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LARGE DEVIATIONS OF THE FRONT IN A ONE

DIMENSIONAL MODEL OF X + Y → 2X

JEAN BÉRARD1 AND ALEJANDRO RAMÍREZ1,2

Abstract. We investigate the probabilities of large deviations for the position
of the front in a stochastic model of the reaction X + Y → 2X on the integer
lattice in which Y particles do not move while X particles move as independent
simple continuous time random walks of total jump rate 2. For a wide class of
initial conditions, we prove that a large deviations principle holds and we show
that the zero set of the rate function is the interval [0, v], where v is the velocity of
the front given by the law of large numbers. We also give more precise estimates
for the rate of decay of the slowdown probabilities. Our results indicate a gapless
property of the generator of the process as seen from the front, as it happens in
the context of nonlinear diffusion equations describing the propagation of a pulled
front into an unstable state.

1. Introduction

We consider a microscopic model of a one-dimensional reaction-diffusion equation,
with a propagating front representing the passage from an unstable equilibrium to
a stable one. It is defined as an interacting particle system on the integer lattice
Z with two types of particles: X particles, that move as independent, continuous
time, symmetric, simple random walks with total jump rateDX = 2; and Y particles,
which are inert and can be interpreted as random walks with total jump rateDY = 0.
Initially, each site x = 0,−1,−2, . . . bears a certain number η(x) ≥ 0 of X particles
(with at least one site x such that η(x) ≥ 1), while each site x = 0, 1, . . . bears a
fixed number a of particles of type Y (with 1 ≤ a < +∞). When a site x = 1, 2, . . .
is visited by an X particle for the first time, all the Y particles located at site x are
instantaneously turned into X particles, and start moving. The front at time t is
defined as the rightmost site that has been visited by an X particle up to time t, and
is denoted by rt, with the convention r0 := 0. This model can be interpreted as an
infection process, where the X and Y particles represent ill and healthy individuals
respectively. It can also be interpreted as a combustion reaction, where the X and Y
particles correspond to heat units and reactive molecules respectively, modeling the
combustion of a propellant into a stable stationary state. We will denote this model
the X + Y → 2X front propagation process with jump rates DX and DY . Within
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the physics literature, a number of studies have been done both numerically and
analytically of this process for different values of DX and DY and of corresponding
variants where the infection of a Y particle by an X particle at the same site is not
instantaneous, drawing analogies with continuous space time nonlinear reaction-
diffusion equations having uniformly traveling wave solutions [19], [15, 16, 17], [23],
[8]. A particular well-known example is the F-KPP equation studied by Fisher [10]
and Kolmogorov, Petrovsky and Piscounov [13].

Mathematically not too much is known. For the case DY = 0, when
∑

x≤0 exp(θx)η(x) < +∞ for a small enough θ > 0, a law of large numbers with a
deterministic speed 0 < v < +∞ not depending on the initial condition is satisfied
(see [22] and [4]):

lim
t→+∞

t−1rt = v a.s. (1)

In [4] it was proved that the fluctuations around this speed satisfy a functional central
limit theorem and that the marginal law of the particle configuration as seen from
the front converges to a unique invariant measure as t→ ∞. Furthermore, a multi-
dimensional version of this process on the lattice Zd, with an initial configuration
having one X particle at the origin and one Y particle at every other site was
studied in [22], [1], proving an asymptotic shape theorem as t → ∞ for the set of
visited sites. A similar result was proved by Kesten and Sidoravicius [12] for the case
DX = DY > 0 with a product Poisson initial law. In particular, in dimension d = 1
they prove a law of large numbers for the front as in (1). For the case DX > DY > 0,
even the problem of proving a law of large numbers in dimension d = 1 remains open
(see [11]).

Within a certain class of one-dimensional nonlinear diffusion equations having
uniformly traveling wave solutions describing the passage from an unstable to a
stable state, it has been observed that for certain initial conditions the velocity of
the front at a given time has a rate of relaxation towards its asymptotic value which
is algebraic (see [8], [19] and physics literature references therein). These are the so
called pulled fronts, whose speed is determined by a region of the profile linearized
about the unstable solution. For the F-KPP equation, Bramson [3] proved that
the speed of the front at a given time is below its asymptotic value and that the
convergence is algebraic. In general, the slow relaxation is due to a gapless property
of a linear operator governing the convergence of the centered front profile towards
the stationary state. A natural question is wether such a behavior can be observed
in the X + Y → 2X front propagation type processes. Deviations from the law of
large numbers of a larger size than those given by central limit theorem should shed
some light on such a question: in particular it would be reasonable to expect a large
deviations principle with a degenerate rate function, reflecting a slow convergence
of the particle configuration as seen from equilibrium towards the unique invariant
measure [4]. In this paper, we investigate for the case DY = 0 the large time
asymptotics of the distribution of rt/t,

P
[rt
t
∈ ·
]

.



LARGE DEVIATIONS FOR A ONE DIMENSIONAL MODEL OF X + Y → 2X 3

Our main result is that a full large deviations principle holds, with a degenerate
rate function on the interval [0, v], when the initial condition satisfies the following
growth condition:
Assumption (G). For all θ > 0

∑

x≤0

exp(θx)η(x) < +∞. (2)

Theorem 1. Large Deviations Principle There exists a rate function I :
[0,+∞) → [0,+∞) such that, for every initial condition satisfying (G),

lim sup
t→+∞

1

t
log P

[rt
t
∈ C

]

≤ − inf
b∈C

I(b), for C ⊂ [0,+∞) closed,

and

lim inf
t→+∞

1

t
log P

[rt
t
∈ G

]

≥ − inf
b∈G

I(b), for G ⊂ [0,+∞) open.

Furthermore, I is identically zero on [0, v], positive, convex and increasing on
(v,+∞).

It is interesting to notice that the rate function I is independent of the initial
conditions within the class (G): the large deviations of the empirical distribution
function of the process as seen from the front appear to exhibit a uniform behavior
for such initial conditions. Furthermore, this result seems to be in agreement with
the phenomenon of slow relaxation of the velocity in the so-called pulled reaction
diffusion equations. In [8], a nonlinear diffusion equation of the form

∂tφ = ∂2
xφ+ f(φ) (3)

is studied where f is a function chosen so that φ = 0 is an unstable state and the
equation develops pulled fronts. It is argued that for steep enough initial conditions,
the velocity relaxes algebraically towards the asymptotic speed, providing an explicit
expansion up to order O(1/t2). Such a non-exponential decay is explained by the
fact that the linearization of (3) around the uniformly translating front, gives a
linear equation for the perturbation governed by a gapless Schrödinger operator.
The position of the front in the X + Y → 2X particle system can be decomposed

as rt =
∫ t
0 Lg(ηs)ds +Mt, where L is the generator of the centered dynamics, g is

an explicit function and Mt is a martingale. The fact that under assumption (G)
the zero set of the large deviations principle of Theorem 1 is the interval [0, v] is an
indication that the symmetrization of L is a gapless operator.

The second result of this paper gives more precise estimates for the probability
of the slowdown deviations. Let

U(η) := lim sup
x→−∞

1

log |x| log





x
∑

y=0

η(y)



 , u(η) := lim inf
x→−∞

1

log |x| log





x
∑

y=0

η(y)



 ,



4 JEAN BÉRARD1 AND ALEJANDRO RAMÍREZ1,2

and

s(η) := min(1, U(η)).

For the statement of the following theorem we will write U, u, s instead of
U(η), u(η), s(η).

Theorem 2. Slowdown deviations estimates. Let η be an initial condition
satisfying (G). Then the following statements are satisfied.

(a) For all 0 ≤ c < b < v, as t goes to infinity,

P

[

c ≤ rt
t
≤ b
]

≥ exp
(

−ts/2+o(1)
)

. (4)

(b) In the special case where η(x) ≥ a for all x ≤ 0, one has that, for every
0 ≤ b < v, as t goes to infinity,

P

[rt
t
≤ b
]

≤ exp
(

−t1/3+o(1)
)

. (5)

(c) When u < +∞, as t goes to infinity,

exp
(

−tU/2+o(1)
)

≤ P [rt = 0] ≤ exp
(

−tu/2+o(1)
)

. (6)

One may notice that the slowdown probabilities considered in (4) and in ( 6)
exhibit distinct behaviors when u > 1. Furthermore, the results contained in The-
orems 1 and 2 should be compared with the case of the random walk in random
environment with positive or zero drift [21, 20].

A natural question is whether it is possible to relax assumption (G) in Theorem 1.
It appears that even if assumption (G) is but mildly violated, the slowdown behavior
is not in accordance with that described by Theorem 1. Moreover, if assumption (G)
is strongly violated, the law of large numbers with asymptotic velocity v breaks
down, so that the speedup part of Theorem 1 cannot hold either.

Theorem 3. The following properties hold:

(i) Assume there is a θ > 0 such that

lim inf
x→−∞

η(x) exp(θx) = +∞.

Then there exists b > 0 such that

lim sup
t→+∞

1

t
log P

[rt
t
≤ b
]

< 0.

(ii) There exists θ′ > 0 and v′ > v such that, when

lim inf
x→−∞

η(x) exp(θ′x) = +∞,

then

P

[

lim inf
t→+∞

rt
t
≥ v′

]

= 1.
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It is important to stress that the proof of Theorem 1 would not be much simpli-
fied if we considered initial conditions with only a finite number of particles. Indeed,
condition (G) is an assumption which delimits sensible initial data. To prove Theo-
rem 1 we first establish that for initial conditions consisting only of a single particle
at the origin, for all b ≥ 0, the limit

lim
t→+∞

t−1 log P(rt ≥ bt) (7)

exists. The proof of this fact relies on a soft argument based on the sub-additivity
property of the hitting times. On the other hand, it is not difficult to show that for
b large enough the decay of P(rt ≥ bt) is exponentially fast. Nevertheless, showing
this for b arbitrarily close to but larger than the speed v is a subtler problem. For
example, it is not clear how the standard sub-additive arguments could help. Our
main tool to tackle this problem is the regeneration structure of the process defined
in [4]. To overcome the fact that the regeneration times and positions have only
polynomial tails, we couple the original process with one where the X particles have
a small bias to the right, so that they jump to the right with probability 1/2 + ǫ
for some small ǫ > 0, and the position of the front in the biased process dominates
that of the front in the original process. We then use the regeneration structure to
study the biased model and how it relates to the original one as ǫ tends to zero. In
particular, if vǫ is the speed of the biased front, we establish via uniform bounds on
the moments of the regeneration times and positions that

lim
ǫ→0+

vǫ = v.

