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Abstract. The recovery of a full set of gravity field param-
eters from satellite gravity gradiometry (SGG) is a huge nu-
merical and computational task. In practice, parallel comput-
ing has to be applied to estimate the more than 90 000 har-
monic coefficients parameterizing the Earth’s gravity field up
to a maximum spherical harmonic degree of 300. Three in-
dependent solution strategies, i.e. two iterative methods (pre-
conditioned conjugate gradient method, semi-analytic ap-
proach) and a strict solver (Distributed Non-approximative
Adjustment), which are operational on a parallel platform
(‘Graz Beowulf Cluster’), are assessed and compared both
theoretically and on the basis of a realistic-as-possible nu-
merical simulation, regarding the accuracy of the results, as
well as the computational effort. Special concern is given
to the correct treatment of the coloured noise characteris-
tics of the gradiometer. The numerical simulations show that
there are no significant discrepancies among the solutions of
the three methods. The newly proposed Distributed Non-
approximative Adjustment approach, which is the only one
of the three methods that solves the inverse problem in a strict
sense, also turns out to be a feasible method for practical ap-
plications.

Key words. Spherical harmonics – satellite gravity gra-
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1 Introduction

The Earth’s gravitational field is the focus of attention of
the already launched or currently planned dedicated gravity
field satellite missions: CHAMP (CHAllanging Minisatel-
lite Payload; Reigber et al., 1999), GRACE (Gravity Recov-
ery And Climate Experiment; GRACE, 1998) and GOCE
(Gravity field and steady-state Ocean Circulation Explorer;
ESA, 1999). The GOCE mission strives for a high-accuracy,
high-resolution model of the Earth’s static gravity field, rep-
resented by spherical harmonic coefficients complete up to
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degree and order 300, which corresponds to a shortest half-
wavelength of less than 70 km. GOCE is based on a sen-
sor fusion concept: satellite-to-satellite tracking in the high-
low mode (hl-SST) using GPS, plus on-board satellite gravity
gradiometry (SGG).

The computation of the Earth’s gravity model from these
observations will be a laborious numerical task. This fact is
not only due to the huge amount of data gathered during the
two measuring periods of 6 months each, but also because
of the more than 90 000 spherical harmonic coefficients fully
parameterizing the Earth’s gravity field up to a maximum de-
gree of 300. Some other fundamental problems arise from
the spectral characteristics of the SST and SGG observation
noise, or are due to the fact that the GOCE satellite is flown in
a sun-synchronous orbit (inclinationi ≈ 96.5◦) at an average
altitude of 240 to 250 km, leaving out the polar caps where
no gravity field observations are measured. This leads to a
reduced numerical stability of the normal equations involved
in the parameter estimation process.

The present study concentrates on the SGG component
of the GOCE observables, providing information predom-
inantly about the medium and short wavelengths of the
Earth’s gravity field and thus the majority of gravity field
parameters. During the last decade, several approaches
have been developed to solve this large system of equations
(e.g. Rummel et al., 1993; Schuh, 1996; Klees et al., 2000;
Gruber, 2001). In this paper we will present, compare and
assess three different numerical solution techniques for the
recovery of the harmonic coefficients, i.e.:

– Direct method: Parallel pcgma algorithm,

– Semi-analytic approach,

– Distributed Non-approximative Adjustment.

Although the observation equations are not identical
among these methods, all processing strategies should lead
to nearly identical results in terms of the ‘Level 2’ products
(i.e. spherical harmonic coefficients, geoid heights, gravity
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anomalies). However, the individual methods show their spe-
cific characteristics, advantages, but also drawbacks, which
are addressed in the present paper.

Due to the large numerical effort, advanced computational
capabilities are required. In the framework of the project
‘Scientific Supercomputing’ at the Graz University of Tech-
nology, a parallel computing system based on the Beowulf
concept is operable. At the present stage, it is composed of
24 dual-processor (866 MHz) PCs, each with 1 GB RAM
and 18 GB local hard disk (Plank, 2002). The software used
throughout this paper is implemented on this ‘Graz Beowulf
Cluster’.

However, it should be emphasized, that during the devel-
opment of each parallel application the portability of the soft-
ware onto different hardware architectures was taken into
account. Due to the parallel quasi-standard MPI (Message
Passing Interface) which was generally used, the software is
not restricted to the currently used parallel platform of a Be-
owulf cluster, but runs, e.g. also on massive parallel systems.

