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Abstract. In the course of level 2 data processing for the
GOCE (Gravity Field and Steady–State Ocean Circulation
Explorer) satellite mission different streams of level 1b data
will be merged in a single solution providing the Earth’s
gravity field, but also state-vector parameters and other quan-
tities. A proper weighting of orbit tracking data, gravity gra-
diometry data and certain a priori information, usually con-
sidered as ‘solution constraints’, can be expected as crucial
for the solution quality. But the a priori stochastic models,
based on pre–mission assessment of the expected instrument
behaviour, may be over–optimistic or even too pessimistic
since they refer to an unprecedented mission with scientific
payload never tested in space. One way to derive an opti-
mal weighting scheme on a statistically sound basis while
simultaneously validating the stochastic noise levels of the
data is by including variance component estimation as a part
of the level 1b to level 2 data analysis process. The idea is
that by applying Monte-Carlo techniques this method can be
extended to a large-scale problem like GOCE data analysis,
using software modules that already exist or are currently
under development. The proposed method has been tested
using simulated GOCE orbit trajectories as well as gravity
gradiometry data corrupted by colored random noise.
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1 Introduction

As its main product, ESA’s Gravity and Steady-State Ocean
Circulation Explorer Mission (GOCE) will provide a global
model of the Earth’s static gravity field (ESA 99). The com-
putation of this model will rely on different level 1b data sets
that should be processed ideally in a joint parameter esti-
mation scheme. This includes at least satellite gravity gra-
diometry data derived from different accelerometer combi-
nations, and satellite-to-satellite tracking data from the GPS
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system. Depending on the solution strategy and objectives,
airborne data collected over the Earth’s polar areas, gravity
data or models provided by the current missions CHAMP or
GRACE, or adopted a priori constraints on high-degree sig-
nal power may be used in the analysis.

Needless to say that the choice of the relative weights for
these data sets or models is of vital importance for obtaining
the most reliable estimates of the spherical harmonic coef-
ficients, the level 2 product. But also the reliability of the
estimated covariance matrix of the gravity field solution will
depend on the assumptions about the observation weights.
We propose therefore, that a weight optimization process on
a stochastic basis should be included in the level 1b to level
2 (hereafter abbreviated as L2) data processing. Although a
lot of effort is currently put into the pre-mission investiga-
tion of error models for the gradiometer instrument and the
precise orbit determination (POD) process, and into in-flight
calibration and error assessment strategies that apply before
arriving at the level 1b (Koop et al., 2002), optimization with
respect to the weights given by these models within the L2
processing may still improve the final product. At the same
time it would serve as a validation of the a priori stochastic
models, when real data becomes available. However, also the
functional models implemented in the processing will suffer
from imperfections, e.g. an aliasing effect might occur due to
truncation of the spherical harmonic expansion, and the sen-
sor models will simplify the measurement process. On the
one hand, adjusting the stochastic models in a joint estima-
tion process will to a certain extend compensate for this func-
tional mismodelling, on the other hand these effects must be
taken into account when interpretating the estimated stochas-
tic parameters.

The method investigated in this paper relies on a statisti-
cal basis, i.e. the (almost) unbiased estimation of variance
components (VCE), see e.g. Grafarend et al. (1980) or Koch
(1990). Looking at the present GOCE data analysis concepts,
the main limitation of VCE techniques so far seems the costly
and repeated computation of the redundancy contributions of
the observation groups, which equal to the trace of the so-
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called observation group influence matrices. The latter is
the projection matrix which relates a particular observation
group to the corresponding least-squares adjustment residu-
als; it involves the normal matrix contribution of the particu-
lar data set as well as the inverse of the weighted combined
normal matrix. For large systems, like those encountered
when solving for a high-resolution gravity field model within
GOCE L2 processing, this appears prohibitive. Therefore
we propose a variant described by Koch and Kusche (2002),
which makes use of a stochastic trace estimation technique
invented by Girard (1989) and Hutchinson (1990). It has
been recently (Kusche, 2003) re-structured and developed
further in a Monte-Carlo sense (and called MCVCE), that
is, on input for an arbitrary least-square inversion software
we use cyclically randomized versions of the original data
set where for each observation group in question an artificial
noise sequence has to be passed through the inversion. On
output, from a comparison of the residuals obtained with the
original data and the randomized data the variances are esti-
mated and new weights are chosen in an iterative sense. The
main advantage is, that basically an existing software pack-
age for solving the L2 inversion problem can be used without
modifications.