Furthermore, we show that the regeneration times and positions of the biased model
have exponentially decaying tails. Combining these arguments proves that the limit
in (7) is positive for any b > v. We then establish that this limit exists and has
the same value for all initial conditions satisfying (G) by exploiting a comparison
argument.

To show that the rate function vanishes on [0, v] (and more precisely (5)), we
first consider initial conditions having a uniformly bounded number of particles per
site. In this case it is essentially enough to observe that the probability that the

front remains at zero up to time t is bounded from below by (1/
√
t)t

1/2+o(1)
, since

there are at most of the order of t1/2+o(1) random walks that yield a non-negligible
contribution to this event. Similar estimates on hitting times of random walks
are used to prove (6) and Theorem 3, while more refined arguments are needed
to establish (4) for arbitrary initial conditions within the class (G). On the other
hand, the proof of the upper bound for the slowdown probabilities (5) in Theorem 2
is more involved, and relies on arguments using the sub-additivity property and the
positive association of the hitting times, together with estimates on their tails and
their correlations, refining an idea already used in [22] in a similar context.

The rest of the paper is organized as follows. In Section 2, we give a formal
definition of the model and introduce its basic structural properties, including sub-
additivity and monotonicity of hitting times. In Section 3, we explain how Theorem 1
is proved, building on results proved in other sections. Section 4 is devoted to
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the proof of the fact that speedup large deviations events have exponentially small
probabilities. Section 5 contains our estimates on slowdown probabilities, with the
proofs of Theorems 2 and 3. Several appendices contain proofs that are not included
in the core of the paper.

2. Construction and basic properties

Throughout the sequel we will use the convention inf ∅ = +∞.

2.1. Construction of the process. For our purposes, we have to define on the
same probability space not only the original model, but also models including ran-
dom walks with an arbitrary bias defined through a parameter 0 ≤ ǫ < 1/2.

In the sequel, we assume that we have a reference probability space (Ω,F ,P)
giving us access to an i.i.d. family of random variables

[(τn(u, i), Un(u, i)); n ≥ 1, u ∈ Z, 1 ≤ i ≤ a] ,

such that, for all (n, u, i), τn(u, i) has an exponential(2) distribution, and Un(u, i)
has the uniform distribution on [0, 1], and τn(u, i) and Un(u, i) are independent.

For every n ≥ 1, (x, i) ∈ Z × {1, . . . , a} and 0 ≤ ǫ < 1/2, we let

εn(x, i, ǫ) := 2(1(Un(x, i) ≤ 1/2 + ǫ)) − 1.

Let (Y ǫ
x,i,t)t≥0 be the continuous-time random walk started at Y ǫ

x,i,0 := 0, whose

sequence of time steps is (τn(x, i))n≥1, and whose sequence of space increments is
(εn(x, i, ǫ))n≥0.

A configuration of particles is a triple w = (F, r,A), where r ∈ Z, A is a non-empty
subset of Z×{1, . . . , a} such that max{x; (x, i) ∈ A} ≤ r, and F : A→ {−∞, . . . , r}
is a map. To every index (x, i) ∈ A corresponds the position F (x, i) of an X particle,
and we say that (x, i) is the birthplace of the corresponding particle. We see that
such a configuration carries more information than just the number of X particles
at each site, since every X particle is labeled by its birthplace (x, i). Note that, to
allow for various types of initial configurations, we do not require that the initial
configuration of the model satisfies F (x, i) = (x, i). In fact, any distribution of X
particles on {. . . ,−1, 0} with a finite number of particles at each site can be encoded
by such a triple w = (F, r,A).

For w = (F, r,A) and (x, i) ∈ A, we use the notation w(x, i) to denote the
configuration (F ′, r′, A′) with r′ = r, A′ = {(x, i)}, and F ′(x, i) = F (x, i). For a
configuration of particles w = (F, r,A) and q ∈ {1, 2, . . . , }, we define a configuration
w⊕ q = (F ′, r′, A′) by A′ := A∪ {r+ 1, . . . , r+ q} × {1, . . . , a}, r′ := r+ q, F ′ := F
on A, and F ′(x, i) := x for (x, i) ∈ {r + 1, . . . , r + q} × {1, . . . , a}.

The following definitions list special kinds of configurations that are used in the
sequel. For u ∈ Z and 1 ≤ i ≤ a, let δu be defined by A := {(u, 1)}, r := u and
F (u, 1) := u; let aδu be defined by A := {u} × {1, . . . , a}, r := u, F (u, i) := u for
every 1 ≤ i ≤ a; let Iu be defined by A := {−∞, u}×{1, . . . , a}, r := u, F (x, i) := x
for every (x, i) ∈ A.
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For w = (F, r,A) and θ > 0, we let

fθ(w) :=
∑

(x,i)∈A

exp(θ(F (x, i) − r)).

and ηw be the map defined on {. . . , r−1, r} so that ηw(x) is the number of particles
at site x of the configuration w. Hence

ηw(x) := #{(y, i) ∈ A; F (y, i) = x}.
As a consequence, fθ(w) =

∑

x≤r ηw(x) exp(θ(x − r)). When r = 0, we define for
x ≤ 0

Hw(x) :=
x
∑

y=0

ηw(y). (8)

Now, for every θ > 0, let

Lθ := {w = (F, r,A); fθ(w) < +∞}.
Observe that Iu, δu and aδu belong to Lθ for all u ∈ Z and θ > 0.

For w = (F, r,A) and (x, i) ∈ Z × {1, . . . , a}, let χθ(w, x, i) := 1((x, i) ∈
A) exp(θ(F (x, i) − r)). We equip Lθ with the metric dθ defined as follows: for
w = (F, r,A) and w′ = (F ′, r′, A′),

dθ(w,w
′) := |r − r′| +

∑

(x,i)∈Z×{1,...,a}

|χθ(w, x, i) − χθ(w
′, x, i)|.

The metric space (Lθ, dθ) is a Polish space. We let D(Lθ) denote the space of
càdlàg functions from [0,+∞) to Lθ equipped with the Skorohod topology and the
corresponding Borel σ−field.

Now, for every 0 ≤ ǫ < 1/2, and every w = (F, r,A) ∈ Lθ, we define a collec-
tion of random variables (Xǫ

t (w))t≥0 = (F ǫ
t (w), rǫ

t(w), Aǫ
t(w))t≥0 which describes the

time-evolution of the configuration of particles. In order to alleviate notations, the
dependence of F ǫ

t , rǫ
t , A

ǫ
t with respect to w will not explicitly mentioned in the sequel

when there is no ambiguity. Moreover, we shall often not mention the dependence
with respect to ǫ when ǫ = 0, and for example, use the notation rt instead of r0t .

The definition is done through the following inductive procedure. Let σǫ
0 := 0,

rǫ
0 := r, Aǫ

0 := A, and for every t ≥ 0 and (x, i) ∈ Aǫ
0, let F ǫ

t (x, i) := F (x, i) + Y ǫ
x,i,t.

Assume that, for some n ≥ 1, we have already defined σǫ
0 ≤ . . . ≤ σǫ

n−1, A
ǫ
t and rǫ

t

for every 0 ≤ t ≤ σǫ
n−1, and F ǫ

t (x, i) for every t ≥ 0 and (x, i) ∈ Aǫ
σǫ

n−1
. Let

σǫ
n := inf

{

t > σǫ
n−1; there is an (x, i) ∈ Aǫ

σǫ
n−1

such that F ǫ
t (x, i) = rǫ

σǫ
n−1

+ 1
}

,

Now, for σǫ
n−1 < t < σǫ

n, let rǫ
t := rǫ

σǫ
n−1

, Aǫ
t := Aǫ

σn−1
, and let rǫ

σǫ
n

:= rǫ
σǫ

n−1
+ 1 and

Aǫ
σǫ

n
:= Aǫ

σǫ
n
∪ {(rǫ

σǫ
n
, i); 1 ≤ i ≤ a}. Then, for x = rǫ

σǫ
n
, i ∈ {1, . . . , a}, and t ≥ σǫ

n,

let F ǫ
t (x, i) := x+ Yx,i,t−σǫ

n
. We shall see that supn σ

ǫ
n = +∞ a.s.

From the results in [4], (where only the case ǫ = 0 is treated, but it is immediate to
adapt them to the present setting), the following results hold. For any 0 ≤ ǫ < 1/2
and w ∈ Lθ, almost surely with respect to P:
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• for every n ≥ 1, σǫ
n−1 < σǫ

n < +∞, and there is a unique (x, i) ∈ Aσǫ
n−1

such

that F ǫ
σǫ

n
(x, i) = rǫ

σǫ
n
;

• limn→+∞ σǫ
n = +∞;

• for all t ≥ 0, Xǫ
t (w) ∈ Lθ;

• the map t 7→ Xǫ
t (w) belongs to D(Lθ).

For any 0 ≤ ǫ < 1/2, θ > 0, and w = (F, r,A) ∈ Lθ, let Q
ǫ,θ
w denote the

probability distribution of the random process (Xǫ
t (w))t≥0, viewed as a random

element of D(Lθ). Again, as in [4],

Proposition 1. For any 0 ≤ ǫ < 1/2 and θ > 0, the family of probability measures

(Qǫ,θ
w )w∈Lθ

defines a strong Markov process on Lθ.