2 Functional model

The gravitational potentialV of the Earth is parameterized by
a harmonic series expansion in spherical coordinates(r, θ, λ)

V (r, θ, λ) =
GM

R

lmax∑
l=0

(
R

r

)l+1

l∑
m=0

P̄lm(cosθ)
[
C̄lm cosmλ+ S̄lm sinmλ

]
(1)

whereG,M andR are the gravitational constant, the Earth’s
mass and the Earth’s reference radius, respectively, whileP̄lm
denote the fully normalized Legendre polynomials of degree
l and orderm, andC̄lm, S̄lm are the corresponding fully nor-
malized harmonic coefficients of the series expansion. The
goal is now to determine the harmonic coefficientsC̄lm and
S̄lm as accurately as possible.

The non-polar satellite orbit causes data gaps at the poles,
leading to a loss of orthogonality of the base functions. The
resulting correlations among the base functions cause numer-
ical instabilities, which grow dramatically with the increas-
ing size of the polar data gap and the maximum degree of
expansion (Pail et al., 2001).

Another fundamental problem is the fact that the power
spectral densityS(f ) of the gradiometer features a selected
measuring bandwidth, where the observations can be mea-
sured very accurately (S(f ) ≤ 4mE/

√
Hz within the fre-

quency band 5mHz ≤ f ≤ 100mHz), while the perfor-
mance beyond this spectral window is substantially degraded
(Cesare, 2002). These spectral characteristics have to be
properly included in the adjustment procedure by means of
filter techniques.

3 Solution techniques

The primary goal of all solution strategies is the retrieval of
the spherical harmonic coefficients, denoted byC̄lm andS̄lm
in Eq. (1), from the GOCE observations, i.e. the gravity gra-
dients, in an optimum way. These gravity gradientsVαβ are
second-order spatial derivatives of the gravitational potential
V given in Eq. (1), whereα andβ can take the valuesx,
y or z representing the main spatial directions (along track,
across track, radial) in an Earth-pointing coordinate frame.
They compose the symmetric gravity tensor (Marussi ten-
sor)M = {Vαβ}. In the case of GOCE, four components,
i.e. the three main diagonal componentsVxx , Vyy andVzz as
well as the off-diagonal elementVxz, are measured with very
high accuracy. In the following we will briefly describe three
different solution techniques for gravity field recovery from
GOCE SGG observations.

3.1 Direct method: parallel pcgma

The main property of a direct method is that the observa-
tions are regarded as functions of the geographical location,
i.e. Vαβ = Vαβ(r, θ, λ). In principle, the direct method is
a least squares adjustment, using a standard Gauss-Markov
model and applying the best linear uniformly unbiased esti-
mation with respect to the6−1-norm. If the gravity gradients
were given as an uninterrupted time series with constant step-
size along a circular repeat orbit, the normal equation system
would have a block-diagonal structure (Sneeuw, 2000). In
reality, these simplifying conditions will not be strictly ful-
filled, and consequently the normal equation system will de-
viate from the block-diagonal structure. Therefore, for the
processing of real GOCE mission data, the direct method was
implemented in terms of the pcgma (preconditioned conju-
gate gradient multiple adjustment) algorithm (Schuh, 1996).
As an initialisation step, a block-diagonal preconditioner is
used, and subsequently a conjugate gradient method is ap-
plied iteratively to successively improve the parameter es-
timates. The treatment of the gradiometer’s coloured noise
behaviour is performed in time domain by a discrete, linear,
shift-invariant recursive filter, applied to the observation time
series as well as correspondingly to the columns of the design
matrix (Schuh et al., 1996; Pail and Plank, 2002).

3.2 Semi-analytic (SA) approach

While in the direct method the observations are regarded as
functions of the geographical location(r, θ, λ), they can also
be considered as a periodic time-series for one repeat period
(Rummel et al., 1993; Sneeuw, 2000). Assuming a circular
orbit, the gravitational potentialV in Eq. (1), and also second
order derivativesVαβ , can be rewritten as a Fourier series

Vαβ(t) =

∑
m

∑
k

[Akm cosψkm(t)+ Bkm sinψkm(t)] (2)

whereψkm(t) is related to the two fundamental frequencies
ωo (satellite orbit revolution) andωe (Earth’s rotation).
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The spherical harmonic coefficients̄Clm, S̄lm of the same
orderm are lumped together in a linear way to compose the
Fourier coefficientsAkm andBkm:

Akm =

GM

R

lmax∑
l=lmin [2]

(
R

r

)l+1

λ
(αβ)
lk F̄ klm(i)

{
C̄lm

−S̄lm

}l−m even

l−m odd
(3)

Bkm =

GM

R

lmax∑
l=lmin [2]

(
R

r

)l+1

λ
(αβ)
lk F̄ klm(i)

{
S̄lm
C̄lm

}l−m even

l−m odd
(4)

whereF̄ klm(i) denotes the inclination function which depends
on the orbit inclinationi. The spectral transfer coefficients
λ
(αβ)
lk express the relation between the spherical harmonics
C̄lm, S̄lm and a specific observableVαβ .

In this SA approach the Fourier coefficients (‘lumped co-
efficients’)Akm, Bkm are computed by FFT techniques in a
first step, and in a second step the harmonic coefficientsC̄lm,
S̄lm are adjusted order by order from the pseudo-observations
Akm, Bkm, assuming a strict block-diagonal structure of the
normal equation system. In a strict sense, this algorithm only
holds, if an uninterrupted sequence of observations with con-
stant sampling rate is measured along a circular, exact repeat
orbit. Similarly to the pcgma method, the deviations from
these requirements are incorporated by means of an iterative
procedure.

While in the pcgma method the gradiometer’s coloured
noise behaviour is treated by decorrelation applying a recur-
sive digital filter procedure, essentially representing a con-
volution of the observations by a filter impulse response in
time domain, in the SA approach this filter operation is a
simple multiplication in frequency domain. The ‘lumped co-
efficients’ Akm, Bkm (representing the observations in the
frequency domain) are directly related to a frequency via
ψkm, and the spectral gradiometer properties can be de-
scribed by the frequency-dependent variancesσ 2

km, which
are included as a diagonal variance-covariance matrix of the
pseudo-observationsAkm, Bkm (cf. Eqs. 3 and 4) in the
course of the adjustment of the harmonic coefficients. The
SA approach is by far the fastest method and suggests itself
as a powerful tool for quick-look validation to derive a fast
diagnosis of the GOCE system performance.

3.3 Distributed Non-approximative Adjustment (DNA)

The basic idea of this newly proposed method is to process
not only parts of the normal equation matrix, which is es-
sentially reduced to the block-diagonal structure in the case
of the direct method (pcgma) and the SA approach, but to
solve the whole system in a strict sense. This requires an
enormous amount of computer resources. As an example, a
normal equation system complete up to degree and order 300
holds about 4.1 billion elements, and thus requires a storage
of 31.1 GB (double precision). This huge matrix cannot be

stored in the main memory of a single computer, but has to
be distributed over the processing elements of the cluster.

The DNA process can be split into two parts, i.e. the set-
up of the normal equation matrix, and the solution of the sys-
tem. Most of the computation time is used for assembling the
normal equations, because for each observation the normal
equation matrix has to be updated. The filtering procedure
needed due to the gradiometer’s coloured noise behaviour is
done by applying an analogous recursive digital filter strat-
egy as in the pcgma method (cf. Sect. 3.1).

For a distributed memory system, the data transfer be-
tween the Processing Elements (PEs) is a bottleneck. In a
Beowulf cluster, this connection can slow down the whole
system if huge quantities of data have to be exchanged be-
tween different nodes, leading to a side condition of min-
imizing the number of messages in the implementation of
the DNA algorithm. Therefore, each PE was allowed to up-
date its own part of the normal equation matrix independently
from the others. Although the same calculations (e.g. setting
up the observation equations) are done by more than one PE,
leading (theoretically) to a loss of performance, no messages
are needed during the whole assembly step.

The second part, i.e. the solution of the normal equation
system, is very different concerning the overall behaviour.
Since symmetric matrices are used, the solution of the system
is conveniently performed by Cholesky decomposition. A
second difference is the data transfer required to apply this
algorithm. Each PE needs the already reduced parts from
its predecessors to reduce its own part. Therefore, a close
interaction between the nodes is required to solve the system.
More details about the DNA algorithm can be found in Plank
(2002).