The material is organized as follows: First, we briefly re-
view the particular iterative VCE algorithm we intend to use.
We will explain how this algorithm can be ‘mimicked’ by
embedding a given L2 inversion program in a Monte Carlo
framework, that is, by passing artificially generated random
data through the inversion. Finally, two simulations un-
der rather simplified condition show how a priori stochas-
tic models for GOCE data can be validated and improved
by MCVCE: We consider (1) low-degree gravity field recov-
ery from the GPS orbit determination, where the noise level
varies between different (1 day–) orbital arcs, and 2) a si-
multaneous assessment of the total gradiometer noise power
(variance) and the total power of an a priori signal degree
variance model. A discussion closes this contribution.

2 Methodology

The linear observation model, which shall be adopted here
for the joint inversion ofp independant observation groups
collected from GOCE, reads

Xiβ = yi + ei i ∈ {1, . . . , p} . (1)

The ni × u matricesXi are the design matrices, theu × 1
vectorβ represents the unknown spherical harmonic coeffi-
cients plus additional unknowns such as state–vector param-
eters, theni × 1 vectorsyi contain the observations, and the
ni × 1 vectorsei the stochastic observation errors. The ob-
servation vectors may be internally correlated (the noise may
be coloured) but are assumed to be uncorrelated with respect
to each other. Moreover, we assume that the covariance ma-
trices of these observation groups are known a priori only up

to some scaling factors, thep noise levels or variance com-
ponentsσ 2

i :

E(eie
′

j ) = 0 E(eie
′

i) = σ 2
i P −1

i . (2)

This means, that the total number of unknowns in our prob-
lem isu + p. The actual numberp of these subdivisions of
the overall GOCE data set, corresponding to the number of
degrees of freedom in the stochastic model, will be a part of
the solution strategy and as such subject to individual consid-
erations and growing experience in the course of the L2 pro-
cessing phase. If only the weighting between GPS-derived
precise orbit (POD) data and gradiometry data as a whole is
considered,p equals to 2. If, in addition, we allow for adjust-
ing the weight of a priori information (contraining the very
high degrees),p equals to 3. If one breaks off the stochas-
tic model by allowing for varying noise levels in time, e.g.
after orbit manoeuvres, internal re–calibrations, or between
orbital arcs, and in space, e.g. between the different gra-
diometer components,p might become reasonably large.

The estimation of variance componentsσ 2
i (Grafarend et

al., 1980; Koch 1990) leads generally to a coupled iterative
process, since both the calculation of the so–called group re-
dundanciesri (see below, step 4) as well as of the residuals
êi involve knowledge of all variance levelsσ 2

j , j = 1 . . . p.
The strategy is then:

1. Selectp start values for the noise levelsσ 2
i
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5. Determinep new variance components, and continue

with step 2 until convergence
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How many iterations are required generally depends on
how good the functional and the stochastic models fit the ob-
servations, and is therefore difficult to predict in advance.
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The group redundancy numbers are key quantities in the as-
sessment of combination solutions and their information con-
tent: By their definition,r(k)

i = trace(∂ ê
(k)
i /∂yi), they quan-

tify the overall contribution of a certain observation group
to the final solution. But step 4 obviously poses a problem
for GOCE L2 processing: The computation of the related
matrix requires repeated solutions of the normal system with
the columns of thei-th individual normal matrix as right–
hand side. This would probably require major modifications
in the inversion software, and it is doubtful that this opera-
tion can be performed in reasonable time even with super-
computers. Therefore, in the following we aim at obtaining
a computational cheap Monte Carlo estimate of the redun-
dancy numbers.

3 Monte Carlo implementation

A Monte Carlo implementation of the computation of the
group redundancy numbers, based on trace estimation tech-
niques, has been originally proposed by Koch and Kusche
(2002), and elaborated further in Kusche (2003). We skip
the details here. One way is to replace thep contribution
measuresr(k)

i in step 4 by the estimateŝr(k)
i , which follow

from

r̂
(k)
i = ni −

1

σ 4
i

(k)
w′

iP iXi p̂
(k)
i .

Herewi is an artificially generatedni ×1 random vector with
zero expectation and variance-covariance matrixD(wi) =

σ2
i

(k)

σ2
i

(0) σ
2
i

(0)
P −1

i , thus possessing the same stochastic first and

second moments as expected for the (true but unknown) er-
ror vectorei . The vectorp̂(k)

i is nothing else but the parame-

ter vectorβ̂ obtained when replacingyi by the artificial ran-
dom vectorwi and all other observation groupsyj , j 6= i,
simply by zeroes. The Fig. 1 points out the principle: Af-
ter step 2 (the inversion software solves from all available
data sets for the gravity unknowns, given an initial weighting
scheme), one has to run again the inversion for each of the
p data sets with the same normal or design matrix but with
different right-hand sidesX′

iP iwi . Since each of these right-
hand sides consists of zeroes forp − 1 data sets, the overall
numerics to be added (within one iteration of the process) is
one re-computation of a full right-hand side vector, andp so-
lutions of the normal equations for varying right-hand sides.
Using these solutions,p data synthesis operations have to be
added to obtain thep variance estimates and a new weighting
scheme.