In the sequel, we use E to denote expectation with respect to P of random variables

defined on (Ω,F). The notation E
ǫ,θ
w is used to denote the expectation with respect

to Q
ǫ,θ
w of random variables defined on D(Lθ) equipped with its Borel σ−field.

2.2. Properties of hitting times. For w = (F, r,A) ∈ Lθ, and u ≥ r, we define
the first time that the front touches site u, given that the initial condition was w,

T ǫ
w(u) := inf{t > 0; rǫ

t = u}.
For all u, v ∈ Z such that u < v, 1 ≤ i ≤ a, and 0 ≤ ǫ < 1/2, let

Aǫ(u, i, v) := inf

{

m
∑

k=1

τk(u, i); u+
m
∑

k=1

εk(u, i, ǫ) = v, m ≥ 1

}

. (9)

This represents the first time that the random walk born at (u, i) hits site v (assum-
ing that the walk starts at u at time zero).

Proposition 2. Let w = (F, r,A) ∈ Lθ.

(i) For all u > r and 0 ≤ ǫ < 1/2, P−a.s.

T ǫ
w(u) = inf

L−1
∑

j=1

Aǫ(xj , ij , xj+1),

where the infimum is taken over all finite sequences with L ≥ 2, x1, . . . , xL ∈
Z and i1, . . . , iL−1 such that x1 = F (y1, i1) for some (y1, i1) ∈ A, r < x2 <
· · · < xL−1 < u, xL = u, i2, . . . , iL−1 ∈ {1, . . . , a}.

(ii) For all u > r and 0 ≤ ǫ < 1/2, the following identity holds P−a.s.

T ǫ
w(u) = inf

(x,i)∈A
T ǫ

w(x,i)(u)

(iii) For all r < u < v and 0 ≤ ǫ < 1/2, the following sub-additivity property
holds P−a.s.

T ǫ
w(v) ≤ T ǫ

w(u) + T ǫ
w⊕(u−r)(v).

(iv) For any 0 ≤ ǫ1 ≤ ǫ2 < 1/2, and all u > r, P−almost surely, T ǫ1
w (u) ≥ T ǫ2

w (u).
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Proof. The proof of (i) is quite similar to that in [22], and so is the proof that (iii)
is a consequence of (i). Then (ii) is a simple consequence of (i). As for (iv), this
is an easy consequence of the characterization in (i) and of the fact that, for every
(x, i) ∈ Z × {1, . . . , a} and n ≥ 1, εn(x, i, ǫ1) ≤ εn(x, i, ǫ2). �

An immediate consequence of (iv) in the above proposition is the following result.

Corollary 1. For any w ∈ Lθ, 0 ≤ ǫ1 ≤ ǫ2 < 1/2, P−almost surely, for all t ≥ 0,
rǫ1
t (w) ≤ rǫ2

t (w).

3. Proof of the large deviations principle for t−1rt

Proposition 3. There exists a convex function J : (0,+∞) → [0,+∞) such that,
for all b ∈ (0,+∞),

lim
n→+∞

n−1 log P(T 0
δ0(n) ≤ bn) = −J(b).

Proof. For any b > 0, and all n ≥ 1, it is easily checked that P(T 0
δ0

(n) ≤ bn) >

0. Then let un(b) := log P(T 0
δ0

(n) ≤ bn). Observe that, by subadditivity (part

(iii) of Proposition 2), T 0
δ0

(n + m) ≤ T 0
δ0

(n) + T 0
δ0⊕n(n + m). Now, by part (ii)

of Proposition 2, T 0
δ0⊕n(n + m) ≤ T 0

δn
(n + m), since the infimum characterizing

T 0
δ0⊕n(n+m) runs over a larger set than the infimum characterizing T 0

δn
(n+m). As

a consequence, T 0
δ0

(n+m) ≤ T 0
δ0

(n)+T 0
δn

(n+m). We deduce that, for all m,n ≥ 1,
and all b, c > 0,

{T 0
δ0(n) ≤ bn} ∩ {T 0

δn
(n+m) ≤ cm} ⊆ {T 0

δ0(n+m) ≤ bn+ cm}. (10)

Now, observe that T 0
δ0

(n) and T 0
δn

(n + m) are independent random variables,
since their definitions involve disjoint sets of independent random walks. As a con-
sequence,

P({T 0
δ0(n) ≤ bn}∩{T 0

δn
(n+m) ≤ cm}) = P(T 0

δ0(n) ≤ bn)P(T 0
δn

(n+m) ≤ cm). (11)

¿From the above two relations (10), (11), and the fact that, by translation invariance
of the model, T 0

δ0
(m) and T 0

δn
(n+m) possess the same distribution, we deduce that,

for all m,n ≥ 1, and all b, c > 0,

un+m

(

bn+ cm

n+m

)

≥ un(b) + um(c). (12)

Applying Inequality (12) above with c = b, we deduce that the sequence (un(b))n≥1

is super-additive. Since un(b) ≤ 0 for all n ≥ 1, we deduce from the standard
subadditive lemma that there exists a non-negative real number J(b) such that
limn→+∞ n−1un(b) = −J(b). Moreover, by definition, b 7→ un(b) is non-decreasing,
and so b 7→ J(b) is non-increasing.

To establish that J is convex, consider b, c, such that 0 < b < c, t ∈ (0, 1),
k ≥ 1, and apply (12) with nk := ⌈kt⌉ and mk := ⌊k(1 − t)⌋. For large enough k,
bnk+cmk
nk+mk

≤ tb+ (1− t)c, so that unk+mk
(tb+ (1− t)c) ≥ unk

(b)+umk
(c). Taking the

limit as k goes to infinity, we deduce that J(tb+ (1 − t)c) ≤ tJ(b) + (1 − t)J(c).
�
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Proposition 4. The function J defined in Proposition 3 is identically zero on
[v−1,+∞), positive and decreasing on (0, v−1).

The proof of the above proposition makes use of the following result, which is the
main result of Section 4.

Proposition 5. For any c > v,

lim sup
t→+∞

t−1 log P(r0t (I0) ≥ ct) < 0.

Proof Proposition 4. For n ≥ 1, (ii) of Proposition 2 implies that T 0
I0

(n) ≤ T 0
δ0

(n)

P−a.s. In view of the immediate identity {T 0
w(n) ≤ bn} = {r0bn(w) ≥ n}, we deduce

that

P(T 0
δ0(n) ≤ bn) ≤ P(r0bn(I0) ≥ n).

¿From Proposition 5, we deduce that J is positive on (0, v−1). On the other hand,
by the law of large numbers (1), we see that J must be identically 0 on (v−1,+∞).
The function J being convex on (0,+∞), it is also continuous, so that J(v−1) = 0.
Moreover, as we have already noted, J is non-increasing. These facts imply that J
is decreasing on (0, v−1). �

Let I be defined by I(b) := bJ(b−1) for b > 0 and I(0) := 0. ¿From the previous
results on J , it is easy to deduce the following.

Corollary 2. The function I is identically zero on [0, v], positive, increasing and
convex on (v,+∞).

Proof. Only the convexity of I is not totally obvious. Note that, since J is convex,
b 7→ J(b−1) is convex on (0,+∞) as the composition of two convex functions. Then,
since b 7→ J(b−1) is also increasing and positive, the convexity of b 7→ bJ(b−1) on
(0,+∞) follows easily.

�

Proposition 6. Assume that the initial condition w satisfies r = 0 and (G). Then,
for all b > 0,

lim
n→+∞

n−1 log P(T 0
w(n) ≤ bn) = −J(b),

where J is the function defined in Proposition 3.

The proof of the proposition makes use of the following lemma.

Lemma 1. Let w = (F, r,A) ∈ Lθ. For all t ≥ 0, and all γ > 0,

P

(

sup
(x,i)∈A

sup
0≤s≤t

F 0
s (x, i) ≥ r + γt

)

≤ fθ(w) exp [−gγ(θ)t] ,

where

gγ(θ) := γθ − 2(cosh θ − 1).
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Proof. Let G :=
{

sup(x,i)∈A sup0≤s≤t F
0
s (x, i) > r + γt

}

. For all integers K ≤
0, let GK :=

⋃

(x,i)∈A;F (x,i)≥K{sup0≤s≤t F
0
s (x, i) > r + γt}. Clearly, K1 ≤

K2 implies that GK2 ⊂ GK1 , and
⋃

K≤0GK = G, whence P(G) =

limK→−∞ P(GK). Now observe that, for all K, the process (MK,s)s≥0 defined by
MK,s :=

∑

(x,i)∈A;F (x,i)≥K exp
(

θ
(

F 0
s (x, i) − r

)

− 2(cosh θ − 1)s
)

is a càdlàg martin-

gale. Then note that, for all K, GK ⊂ {sup0≤s≤tMK,s ≥ exp(gγ(θ)t}, then apply
the martingale maximal inequality to deduce that,

P

(

sup
0≤s≤t

MK,s ≥ exp(gγ(θ)t)

)

≤
∑

(x,i)∈A; F (x,i)≥K

exp [θ (F (x, i) − r) − gγ(θ)t] .

For all K, the r.h.s. of the above inequality is upper bounded by ≤
fθ(w) exp [−gγ(θ)t] . The conclusion follows. �

Proof of Proposition 6. Consider 0 < b < v−1, and fix θ > 0. Choose γ > 0 large
enough so that

gγ(θ)b > J(b).