Concerning the computing time, the DNA algorithm is
outperformed by the two approximative solution strate-
gies, because the number of operations dramatically in-
creases. However, the DNA algorithm solves the system
in a strict sense. Therefore, it is able to handle additional
non-gravitational parameters (e.g. calibration factors, non-
conservative force models) in a correct way, because it does
not depend on the sparsity of the normal equation matrix.
In contrast, the approximative methods rely heavily on this
property, and additional correlations destroy the sparse struc-
ture of the matrix, and thus violate the initial assumption
these approximative methods are based on. A second big ad-
vantage of the strict DNA solution is the fact, that it provides
the full inverse and thus also the full variance-covariance ma-
trix, which is needed by many GOCE user groups in geodesy,
oceanography and geophysics.

4 Simulation and results

In order to assess the performance of the three numerical so-
lution strategies for Earth’s gravity field recovery regarding
the quality of the recovered coefficients and the computa-
tional effort in terms of computing time, a closed-loop sim-
ulation was performed. It is based on OSU91a (Rapp et
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Fig. 1. Convergence behaviour of(a) the parallel pcgma and(b) the SA approach with respect to the OSU91a model (dash-dotted curve) in
terms of degree rms defined in Eq. (5) for 10 iterations.

al., 1991), complete up to degree and orderlmax = 180.
Measurement time-series representing the gradiometer sig-
nal are computed along a non-circular, sun-synchronous 29
days/467 revolutions repeat orbit with an inclination ofi =

96.6◦ and a nominal altitude of approximately 250 km. These
orbit data were generated in the framework of the ‘From
Eötvös to mGal’ project by the Delft Institute of Earth-
Oriented Space Research (DEOS, cf. Koop et al., 2000)
applying numerical orbit integration. The simulated mea-
surements (3 main diagonal elements of the gradient ten-
sor: Vxx, Vyy, Vzz) are regularly distributed along the orbit
with a sampling interval of1t = 5 s, leading to a data
volume of more than 1.5 million observations (more than
500 000 epochs and 3 tensor components). The test data set
is restricted to a maximum degreelmax = 180, because only
a reduced number of data (about one month of data with 5 s
sampling compared to the real mission profile of two times 6
months of data with a sampling interval of 1 s) is used in the
present simulation.

A favourable aspect of this restriction is, that no regu-
larization is required to solve the normal equation system,
which would at least partly disguise the numerical proper-
ties of the three different methods, i.e. by using a maximum
resolution of degree/order 180 the normal equation system is
still regular, although due to the polar data gaps – resulting
in an increased non-orthogonality of the base functions – a
decreased numerical stability of the solution predominantly
for the zonal and near-zonal coefficients has to be expected.

The observations were superposed by a measurement
noise time-series. Since it was intended to simulate the
instrument noise characteristics as realistically as possible,
random variables with a specific spectral behaviour apply-
ing a general linear, causal shift-invariant stochastic process
(ARMA process) according to the specifications defined in
Cesare (2002) were generated.

In the following, the quality of the solutions are compared

in terms of differences between the estimated coefficients
and the ‘true’ OSU91a reference model, as well as in terms
of Level 2 products such as gravity anomalies, thus closing
the loop of our simulation strategy.

Figure 1 shows the convergence behaviour of the two itera-
tive techniques in terms of the deviations of the estimated co-
efficients from the initial ’true’ OSU91a-model represented
by the degree rms

σ
(i)
l =√√√√ 1

2 l + 1

l∑
m=0

[
(C̄

(est)
lm, i − C̄

(OSU)
lm )2 + (S̄

(est)
lm, i − S̄

(OSU)
lm )2

]
(5)

for the first i = 1, . . .10 iterations. Here(est) denotes the
adjusted quantities and(OSU) refers to our reference model
OSU91a. Except for the slightly different convergence be-
haviour predominantly for the lower degreesl (in this spec-
tral region the SA approach shows a faster convergence), it
can be stated that both methods deliver nearly identical final
solutions for the geopotential coefficients.

Figure 2a shows the deviations of the harmonic coeffi-
cients estimated by the strict DNA solution from the ‘true’
OSU91a model. It clearly displays the well-known fact
that the zonal and near-zonal coefficients can only be es-
timated with decreased accuracy, which is due to the sun-
synchronous orbit configuration leaving data gaps at the
poles (Sneeuw and van Gelderen, 1996). Since no regulariza-
tion was applied in the course of the adjustment procedure,
this effect is fully mapped onto the estimation results. Fig-
ure 2b illustrates the gravity anomaly deviations propagated
from the DNA coefficient estimates with respect to the ‘true’
OSU91a model.