4 Numerical studies

4.1 Noise variance estimation within long-wavelength
gravity field recovery from the GPS–POD

The GPS receiver aboard GOCE plays a multiple role; it en-
ables a high-precision orbit determination allowing the gra-

diometer data to be processed without estimation of orbit er-
rors, and it serves for recovery of the long-to-medium part
of the gravity field. The POD is expected to be at the cm-
accuracy level (Visser and van den IJssel, 2000).

In this study a simulated 10 days GOCE orbit solution
has been used as pseudo observation set, i.e. cartesianx,
y, andz coordinates in an Earth-centered quasi-inertial ref-
erence frame, split up intop = 10 data sets (orbital arcs)
of 1 day each. In an adjustment for gravity parameters
β = (δc02, δc12, δs12, . . .)

T (that is, the difference of the
harmonic coefficients between the ‘true’ model OSU91a and
the adopted initial model JGM-3) as well as for 10 sets of
state-vector epoch parametersβ i = (x, y, z, vx, vy, vz)

T ,
i = 1 . . . 10, the partial derivatives of the satellite positions
with respect to the unknowns have been obtained by numer-
ical integration of the variational equations. The OSU91a
model has been used complete up to degree 50 for the orbit
generation. One has to note that the parameter estimation
process actually has to be iterated due to linearization errors;
however these errors are systematic but small for degree 50
and no re-computation of the partials was applied. Also no
regularization was imposed on the estimation process. Of
course, these considerations should be revised when higher
resolutions will be taken into account. Simulated noise-free
data and partials files, computed from the GEODYN II orbit
determination software (McCarthy et al., 1993) have been
kindly provided by P. Visser. A detailed description is given
in (Visser et al., 2001), where this data set has been used
in a comparative study on the quality of different recovery
methods. At the time of writing, it is indeed expected that
the variational approach will be followed in the derivation
of the official ESA level–2 gravity field product from the
GPS POD. We added a generated colored noise sequence
to these data, whose power spectral density (PSD) model
shows peaks of(2cm/1.5cm/0.8cm) at the 1cpr frequency in
along/cross/radial orbit direction, and remains flat elsewhere.

For the inversion, these pseudo-observed coordinatesx, y,
andz were assumed as uncorrelated in time as well as with
respect to each other (thus both assumptions causing stochas-
tic model errors), and an unknown variance componentσ 2

i

has been assigned to each orbital arc. For all experiments
we assumed equal start valuesσ 2

i = (1cm)2 for the first it-
eration. Results are given for the estimated common gravity
parameterŝβ, expressed in terms of geoid height errors, and
for the estimated variance components.

In a first simulation run, we scaled the generated noise se-
quences for each arc individually by a random factor with ex-
pectation one and sigma 0.5, thus simulating fluctuations of
the noise level. Geoid errors and the range of the estimated
variance levels are shown in Table 1. Clearly, such moder-
ate noise level fluctuations have only minor influence on the
gravity field solution. But nevertheless, a few iterations of
MCVCE could improve the solution somewhat in terms of
maximum geoid errors (being located at the polar areas due
to the lack of measurements). The estimated range of vari-
ances give a good validation of the simulated fluctuation.
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Fig. 1. Modular use of inversion software within MCVCE software.

Table 1. Results for the first case. Noise levels vary between the
arcs with 0.5cm standard deviation

Geoid errors [cm]
case max rms average estimatedσ̂i [cm]

equal weights 105.3 11.0 16.2 1

1st iteration 104.3 11.1 16.4 0.8. . . 1.4

5th iteration 100.9 11.0 16.3 0.7. . . 1.7

convergence 100.3 10.9 16.2 0.6. . . 1.8

Afterwards, we repeated the same experiment but for two
arcs the simulated noise level was now doubled with re-
spect to the original(2cm/1.5cm/0.8cm) noise sequence,
see table 2. The two ‘bad’ arcs (20% of the data!) in fact
cause strongly increased geoid errors, when no downweight-
ing takes place at all. After downweighting in the course of
the MCVCE iteration, these errors are damped reasonably.