Denote by w = (F, r,A) the initial condition, and consider the set Bn :=
{(x, i); F (x, i) ≤ −⌈γbn⌉}. Let mn :=

∑

(x,i)∈Bn
exp(θ(F (x, i) − ⌈γbn⌉). Now let

Ξn := inf{s ≥ 0; ∃(x, i) ∈ Bn, F
0
s (x, i) = 0}. We see that Ξn ≤ bn implies that

sup(x,i)∈Bn
sup0≤s≤bn F

0
s (x, i) ≥ 0. Thanks to Lemma 1 and translation invariance

of the model, we deduce that

P(Ξn ≤ bn) ≤ mn exp(−gγ(θ)bn). (13)

¿From the fact that w satisfies (G), we obtain that, for all ϕ > 0, y ≤ 0, #{(x, i) ∈
A; F (x, i) = y} ≤ fϕ(w) exp(−ϕy). As a consequence, whenever ϕ < θ, we have
that

mn ≤ fϕ(w)(1 − exp(ϕ− θ))−1 exp(ϕ⌈γbn⌉). (14)

Now consider (x, i) ∈ A \ Bn, so that F (x, i) > −⌈γbn⌉. By an easy coupling
argument, we see that, since F (x, i) ≤ 0,

P(Tw(x,i) ≤ bn) ≤ P(Tδ0 ≤ bn). (15)

Moreover, according to (G),

#A \Bn ≤ fϕ(w) exp(ϕ⌈γbn⌉). (16)

Now, by (ii) of Proposition 2,

{Ξn > bn} ∩ {Tw(n) ≤ bn} ⊂
{

inf
(x,i)∈A\Bn

Tw(x,i) ≤ bn

}

.

We deduce from (13), (14), (15), (16) and the union bound that

P(Tw(n) ≤ bn) ≤ fϕ(w)eϕ⌈γbn⌉
[

(1 − exp(ϕ− θ))−1 exp(−gγ(θ)bn) + P(Tδ0 ≤ bn)
]

.
(17)

Now, according to Proposition 3,

lim
n→+∞

n−1 log P(T 0
δ0(n) ≤ bn) = −J(b).
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Since we have chosen γ so that gγ(θ)b > J(b), we deduce from (17) that

lim sup
n→+∞

n−1 log P(T 0
w(n) ≤ bn) ≤ −J(b) + ϕγb.

Since ϕ > 0 is arbitrary, we deduce that

lim sup
n→+∞

n−1 log P(T 0
w(n) ≤ bn) ≤ −J(b). (18)

On the other hand, consider a given (x, i) ∈ A. Clearly

P(Tw(n) ≤ bn) ≥ P(Tw(x,i)(n) ≤ bn).

Now consider τ̃ = inf{s ≥ 0; F 0
s (x, i) = 0}. Clearly, τ̃ is a.s. finite, and, conditional

upon τ̃ , Tw(x,i)(n) − τ̃ has the (unconditional) distribution of Tδ0(n). Choosing
any M such that P({τ̃ ≤ M}) > 0, one has that P(Tw(x,i)(n) ≤ bn) ≥ P({τ̃ ≤
M})P(Tδ0(n) ≤ bn−M). Taking an arbitrary c > b, we deduce that

lim inf
n→+∞

n−1 log P(T 0
w(n) ≤ bn) ≥ −J(c).

By continuity of J , we conclude that

lim inf
n→+∞

n−1 log P(T 0
w(n) ≤ bn) ≥ −J(b).

The above inequality, together with (18) concludes the proof. �

Proof of Theorem 1. Consider a non-empty closed subset F ⊂ [0,+∞), and let
b := inf F . Assume that b ≤ v. We have that infF I = 0, so the upper bound
of the LDP for F is always satisfied. Assume now that b > v. One has that
P(t−1r0t (w) ∈ F ) ≤ P(r0t (w) ≥ ⌈tb⌉) = P(T 0

w(⌈tb⌉) ≤ t). Proposition 6 entails that
limt→+∞ t−1 log P(T 0

w(⌈tb⌉ ≤ t) ≤ −I(b), so that the upper bound of the LDP holds
for F since I is non-decreasing.

Consider now an open set G ⊂ (v,+∞). For every b ∈ G, there exists
an interval [b, c) ⊂ G. By the large deviations upper bound, we know that
lim supt→+∞ t−1 log P(r0t (w) ≥ bt) ≤ −I(b) and that lim supt→+∞ t−1 log P(r0t (w) ≥
ct) ≤ −I(c). By strict monotonicity of I on (v,+∞), we have that I(b) < I(c), so
we can conclude that lim inft→+∞ t−1 log P(bt ≤ r0t (w) < ct) ≥ −I(b). As a con-
sequence, lim inft→∞

1
t P(t−1r0t (w) ∈ G) ≥ −I(b). Since this holds for an arbitrary

b ∈ G, the lower bound of the LDP for G follows.
Consider now a non-empty open set G ⊂ [0,+∞) such that G ∩ [0, v] 6= ∅. Then

infG I = 0. On the other hand, there is a non-empty interval of the form [c, b) ⊂
G ∩ [0, v]. In Section 5, we prove that, under Assumption (G),

lim inf
t→∞

t−1 log P

[

c ≤ r0t (w)

t
≤ b

]

= 0. (19)

Applying Inequality (19), we see that lim inf t−1 log P(t−1r0t ∈ G) = 0, so that the
lower bound of the LDP holds. �
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4. Speedup probabilities

The main result in this section is Proposition 5:

for any b > v, lim sup
t→+∞

t−1 log P(r0t (I0) ≥ bt) < 0. (20)

For the sake of readability, the reference to the initial condition I0 is often dropped
in this section, so that rǫ

t should be read as rǫ
t(I0).

Our strategy for proving Proposition 5 is to exploit the renewal structure already
used in [4] to prove the CLT. However, this renewal structure leads to random
variables (renewal time, and displacement of the front at a renewal time) whose tails
have polynomial decay (see Appendix 7, and asymptotic exponential bounds such as
(20) cannot be derived from such random variables. Whether it is possible to modify
the definition of the renewal structure so as to obtain random variables enjoying an
exponential decay of the tails, as required for a direct proof of Proposition 5 is
unclear and instead we make use of a different idea. Indeed, we apply the renewal
structure defined in [4] to a perturbation of the original model, one in which the
random walks have a small bias to the right. Again, a law of large numbers holds:

Proposition 7. For all small enough ǫ ≥ 0, there exists 0 < vǫ < +∞ such that

lim
t→∞

t−1rǫ
t = vǫ, P − a.s. and in L1(P).

The interest of introducing a bias to the right is that, reworking the estimates
of [4] in this context, we can show that for any small value of the bias parameter
ǫ > 0, exponential decay of the tail of the renewal times holds, so that the following
result can be proved.

Proposition 8. There exists ǫ0 > 0 such that, for any 0 ≤ ǫ ≤ ǫ0, for any b > vǫ,

lim sup
t→+∞

t−1 log P(rǫ
t ≥ bt) < 0.

On the other hand, it is shown in Corollary 1 above that, as expected, biasing the
random walks to the right cannot decrease the position of the front, so that at each
time t, a comparison holds between the position of the front in the original model
and in the model with a bias. We deduce that

Proposition 9. For any 0 ≤ ǫ < 1/2 and t ≥ 0, and all x ∈ {1, 2, . . .},
P(r0t ≥ x) ≤ P(rǫ

t ≥ x).

As a consequence, we can prove that (20) holds for all b such that there exists an
0 ≤ ǫ ≤ ǫ0 for which vǫ < b. Noting that vǫ is a non-decreasing function of ǫ, we see
that the following result would make our strategy work for all b > v:

Proposition 10.

lim
ǫ→0+

vǫ = v. (21)

It is indeed natural to expect such a continuity property to hold, but proving it
seems to require substantial work.
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Indeed, write

vǫ = lim
t→+∞

t−1E(rǫ
t). (22)

v = lim
t→+∞

t−1E(r0t ).

For fixed t, it is possible (using the dominated convergence theorem) to prove that

lim
ǫ→0+

E(rǫ
t) = E(r0t ). (23)

Hence, to prove Identity (21), it is enough to prove that

lim
ǫ→0+

lim
t→+∞

t−1E(rǫ
t) = lim

t→+∞
lim

ǫ→0+
t−1E(rǫ

t).

Our strategy for proving Proposition 10 is based on the observation that, if some
sort of uniformity with respect to ǫ ∈ [0, ǫ0] is achieved in (22), then the limits with
respect to ǫ → 0+ and to t → +∞ in (22)-(23) can be exchanged. Reworking the
estimates in [4] to obtain uniform upper bounds (with respect to 0 ≤ ǫ ≤ ǫ0) for
the second moments of the random variables (renewal time, and displacement of the
front at a renewal time) defined by the renewal structure, we can prove that the
required uniformity in (22) holds.

4.1. Some random variables on D(Lθ). It will be convenient in the sequel to
work with random variables defined on the canonical space of trajectories D(Lθ)
rather than on (Ω,F ,P). We use theˆsign in order to make apparent the distinction
between random variables defined on Ω and their counterparts. on D(Lθ).

On D(Lθ), we define the following random variables. Let w· = (wt)t≥0 =

(F̂t, r̂t, Ât)t≥0 ∈ D(Lθ). The random process (r̂t)t≥0 is defined through (wt)t≥0 =

(F̂t, r̂t, Ât)t≥0. Under the probability measure Q
ǫ,θ
w the process (F̂t, r̂t, Ât)t≥0 has the

same law as (F ǫ
t , r

ǫ
t , A

ǫ
t)t≥0.

For all s ≥ 0, let Zs,x,i(w·) := x if (x, i) /∈ As, and Zs,x,i(w·) = F̂s(x, i) otherwise.

For y ∈ Z, let T̂ (y) := inf{s ≥ 0; r̂s = y} if y ≥ r̂0 + 1, and let T̂ (y) := 0 otherwise.

Let also Gs,x,i(w·) := ZT̂ (x)+s,x,i. With respect to Q
ǫ,θ
w , the processes (Gs,x,i)s≥0

form a family independent nearest-neighbor random walks on Z with jump rate 2
and step distribution (1/2 + ǫ)δ+1 + (1/2 − ǫ)δ−1.

For z ∈ Z, and w = (F, r,A) ∈ Lθ, define φz(w) by

φz(w) :=
∑

(x,i)∈A∩{...,z−1,z}×{1,...,a}

exp(θ(F (x, i) − r)),

and for z1 < z2 ∈ Z, let

mz1,z2(w) :=
∑

(x,i)∈A∩{z1+1,...,z2}×{1,...,a}

1(z1 + 1 ≤ F (x, i) ≤ z2).

