→
2p

r2

r
∫

0

xΣ(x)dx −→

−→ Σl(r) =
d

dr
[rΣm(r)]

”input”

Σ (r) =
2−1/2

Γ (3/2)

(r

d

)3/2
K3/2

(r

d

)

=
(

1 +
r

d

)

exp
(

−
r

d

)

(15)

”output”

Σl(r) = −6
(r

d

)−2
+ exp

(

−
r

d

)

[

4 + 2
(r

d

)

+ 6
(r

d

)−1
+ 6

(r

d

)−2
]

(16a)

Σm(r) = 6
(r

d

)−2
− exp

(

−
r

d

)

[

2 + 6
(r

d

)−1
+ 6

(r

d

)−2
]

(16b)
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Figure 5: The behavior of the longitudinal and lateral correlation functions, Eqs. (16a) and
(16b), for different values of the scale parameter d (ν = 3/2).
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acteristic length of the process. The characteristic length is
defined by the arc length of 2400 seconds (80 points for the
30 seconds sampling rate). The both parameters are experi-
mentally estimated. For further details on the scale parameter
and characteristic length, please see Wimmer (1982).

The numerical results of the study are graphically pre-
sented in Fig. 6. The gray area represents the estimated

(“real”) correlation situation along the satellite arc as presup-
posed by Austen et al. (2001). The high auto and low cross
correlations between CHAMP satellite positions for approx-
imately 20 min of an orbit arc are very evident. The Taylor-
Karman structured correlation (black line), as theoretically
assumed, gives an upper bound of the “real” correlation situ-
ation along the satellite orbit.
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Fig. 6. Graphical representation of the
numerical study results (20 min correla-
tion length, 40 points for the 30 s sam-
pling rate).

4.2 Concluding remarks

With this study, the statistical analysis of Grafarend (1979)
is successfully extended to the third dimension and applied
into a homogeneous and isotropic stochastic analysis of
semi-continuous ephemeris of LEO – GPS tracked satellites.
Tatarski’s correlation function class is also introduced.

In order to obtain the “ideal” error information along the
satellite orbit, a derived mathematical model for Taylor-
Karman correlation tensor was applied. The model was de-
veloped by matching the correlation tensor with a random
function outlined as a three-dimensional Markov process of
the 1st order. The characteristic functions of the tensor, lon-
gitudinal and lateral components, are derived with the as-
sumption that the random function is of “potential type”.
Further on, under the continuity condition, exists the unique
relation between the characteristic functions. The imple-
mented random function is a member of Tatarski’s correla-
tion function class.

Behind the Taylor-Karman correlation tensor lies the ba-
sic idea of the data validation process and necessity to deter-
mine the quality of the underlying process (geodetic network,
satellite orbit, etc.). With this concept, canonical comparison
of “real” and “ideal” covariance matrix is performed and, in-
stead of referring to the quality of the process through one
number, the whole spectrum of information about the pro-
cess quality becomes available.

In the light of the new satellite missions (CHAMP,
GRACE, GOCE), there are further applications of Taylor-
Karman tensor in weighting schemes, in regularization algo-
rithms, etc., of the LEO satellites measurements. The new
applications are enabled: (i) with the introduction of a higher
order Markov process and/or different shape and scale pa-
rameters, (ii) by matching the longitudinal and lateral com-
ponents of the tensor with the experimental results, and (iii)
with the higher order correlation tensor modeling. These will
be the subject of future articles.
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Gneiting, T. and Sasvári, Z.: The characterization problem for
isotropic covariance functions, Q. J. R. Meteorol. Soc., 125,
2449–2464, 1999.

Haslett, J.: Space time modeling in meteorology – a review, Bull.
Int. Stat. Inst., 53, 229–246, 1989.

Heine, V.: Models for two-dimensional stochastic process,
Biometrika, 42, 170–178, 1955.
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