4.2 Assessing total power of noise and of signal-variance
constraints in a gradiometry-only solution

The performance of MCVCE has been investigated, in a sec-
ond study, for its ability of validating the gradiometer total
noise power in a full-scale simulation, complete until degree
and order 300. One has to note that for this high resolution
some kind of regularization is indispensible. In the present
study this is achieved by introducing different Kaula-type

Table 2. Results for the first case. For two arcs the noise level has
been doubled

Geoid errors [cm]
case max rms average estimatedσ̂i [cm]

equal weights 158.4 16.6 24.1 1

1st iteration 132.6 13.6 20.1 1.4 . . . 2.2

5th iteration 114.0 12.7 18.3 0.9 . . . 2.8

convergence 107.7 12.4 17.8 0.8 . . . 2.8

‘weak’ constraints for the signal power of the potential or
of derivatives; ‘weak’ means that the total variance of these
a priori models leaves to be determined from the analysis of
the data. With other words, a variance factor for the a priori
model has to estimated.

A circular orbit, almost repeat with 961 orbit revolutions
during 59.8 nodal days, has been generated. The differ-
ence between OSU91a and GRS80 defines the ‘true’ dis-
turbing potential to be recovered. Along the orbit second
radial derivatives of the disturbing potential were generated
at known positions with a sampling rate of 5 seconds, which
gives about one million observations. These were corrupted
by a coloured noise, generated from a power spectral density
function with a flat spectrum of 9 mE2/Hz between 0.005 Hz
and 0.1 Hz and a 1/f 2 behaviour between 3.7 · 10−4 Hz and
0.005 Hz. The time-wise approach was followed in the com-
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Table 3. Results for the second case

estimated̂σ1, σ̂2 [–], [–]
case constraintl4 constraintl6 constraintl8

initial weights 1, 1 1, 1 1, 1

1st iteration 1.006, 0.981 0.994, 146 1.016, 22100

5th iteration 1.007, 0.982 1.028, 135 1.050, 20380

convergence 1.007, 0.982 1.028, 135 1.050, 20370

putation of the normal equations, yielding a strictly block-
diagonal normal matrix. Coloured noise has been taken into
account in MCVCE by replacing operationsv = Pu by an
ARMA-filter, vn = un −

∑p

k=1 ap,kvn−k +
∑q

l=1 bq,iun−i .
In the variance-component estimation, this filter implemen-
tation can be of low order; we foundp = q = 2 sufficient.

For regularization, we added Kaula–type matricesK to
the normal equations; this means, with entries of order∼ l4,
l6 (first order derivative regularization), orl8 (second order
derivative regularization). The total varianceσ 2

1 of the gra-
diometer observations, as well as a variance factorσ 2

2 for the
signal constraint matrix, has been left open within the analy-
sis for determination by MCVCE. That is, the normal equa-
tions in step 2 of the algorithm of section 2 read explicitly(

1

σ 2
1

(k)
X′PX +

1

σ 2
2

(k)
K

)
β̂

(k)
=

1

σ 2
1

(k)
X′Py

The geoid rms errors are of the order 16 cm for all cases,
when excluding the polar areas. This reflects the observation
that the quality of the gravity field solution is not very sen-
sitive with respect to the choice of the regularization matrix.
But looking at Table 3 we conclude that if the aim is to vali-
date the gradiometer noise level, the constraint implemented
in the regularization matrix should not deviate too much from
the power (degree variances) of the Earth’s true gravity field.
This could be expected since in the stochastic interpretation
σ 2

2 K takes the role of the a priori variance–covariance ma-
trix of the spherical harmonic coefficients. Ideally,σ̂1 would
be estimated to 1, meaning that the a priori stochastic model
that has been used both for simulation and for data analy-
sis, is perfectly validated. Small deviations may be related to
imperfections in the filter design.

5 Discussion

A method has been proposed for validating the variance lev-
els for the different GOCE observation types, and based on
this, for the determination of an optimal weighting scheme.
The method treats all observations as input within a joint pa-
rameter estimation, thus without leaving certain data out for
independent validation. It relies basically on the well-known
and powerful method of variance-component estimation, re-
cast in a Monte Carlo framework. As a consequence, it can

be used without re-coding existing L2 inversion software.
However, numerical studies so far concern only very specific
test cases, and experience has still to be gained. A point of
concern might be that (multiplicative) variance components
can only account for the total power of a particular stochas-
tic model, relying on the a priori structure of the variance-
covariance matrix for this type of observations. In the present
form it is therefore not possible to relate an estimated vari-
ance level to a specific bandwidth in a given power spectral
density (PSD) model; that is to improve the PSD model it-
self apart from a simple re-scaling. To this end, the joint
estimation scheme would have to be further extended for co-
variance components, each of which facilitating an additional
degree of freedom in the (time-wise) correlation structure of
an observation type. However, whereas the theory and appli-
cation of variance-covariance-component estimation is well-
investigated, efficient Monte Carlo type algorithms still have
to be developed.
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