We use the notation θs to denote the canonical time-shift on D(Lθ) and the
notation ̟y to denote the truncated space-shift on D(Lθ) defined by ̟y(F, r,A) =
(F ′, r′, A′), with A′ = {(x− y, i); (x, i) ∈ A, x ≥ y}, F ′(x) := F (x+ y), r′ := r − y.
In words, this corresponds to removing all the particles that are born at the left

of y, and then shifting all birth positions by y. We denote by (F ǫ,θ
t )t≥0 the usual
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augmentation of the natural filtration on D(Lθ) with respect to the Markov family

(Qǫ,θ
w )w∈Lθ

.

4.2. An elementary speedup estimate. The following lemma is stated in [4]
in the case ǫ = 0, and its adaptation to the more general case 0 ≤ ǫ < 1/2 is
straightforward.

Lemma 2. Let λ(ǫ, θ) := 2(cosh θ − 1) + 4ǫ sinh θ + a(1 + 2ǫ) exp θ and cγ(ǫ, θ) :=
γθ − λ(ǫ, θ). For all 0 ≤ ǫ < 1/2, w ∈ Lθ, and t ≥ 0,

Qǫ,θ
w (r̂t − r̂0 ≥ γt) ≤ φr̂0(w) exp(−cγ(ǫ, θ)t).

4.3. Definition of the renewal structure. We follow the definition of the renewal
structure in [4]. Consider a parameter

M := 4(a + 9). (24)

Let ν0 := 0 and ν1 be the first time one of the random walks {(Gs,r0,i)s≥0; 1 ≤ i ≤ a},
hits the site r̂0+1 (the random walks (Gs,x,i) are defined in section 4.1). Next, define
ν2 as the first time one of the random walks {(Gs,z,i)s≥0; r̂0 ≤ z ≤ r̂0 +1, 1 ≤ i ≤ a}
hits the site r̂0 + 2. In general, for k ≥ 2, we define νk as the first time one of the
random walks {(Gs,z,i)s≥0; r̂0 ∨ (r̂0 + k −M) ≤ z ≤ r̂0 + k − 1, 1 ≤ i ≤ a}, hits the
site r̂0 + k. For n ∈ N, let

r̃t := r̂0 + n, if
n
∑

k=0

νk ≤ t <
n+1
∑

k=0

νk.

The following proposition (see Lemma 1 from [4]), shows that the so-called auxiliary
front r̃t can be used to estimate the position of the front r̂t.

Proposition 11. For every 0 ≤ ǫ < 1/2, θ > 0 and w ∈ Lθ, the following holds

Q
ǫ,θ
w −almost surely:

for every t ≥ 0, r̃t ≤ r̂t.

Now, observe that for any w = (F, r,A) such that r×{1, . . . , a} ⊂ A and F (r, i) =

r for all 1 ≤ i ≤ a, with respect to Q
θ,ǫ
w , for each 1 ≤ j ≤M−1, the random variables

(νi)i≥1 are a.s. finite, and that the random variables {νMk+j : k ≥ 1} are i.i.d. and
have finite expectation since M ≥ 3. We deduce that a.s. (see also [5]),

lim
t→∞

r̃t/t =: α(ǫ) > 0.

First note that α(ǫ) does not depend on θ nor on w since the distribution of the

random walks (Gs,x,i)s≥0 with respect to Q
θ,ǫ
w does not. Moreover, α(ǫ) is a non-

decreasing function of ǫ by an immediate coupling argument.
Now consider ǫ0 < 1/2, θ > 0, α1, α2 > 0 such that







0 < α1 < α2 < α(0),
θ−1(2(cosh θ − 1) + 4ǫ0 sinh θ) < α1,
4ǫ0 < α1.

(25)

In the sequel, we always assume that 0 ≤ ǫ ≤ ǫ0.
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Let us define the following random variables on D(Lθ):






U(w·) := inf{t ≥ 0; r̃t − r̂0 < ⌊α2t⌋},
V (w·) := inf{t ≥ 0; maxr̂0−L+1≤z≤r̂0−1 Zt,x,i > ⌊α1t⌋ + r̂0},
W (w·) := inf{t ≥ 0; φr̂0−L(wt) ≥ eθ(⌊α1t⌋−(r̂t−r̂0))}.

Note that, for all ǫ, U, V,W are stopping times with respect to (F ǫ,θ
t )t≥0, and that

they are mutually independent with respect to Q
θ,ǫ
w .

Let

D := min(U, V,W ).

Now let p > 0 be such that

p exp(θ) < 1,

and L such that

L1/4 ≥M + 1 and a exp(−Lθ)(1 − exp(−θ))−1 < p. (26)

For x ∈ Z, let

Jx(w·) := inf{j ≥ 1; φx+(j−1)L(wT̂ (x+jL)) ≤ p, mx+jL−L1/4,x+jL(wT̂ (x+jL)) ≥ a⌊L1/4⌋/2}.
Let S0 := 0 and R0 := r̂0. Then define for k ≥ 0,

Sk+1 := T̂ (Rk + JRk
L), Dk+1 := D ◦ θSk+1

+ Sk+1, Rk+1 = rDk+1

K := inf{k ≥ 1 : Sk <∞,Dk = ∞},
and define the regeneration time

κ := SK ,

Note that κ is not a stopping time with respect to (F ǫ,θ
t )t≥0. Define Gǫ,θ, the in-

formation up to time κ, as the smallest σ-algebra containing all sets of the form

{κ ≤ t} ∩A, A ∈ F ǫ,θ
t , t ≥ 0.

4.4. Properties of the renewal structure. Throughout this section, we assume
that θ, α1, α2, ǫ0 satisfy the assumptions listed in part 4.3.

Proposition 12. The following properties hold:

(i) There exist 0 < C,L∗ < +∞ not depending on ǫ (but possibly depending on
the choice of θ, α1, α2, ǫ0) such that, for L := L∗, and all 0 ≤ ǫ ≤ ǫ0,

E
ǫ,θ
I0

(κ2) ≤ C, E
ǫ,θ
aδ0

(κ2|U = +∞) ≤ C,

E
ǫ,θ
I0

((r̂κ)2) ≤ C and E
ǫ,θ
aδ0

((r̂κ)2|U = +∞) ≤ C.

(ii) For all 0 < ǫ ≤ ǫ0, there exist 0 < C(ǫ), L(ǫ), t(ǫ) < +∞ such that, for
L := L(ǫ),

E
ǫ,θ
I0

(exp(t(ǫ)κ)) ≤ C(ǫ), E
ǫ,θ
aδ0

(exp(t(ǫ)κ)|U = +∞) ≤ C(ǫ),

E
ǫ,θ
I0

(exp(t(ǫ)r̂κ)) ≤ C(ǫ) and E
ǫ,θ
aδ0

(exp(t(ǫ)r̂κ)|U = +∞) ≤ C(ǫ).
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Proposition 12 provides the key estimates needed for the proof of the main re-
sults in this section. Most of the technical work needed to prove it consists in a
reworking of the estimates in [4], either proving that, for each positive value of the
bias parameter ǫ, exponential estimates can be obtained instead of the polynomial
ones derived in [4], or that the polynomial estimates already obtained in [4] can be
made uniform with respect to 0 ≤ ǫ ≤ ǫ0. The proofs go along the lines of [4], and
are deferred to Appendix 9. In the sequel, we always assume that either L := L∗

or L := L(ǫ). As a consequence of Proposition 12 we see that for all 0 ≤ ǫ ≤ ǫ0,

Q
ǫ,θ
I0

(0 < κ < +∞) = 1 and Q
ǫ,θ
aδ0

(0 < κ < +∞|U = +∞) = 1.

As in [4], the following propositions and corollary can be proved.

Proposition 13. Let 0 ≤ ǫ ≤ ǫ0. If w = I0 or w = aδ0, then for any Borel subset
Γ of D(Lθ),

Qǫ,θ
w (̟r̂κ(wκ+t)t≥0 ∈ Γ|Gǫ,θ) = Q

ǫ,θ
aδ0

(Γ|U = +∞) Qǫ,θ
w − a.s.

Define κ1 := κ and for i ≥ 1, κi+1 := κi + κ ◦ θκi . Now, for all i ≥ 1, define Gǫ,θ
i

as the smallest σ-algebra containing all sets of the form {κi ≤ t} ∩A, A ∈ F ǫ,θ
t , t ≥

0.The following general version of Proposition 13 holds.

Proposition 14. Let 0 ≤ ǫ ≤ ǫ0 and i ≥ 1. If w = I0 and w = aδ0 then for any
Borel subset Γ of D(Lθ),

Qǫ,θ
w (̟r̂κi

(wκi+t)t≥0 ∈ Γ|Gǫ,θ
i ) = Q

ǫ,θ
aδ0

(Γ|U = +∞) Qǫ,θ
w − a.s.

Corollary 3. The following properties hold:

(i) Under Q
ǫ,θ
I0

, κ1, κ2 −κ1, κ3 −κ2, . . . are independent, and κ2 −κ1, κ3 −κ2, . . .

are identically distributed with law identical to that of κ under Q
ǫ,θ
aδ0

(·|U =

+∞).

(ii) Under Q
ǫ,θ
I0

, r̂κ1, r̂κ2 − r̂κ1 , r̂κ3 − r̂κ2, . . . are independent, and r̂κ2 − r̂κ1, r̂κ3 −
r̂κ2 , . . . are identically distributed with law identical to that of rκ under

Q
ǫ,θ
aδ0

(·|U = +∞).

We now give the proofs of Propositions 7, 8 and 10.

Proof of Proposition 7. First, note that the P−a.s. convergence stated in Proposi-
tion 7 follows from the integrability of renewal times by a standard argument. To
prove that the convergence also takes place in L1(P), we note that, from Lemma 2

above, it stems that E
ǫ,θ
I0

(r̂t) < +∞ for all t and that the family of random variables

(t−1r̂t)t≥1 is uniformly integrable with respect to Q
ǫ,θ
I0

. The convergence in L1(P)
then follows from the P−a.s. convergence.