In the Figs. 2c to f, the DNA solution is used as the ref-
erence, and the deviations of the parallel pcgma algorithm
(Fig. 2c and d) and the SA approach (Fig. 2e and f) from
this DNA result in terms of harmonic coefficients and gravity
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DNA vs. OSU91a

DNA vs. pcgma

DNA vs. SA

Fig. 2. Differences between the DNA approach and the “true” OSU91a model (top), between DNA and parallel pcgma package (center), and
between DNA and SA (bottom). On the left the differences between the harmonic coefficients (in log10-scale), and on the right in terms of
gravity anomalies (in [mGal], 1 mGal= 10−5 m s−2) are displayed.
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Table 1. Statistical comparison of parallel pcgma, SA, and DNA
methods in terms of gravity anomaly deviations1g [mGal] (1 mGal
= 10−5 m s−2) from the ’true’ OSU91a reference model. The last
column shows the standard deviations using the DNA result as the
reference. The statistics refer to 10 iterations for pcgma and 5 iter-
ations for SA

(1g [mGal]) min(OSU) max(OSU) σ (OSU) σ (DNA)

pcgma -2.74 2.49 0.58 0.15
SA -2.90 3.49 0.60 0.22
DNA -2.44 2.71 0.56 —

anomalies are plotted. Obviously, the deviations of the solu-
tions from the ‘true’ OSU91a reference model, which reflect
the coloured noise superimposed onto the SGG observations,
are considerably larger than the differences among the indi-
vidual adjustment solutions. This is underpinned by Table 1,
which summarizes the main statistical parameters for these
gravity anomaly difference fields.

The pcgma method shows slightly lower deviations from
the DNA than the SA approach, which can be explained
by the fact, that the former two methods use identical fil-
ter strategies in time domain to cope with the gradiometer’s
coloured noise characteristics, whereas the SA method ap-
plies a filter in frequency domain. Concerning the storage
requirements and the run-time behaviour, there are consider-
able differences between the three methods, as it is summa-
rized in Table 2.

5 Discussion and conclusions

From a theoretical point of view and neglecting numerical
aspects, the DNA solution of the full normal equation sys-
tem and iterative methods such as the pcgma algorithm using
a sparse matrix approximate should lead to identical results,
provided that the requirements of convergence are fulfilled,
and the iterative process is truncated properly. In principle,
this holds also for the iterative SA method. However, since a
different approach to model colored noise - which is fast, but
approximative - is applied, deviations from the DNA results
have to be expected, but they turn out to be small compared
with other effects influencing the solution. Correspondingly,
the closed-loop simulation performed in section 4 demon-
strates that the discrepancies among the three solution strate-
gies are far below the noise level.

Concerning the computation time, the SA approach is def-
initely the fastest, which is due to the fact that it works par-
tially in the frequency domain. Therefore, the SA approach
can be used as a tool for quick-look validation to derive a
fast diagnosis of the GOCE system performance. Consid-
ering the computing time, the two approximative and thus
iterative methods (parallel pcgma and SA) by far outperform
the strict DNA approach, which is due to the different num-
ber of elements of the normal equations taken into account

Table 2. Storage requirements for the normal equation matrices and
performance parameters (CPU time) needed by the three methods
for a full parameterization up to degreelmax = 180

method no. elements storage requ. no. PEs no. iter. total CPU
(millions) (MB) time

pcgma 1 8 25 10 12h 20min

SA 1 8 1 5 20min

DNA 537 4300 49 – 348h

in the processing (cf. Table 2), leading to a giant number of
additional operations that have to be performed by the DNA.

On the other hand, the advantage of the DNA approach is
that it solves the whole normal equation system in a strict
sense. In the processing of the real mission, additional non-
gravitational parameters (e.g. calibration parameters, non-
conservative forces, etc.), and maybe also parameters de-
scribing the temporal variations of the Earth’s gravity field,
will have to be introduced into the parameter vector. In this
case, strong correlations between these additional compo-
nents and the spherical harmonic coefficients will occur, de-
stroying the dominant block-diagonal structure of the normal
equations. Among the three methods the DNA approach is
best able to handle these additional parameters in a correct
way, because it does not depend on the sparsity of the nor-
mal equation matrix. Additionally, it provides the full inverse
and thus the full variance-covariance information of the esti-
mated gravity field parameters.
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