�

Proof of Proposition 8. Fix 0 < ǫ ≤ ǫ0, and let L := L(ǫ). For all t ≥ 0, define
a(t) := sup{n ≥ 1; κn ≤ t}, with the convention that sup ∅ = 0. From Corol-
lary 3 and Proposition 12, we deduce that, a(t) < +∞ a.s. for all t ≥ 0 and that
limt→+∞ a(t) = +∞ a.s. Using the fact that the map t 7→ r̂t is non-decreasing, we
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have that r̂t ≤ r̂κa(t)+1
. Now observe that, for any 0 < ǫ ≤ ǫ0, any b > vǫ, and any

0 < c < +∞, by the union bound,

Q
ǫ,θ
I0

(r̂t ≥ bt) ≤ Q
ǫ,θ
I0

(a(t) ≥ ⌊ct⌋) + Q
ǫ,θ
I0

(r̂κ⌊ct⌋+1
≥ bt).

Note that Q
ǫ,θ
I0

(a(t) ≥ ⌊ct⌋) ≤ Q
ǫ,θ
I0

(κ⌊ct⌋ ≤ t), and observe that, by a standard large

deviations bound for the i.i.d non-negative sequence (κi+1−κi)i≥1 and Proposition 12

for κ1, whenever c−1 < E
ǫ,θ
aδ0

(κ|U = +∞), lim supt→+∞ t−1 log Q
ǫ,θ
I0

(κ⌊ct⌋ ≤ t) <

0. On the other hand, writing r̂κ⌊ct⌋+1
= r̂κ1 +

∑⌊ct⌋+1
i=1 (r̂κi+1 − r̂κi), and using

Proposition 12, together with a standard large deviations argument (see e.g. [6]), we

have that, as soon as b/c > E
ǫ,θ
aδ0

(r̂κ|U = +∞), lim supt→+∞ t−1 log Q
ǫ,θ
I0

(r̂κ⌊ct⌋+1
≥

bt) < 0.
Note that we can deduce from the renewal structure that

vǫ =
E

ǫ,θ
aδ0

(r̂κ|U = +∞)

E
ǫ,θ
aδ0

(κ|U = +∞)
. (27)

As a consequence, if b > vǫ, we see that we can choose a c > 0 such that c−1 <

E
ǫ,θ
aδ0

(κ|U = +∞) and b/c > E
ǫ,θ
aδ0

(r̂κ|U = +∞). �

Lemma 3. There exists 0 < c < +∞ such that, for all 0 ≤ ǫ ≤ ǫ0,

E
ǫ,θ
aδ0

(κ|U = +∞) ≥ c.

Proof. Use the fact that, by definition, κ ≥ T̂ (1), so that E
ǫ,θ
aδ0

(κ|U = +∞) ≥
E

ǫ,θ
aδ0

(T̂ (1)1(U = +∞)). Now, by coupling, Q
ǫ,θ
aδ0

(U = +∞) ≥ Q
0,θ
aδ0

(U = +∞) for all

0 ≤ ǫ ≤ ǫ0. By coupling again, for all u > 0, Q
ǫ,θ
aδ0

(T̂ (1) ≥ u) ≥ Q
ǫ0,θ
aδ0

(T̂ (1) ≥ u).

Now, since Q
ǫ0,θ
aδ0

(T̂ (1) > 0) = 1, we can find u > 0 small enough so that Q
ǫ0,θ
aδ0

(T̂ (1) ≥
u) ≥ 1 − (1/2)Q0,θ

aδ0
(U = +∞). Putting the previous inequalities together, we see

that, for all 0 ≤ ǫ ≤ ǫ0, Q
0,θ
aδ0

(T̂ (1) ≥ u,U = +∞) ≥ (1/2)Q0,θ
aδ0

(U = +∞). The
conclusion follows. �

The following proposition contains the uniform convergence estimate that is re-
quired for the proof of Proposition 10. Broadly speaking, the idea is to control the
convergence speed with second moment estimates on the renewal structure, so that
uniform estimates on these moments yield uniform estimates on the convergence
speed.

Proposition 15. For all ζ > 0, there exists tζ ≥ 0 such that, for all t ≥ tζ and all
0 ≤ ǫ ≤ ǫ0,

vǫ ≤ E
ǫ,θ
I0

(t−1r̂t) + ζ.

Proof. Let 0 < λ < 1 be given, and let

m(t, ǫ) :=

⌊

(1 − λ)t
(

E
ǫ,θ
aδ0

(κ|U = +∞)
)−1

⌋

.
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In the rest of the proof, we write m instead of m(t, ǫ) for the sake of readability.

Note that, in view of Proposition 12, for all 0 ≤ ǫ ≤ ǫ0, E
ǫ,θ
aδ0

(κ|U = +∞) ≤ C1/2, so

that m ≥ 1 as soon as t ≥ C1/2(1 − λ)−1, which does not depend on ǫ.
We now re-use the random variables a(t) defined in the proof of Proposition 8

above. Using the fact that t 7→ r̂t is non-decreasing, we see that r̂t ≥ r̂κa(t)
. More-

over, r̂κa(t)
≥ r̂κa(t)

1(a(t) ≥ m), and r̂κa(t)
1(a(t) ≥ m) ≥ r̂κm1(a(t) ≥ m) when

m ≥ 1. Taking expectations, we deduce that, when m ≥ 1,

E
ǫ,θ
I0

(t−1r̂t) ≥ E
ǫ,θ
I0

(t−1r̂κm) − E
ǫ,θ
I0

(t−1r̂κm1(a(t) < m)). (28)

Consider the first term in the r.h.s. of (28) above, and observe that

E
ǫ,θ
I0

(r̂κm) = E
ǫ,θ
I0

(r̂κ) + (m− 1)Eǫ,θ
aδ0

(r̂κ|U = +∞).

¿From Proposition 12, E
ǫ,θ
I0

(r̂κ) ≤ C1/2 for all 0 ≤ ǫ ≤ ǫ0. Moreover, from Iden-

tity (27),
(

E
ǫ,θ
aδ0

(r̂κ|U = +∞)
)(

E
ǫ,θ
aδ0

(κ|U = +∞)
)−1

= vǫ. We easily deduce that,

as t goes to infinity, uniformly with respect to 0 ≤ ǫ ≤ ǫ0,

E
ǫ,θ
I0

(r̂κm) = (1 − λ)tvǫ +O(1). (29)

Consider now the second term in the r.h.s. of (28). By Schwarz’s inequality,

E
ǫ,θ
I0

(t−1r̂κm1(a(t) < m)) ≤
(

E
ǫ,θ
I0

[

(t−1r̂κm)2
]

)1/2
Q

ǫ,θ
I0

(a(t) < m)1/2. (30)

¿From Proposition 12 and Corollary 3, it is easily checked that

E
ǫ,θ
I0

[

(r̂κm)2
]

≤ Cm2. (31)

On the other hand, one has that Q
ǫ,θ
I0

(a(t) < m) ≤ Q
ǫ,θ
I0

(κm ≥ t). ¿From Proposi-

tion 12 and Corollary 3, the variance of κm with respect to Q
ǫ,θ
I0

is bounded above
by Cm, so that we can use the Bienaymé-Chebyshev’s inequality to prove that,

whenever t > E
ǫ,θ
I0

(κm),

Q
ǫ,θ
I0

(a(t) < m) ≤ Cm(t− E
ǫ,θ
I0

(κm))−2. (32)

Now, using Proposition 12 as in the proof of (29) above, we can easily prove that,
as t goes to infinity, uniformly with respect to 0 ≤ ǫ ≤ ǫ0,

E
ǫ,θ
I0

(κm) = (1 − λ)t+O(1).

Putting the above identity together with (32), (31) and (30), we deduce that, as t
goes to infinity, uniformly with respect to 0 ≤ ǫ ≤ ǫ0,

E
ǫ,θ
I0

(t−1r̂κm1(a(t) < m)) ≤ Cm3/2(λt2 +O(t))−1.

In view of Lemma 3, we have that m ≤ c−1t for all 0 ≤ ǫ ≤ ǫ0, so we can conclude
that, uniformly with respect to 0 ≤ ǫ ≤ ǫ0,

lim
t→+∞

E
ǫ,θ
I0

(t−1r̂κm1(a(t) < m)) = 0. (33)
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Plugging (29) and (33) in (28), we finally deduce that, as t goes to infinity, uni-
formly with respect to 0 ≤ ǫ ≤ ǫ0,

E
ǫ,θ
I0

(t−1r̂t) ≥ (1 − λ)vǫ + o(1).

The conclusion of the Proposition follows by noting that, since vǫ ≤ vǫ0, (1−λ)vǫ ≥
vǫ − λvǫ0 .

�

Lemma 4. For all t ≥ 0,

lim
ǫ→0+

E
ǫ,θ
I0

(r̂ǫ
t) = E

ǫ,θ
I0

(r̂0t ).

Proof. Consider a given t ≥ 0. By Proposition 17 in Appendix 8, with P probability
one, we can find a (random) K ≤ 0 such that sup{F ǫ0

s (x, i); 0 ≤ s ≤ t, x < K, 1 ≤
i ≤ a} ≤ 0, so that sup{F ǫ

s (x, i); 0 ≤ s ≤ t, x < K, 1 ≤ i ≤ a} ≤ 0 for all 0 ≤ ǫ ≤ ǫ0.
As a consequence, for all 0 ≤ ǫ ≤ ǫ0, with probability one, rǫ

t(I0) = rǫ
t(w(K))s≥0),

where w(K) is the configuration defined by A = {K, . . . , 0} × {1, . . . , a}, r = 0 and
F (x, i) = x for all (x, i) ∈ A.

Since, for every 0 ≤ ǫ ≤ ǫ0, with probability one rǫ
t ≤ rǫ0

t , we see that the value of
rǫ
t is entirely determined by the trajectories up to time t of the random walks born

at sites (x, i) with K ≤ x ≤ rǫ0
t . With probability one again, we are dealing with a

finite number of random walks, and a finite number of steps. We now see that, for
all ǫ small enough, these trajectories are identical to what they are for ǫ = 0, so that
rǫ
t = r0t . Since 0 ≤ rǫ

t ≤ rǫ0
t and rǫ0

t is integrable w.r.t. P, we can use the dominated
convergence theorem to deduce the conclusion. �

Proof of Proposition 10. Let ζ > 0, and, following Proposition 15, consider a tζ such
that, for all t ≥ tζ and all 0 ≤ ǫ ≤ ǫ0,

vǫ ≤ E
ǫ,θ
I0

(t−1r̂t) + ζ.

Consider now, thanks to Proposition 7, a t ≥ tζ such that E
0,θ
I0

(t−1r̂t) ≤ v+ ζ. Now,
thanks to Lemma 4, we know that, for all ǫ small enough,

E
ǫ,θ
I0

(t−1r̂t) ≤ E
0,θ
I0

(t−1r̂t) + ζ.

Putting together the above inequalities, we deduce that, for all ǫ small enough,
vǫ ≤ v + 3ζ. Since vǫ ≥ v, the conclusion follows.

�

Now Proposition 5 follows from Proposition 8, Proposition 9 and Proposition 10,
as explained in the beginning of this section.

5. Slowdown large deviations

For x ≥ 1 and t ≥ 0, let (ζt)t≥0 denote a continuous time simple symmetric
random walk starting form 0 of total jump rate 2. Let

Ḡt(x) := P

(

sup
s∈[0,t)

ζs < x

)

, Gt(x) := P (ζt ≥ x) .
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In the sequel we will use the fact that for fixed t ≥ 0, Gt(·) is non-decreasing and
Ḡt(·) is non-increasing, and that, thanks to the reflection principle,

1 − Ḡt(x) = 2Gt(x) − P (ζt = x) . (34)

5.1. Proof of Theorem 2 (a) and (c). We start with the proof of Theorem 2 (c).
The fact that rt = 0 means that no particle in the initial configuration hits 1 before
time t. Both the upper and lower bounds can then be understood heuristically as
follows. Since we consider simple symmetric random walks, for large t, the constraint
of not hitting 1 before time t has a cost only for particles within a distance of order
t1/2 of the origin. Now these particles perform independent random walks, and their
number has an order of magnitude lying between tu(ηw)/2 and tU(ηw)/2.

We start with the lower bound. When U = +∞, the inequality holds trivially,
so we assume in the sequel that U < +∞. The event t−1rt(w) = 0, implies that
none of the random walks corresponding to particles in the initial condition w hit 1
before time t. By independence of the random walks, the corresponding probability
equals

−∞
∏

x=0

Ḡt(−x+ 1)ηw(x).

Now let b1 > 0 be such that 1 − 2s ≥ exp (−4s) for all 0 ≤ s ≤ b1. From (34), we
see that for any t ≥ 0 and y ≤ 0, Ḡt(−y + 1) ≥ 1 − 2Gt(−y + 1). By the central

limit theorem, we can find t0 and K > 0 such that, for all t ≥ t0 and y ≤ −Kt1/2,
Gt(−y + 1) ≤ b1. Let kt := ⌈Kt1/2⌉. Then, for all t ≥ t0

−∞
∏

x=−kt

Ḡt(−x+ 1)ηw(x) ≥ exp



−4

−∞
∑

x=−kt

ηw(x)Gt(−x+ 1)



 .

Now, by definition of Gt,
−∞
∑

x=0

ηw(x)Gt(−x+ 1) = E
(
∑−∞

x=0 ηw(x)1(ζt ≥ −x+ 1)
)

= E

[

1(ζt ≥ 1)

(

−ζt+1
∑

x=0

ηw(x)

)]

= E [1(ζt ≥ 1)(Hw(−ζt + 1))] .

By assumption, Hw(x) ≤ |x|U+o(1). Hölder’s inequality yields that

E [1(ζt ≥ 1)(Hw(−ζt + 1))] ≤ tU/2+o(1).

We deduce that for all t ≥ t0
−∞
∏

x=−kt

Ḡt(x)
ηw(x) ≥ exp(−tU/2+o(1)). (35)

Now, for −kt < y ≤ 0, observe that Ḡt(−y + 1) ≥ Ḡt(1). As a consequence,

−kt+1
∏

x=0

Ḡt(−x+ 1)ηw(x) ≥ Ḡt(1)
Hw(−kt+1).



22 JEAN BÉRARD1 AND ALEJANDRO RAMÍREZ1,2

But there exists c4 > 0, such that, for large enough t, Ḡt(1) ≥ c4t
−1/2. Using

again the fact that Hw(x) ≤ |x|U+o(1), it is easy to deduce that Ḡt(1)
Hw(−kt+1) ≥

exp(−tU/2+o(1)), whence

−kt+1
∏

x=0

Ḡt(−x+ 1)ηw(x) ≥ exp(−tU/2+o(1)). (36)

From (35) and (36), we deduce that

P(t−1r0t (w) ≤ 0) ≥ exp(−tU/2+o(1)).

Now, let us prove the upper bound when u < +∞. Using an argument similar to
the one used in the proof of the lower bound above, we easily obtain that

P(t−1rt(w) = 0) ≤ exp (−E [1(ζt ≥ 1)(Hw(−ζt + 1))]) .

It is then easy to deduce that

E [1(ζt ≥ 1)(Hw(−ζt + 1))] ≥ tu/2+o(1),

and the upper bound follows.
We now turn to the proof of Theorem 2 (a). The idea of the proof when s(η) = 1/2

is to combine the following two arguments. First, for b > 0, it costs nothing to
prevent all the particles in the initial condition from hitting ⌊bt⌋ up to time t.
Intuitively, this result comes from the fact that hitting ⌊bt⌋ before time t has an
exponential cost for any particle in the initial condition within distance O(t) of the
origin, and, due to (G), there is a subexponentially large number of such particles.

Second, in the worst case where all the particles attached to sites 1 ≤ x ≤ bt are
turned into X particles instantaneously at time zero, the cost of preventing all these
particles from hitting bt up to time t is of order exp(−t1/2+o(1)), due to the lower
bound in (6) proved above, The actual proof is in fact more complex since we want
to consider probabilities of the form P(ct ≤ rt ≤ bt), and not only P(rt ≤ bt), and
deal also with the case s(η) < 1/2.

We state two lemmas before giving the proof.

Lemma 5. Consider an initial condition w = (F, 0, A) satisfying assumption (G).
Then, for all b > 0, and all ϕ > 0,

P

[

max
(x,i)∈A

sup
0≤s≤t

Fs(x, i) ≥ bt

]

≤ fϕ(w) exp [t(cosh(2ϕ) − 1)]Gt(⌊bt⌋)1/2.

Proof. The probability we are looking at is the probability that at least one of the
random walks corresponding to particles in w exceeds bt before time t. By the union
bound, this probability is smaller than

−∞
∑

x=0

ηw(x)(1 − Ḡt(−x+ ⌊bt⌋)) ≤
−∞
∑

x=0

2ηw(x)Gt(−x+ ⌊bt⌋)).
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Now observe that by definition of Gt,

−∞
∑

x=0

ηw(x)Gt(−x+ ⌊bt⌋) = E

(

−∞
∑

x=0

ηw(x)1(ζt ≥ −x+ ⌊bt⌋)
)

= E



1(ζt ≥ ⌊bt⌋)





−ζt+⌊bt⌋
∑

x=0

ηw(x)







 = E [1(ζt ≥ ⌊bt⌋)(Hw(−ζt + ⌊bt⌋))] .

¿From assumption (G), we deduce that, for all ϕ > 0, Hw(x) ≤ fϕ(w) exp(−ϕx)
for all x ≤ 0. As a consequence, when ζt ≥ ⌊bt⌋, Hw(−ζt + ⌊bt⌋) ≤ Hw(−ζt) ≤
fϕ(w) exp(ϕζt). Applying Schwarz’s inequality, we see that

E [1(ζt ≥ ⌊bt⌋)(Hw(−ζt + ⌊bt⌋))] ≤ P (ζt ≥ ⌊bt⌋)1/2 fϕ(w)E [exp(2ϕζt)]
1/2 .

Now note that E [exp(2ϕζt)] = exp[2(cosh(2ϕ) − 1)t]. �

Lemma 6. Consider an initial condition w = (F, 0, A) satisfying assumption (G).
Then, for all ϕ > 0

E





∑

(x,i)∈At

exp (ϕ(Ft(x, i) − rt))



 ≤ exp[2(cosh(ϕ) − 1)t]fϕ(w) + aE(rt).

Proof. Write
∑

(x,i)∈At
=
∑

(x,i)∈A +
∑

(x,i)∈At\A
. For (x, i) ∈ A, observe that

exp (ϕ(Ft(x, i) − rt)) ≤ exp (ϕFt(x, i)) and that E [exp(ϕFt(x, i))] = exp[ϕx +
2(cosh(ϕ) − 1)t]. As a consequence,

E





∑

(x,i)∈A

exp (ϕ(Ft(x, i) − rt))



 ≤ exp[2(cosh(ϕ) − 1)t]fϕ(w). (37)

On the other hand, observe that At \A = {1, . . . , rt}× {1, . . . , a}. Since it is always
true that Ft(x, i) ≤ rt,

∑

(x,i)∈At\A

exp (ϕ(Ft(x, i) − rt)) ≤ art. (38)

The result follows from putting together (37) and (38). �

Proof of Theorem 2. Let α, δ ∈ (0, 1) be such that c < v(1−α) < b, c < (1−α)(1−
δ)v < (1−α)(1+ δ)v < b, and define γ := b− (1−α)(1+ δ)v. For each t > 0, define
the events

Bt :=
{

v(1 − α)(1 − δ)t ≤ r(1−α)t ≤ v(1 − α)(1 + δ)t
}

,

Ct :=

{

max
(x,i)∈At(1−α), t(1−α)≤s≤t

Fs(x, i) ≤ rt(1−α) + γt

}

,

Dt :=

{

max
r(1−α)t<x≤bt, 1≤i≤a, 0≤s≤αt

x+ Yx,i,s ≤ bt

}

.
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Observe that

Bt ∩Ct ∩Dt ⊂ {ct ≤ rt ≤ bt}. (39)

Indeed, thanks to the choice of δ, Bt implies that r(1−α)t ≥ ct, so that rt ≥ ct. On
the other hand, since r(1−α)t < bt on Bt, the event Bt ∩{rt > bt} implies that either
a particle born before time t(1 − α) at a position x ≤ rt(1−α), or a particle born
between time (1 − α)t and t at a position r(1−α)t < x < bt, exceeds bt at a time
between t(1 − α) and t. The former possibility is ruled out by Bt ∩ Ct, since on
Bt ∩Ct, rt ≤ r(1−α)t + γt ≤ bt. The latter possibility is ruled out by Dt. Now define

l(t) := exp[2(cosh(ϕ) − 1)(1 − α)t]fϕ(w) + aE(r(1−α)t),

and

Ht :=







∑

(x,i)∈A(1−α)t

exp
(

ϕ(F(1−α)t(x, i) − r(1−α)t)
)

≤ 2l(t)







.

By Lemma 6 and Markov’s inequality, for all t ≥ 0, P (Ht) ≥ 1/2. Moreover, by the
law of large numbers (1), limt→+∞ P(Bt) = 1. We deduce that there exists a t0 such
that, for all t ≥ t0, P(Bt ∩ Ht) ≥ 1/4. Let us call Ft the σ−algebra generated by
the history of the particle system up to time t. Observe that Bt and Ht belong to
F(1−α)t, and by Lemma 5, on Ht,

P(Cc
t |F(1−α)t) ≤ 2l(t) exp [αt(cosh(2ϕ) − 1)]Gαt(⌊γt⌋)1/2.

We deduce that

P(Bt ∩Ht ∩Cc
t ) ≤ 2l(t) exp [αt(cosh(2ϕ) − 1)]Gαt(⌊γt⌋)1/2. (40)

Moreover,

P(Dt|F(1−α)t) ≥ P(rαt(I0) = 0),

so that

P(Bt ∩Ht ∩Dt) ≥ (1/4)P(rαt(I0) = 0) ≥ exp(−t1/2+o(1)), (41)

where the last inequality is due to the lower bound in (6). By standard large de-
viations bounds for the simple random walk, there exists ζ(α, γ) > 0 depending
only on γ and α such that, as t goes to infinity, lim inft→+∞ t−1 logGαt(⌊γt⌋) =
−ζ(α, γ). Furthermore, limt→+∞ t−1 log(2l(t) exp [αt(cosh(2ϕ) − 1)]) = ξ(α,ϕ),
where ξ(α,ϕ) := α(cosh(2ϕ) − 1) + 2(cosh(ϕ) − 1)(1 − α). We see that, choos-
ing ϕ small enough, ξ(α,ϕ) < ζ(α, γ)/2. For such a ϕ, (40) and (41) show that

P(Bt∩Ht∩Cc
t ) = o(P(Bt∩Ht∩Dt)), so that P(Bt∩Ht∩Dt∩Ct) ≥ exp(−t1/2+o(1)).

It then follows from (39) that P(ct ≤ rt ≤ bt) ≥ exp(−t1/2+o(1)), so we are done
when s(η) = 1/2.
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Now, let us choose an (x, i) ∈ A for the initial condition w = (F, 0, A). Define
also τ = inf{s ≥ 0; Fs(x, i) = 0}. Let

Kt := {(1 − (1 − α)(1 + δ))t ≤ τ ≤ (1 − (1 − α)(1 − δ))t},
Lt := {ct ≤ r(1−α)(1−δ)t+τ (w(x, i)) ≤ r(1−α)(1+δ)t+τ (w(x, i)) ≤ bt},
L′

t := {ct ≤ r(1−α)(1−δ)t(δ0) ≤ r(1−α)(1+δ)t(δ0) ≤ bt},
Mt := { for all (y, j) ∈ A \ {(x, i)} and all 0 ≤ s ≤ t, Fs(y, j) ≤ 0}.

Observe that, on Mt, rt(w) = rt(w(x, i)). Moreover, Kt ∩ Lt ⊂ {ct ≤ rt(w(x, i)) ≤
bt}. As a consequence,

Mt ∩Kt ∩ Lt ⊂ {ct ≤ rt(w) ≤ bt}. (42)

But according to the lower bound of Theorem 2 (b), P(Mt) ≥ exp(−tU(ηw)/2+o(1)).
On the other hand, conditional upon τ , rs+τ (w(x, i)) has the (unconditional) distri-
bution of rs(δ0), for all s ≥ 0. As a consequence, P(Kt ∩Lt) = P(Kt)P(L′

t), and, by
the law of large numbers (1), limt→+∞ P(L′

t) = 1. Moreover, it is easily seen from el-
ementary estimates on hitting times by a simple symmetric continuous time random
walk that lim inft→+∞ t−1/2P(Kt) > 0. Finally, Mt being defined in terms of random
walks that do not enter the definition of Kt and Lt, we deduce that Mt is indepen-
dent from Kt ∩ Lt. We finally deduce that P(Mt ∩Kt ∩ Lt) ≥ exp(−tU(ηw)/2+o(1)),
and the result follows from (42).

�

5.2. Proof of Theorem 3. As for the upper bound in (6), we easily obtain that

P(t−1rt(w) ≤ bt) ≤ exp (−E [1(ζt ≥ ⌈bt⌉)Hw(−ζt + ⌈bt⌉)]) .
It is easily checked that, for small enough b > 0,

lim inf
t→+∞

t−1 logE [1(ζt ≥ ⌈bt⌉) exp (θ(ζt − ⌈bt⌉))] > 0. (43)

This proves (i). We now prove (ii). Again, it is easily checked that, for all b > 0,
there exists θ > 0 such that (43) holds. Choosing b > v, the result follows.

5.3. Proof of Theorem 2 (b). Note that by coupling, it is enough to prove the
result with an initial condition consisting of exactly a particles per site x ≤ 0, that
is, with w = I0. Hence, we will establish that for all 0 < b < v, and all α > 0,

lim inf
t→∞

(log t)−1

∣

∣

∣

∣

log P

[

r0t (I0)

t
≤ b

]∣

∣

∣

∣

≥ 1/3.

Using the fact that P(T 0
I0

(⌊bt⌋) ≥ t) ≤ P(r0t (I0) ≤ bt) ≤ P(T 0
I0

(⌈bt⌉) ≥ t), it is easy
to see that (5) is equivalent to the following result.

Proposition 16. For every c > v−1, as n goes to infinity,

P(T 0
I0

(n) ≥ cn) ≤ exp
(

−n1/3+o(1)
)

.
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Our strategy for proving Proposition 16 can be sketched as follows. By subadditivity,
for all m ≥ 1

T 0
I0

(n) ≤
⌊n/m⌋
∑

j=0

T 0
Imj

(m(j + 1)),

so that

P(T 0
I0

(n) ≥ cn) ≤ P





⌊n/m⌋
∑

j=0

T 0
Imj

(m(j + 1)) ≥ (mc)⌊n/m⌋



 . (44)

Now, by translation invariance, for all j ≥ 0, T 0
Imj

(m(j + 1)) and T 0
I0

(m) have the

same distribution, and it can be shown that

lim
m→+∞

m−1E(T 0
I0

(m)) = v−1.

Hence, given c > v−1 we can always find m ≥ 1 such that mc > E(T 0
I0

(m)), so
that the r.h.s. of (44) is the probability of a large deviation above the mean for

the sum
∑⌊n/m⌋

j=0 T 0
Imj

(m(j + 1)). We then seek to apply large deviations bounds

for i.i.d. variables in order to estimate this probability. Of course, the random

variables
{

T 0
Imj

(m(j + 1))
}

j≥0
are not independent, but the dependency between

{

T 0
Imj

(m(j + 1))
}

j≤j1
and

{

T 0
Imj

(m(j + 1))
}

j≥j2
is weak when j2 − j1 is large.

Indeed, for given j, T 0
Imj

(m(j + 1)) mostly depends on the behavior of the ran-

dom walks born at sites close to mj. We implement this idea by using a tech-
nique already exploited in [22] in a similar context. Given ℓ ≥ 1, we define

a family
{

T
′

Imj
(m(j + 1))

}

j≥0
of hitting times as follows: T

′

Imj
(m(j + 1)) uses

the same random walks as T 0
Imj

(m(j + 1)) for particles born at sites (x, i) with

mj − mℓ < x < m(j + 1), but uses fresh independent random walks for parti-
cles born at sites (x, i) with x ≤ mj −mℓ. We can then prove that the following
properties hold:

(a) For all j ≥ 0, the family
{

T
′

Imj+pm(ℓ+1)
(mj + pm(ℓ+ 1) +m)

}

p≥0
is i.i.d.;

(b) when ℓ is large, the probability that T
′

Imj
(m(j + 1)) = T 0

Imj
(m(j + 1)) is

close to 1.

We can thus obtain estimates on the r.h.s. of (44) by estimating separately the

probability that T
′

Imj
(m(j + 1)) = T 0

Imj
(m(j + 1)) for all 0 ≤ j ≤ ⌊m/n⌋, and the

probability that
∑⌊n/m⌋

j=0 T
′

Imj
(m(j+1)) ≥ (mc)⌊n/m⌋. Now, thanks to property (a)

above, this last sum can be split evenly into ℓ+1 subsums of i.i.d. random variables
distributed as T 0

I0
(m). Controlling the tail of T 0

I0
(m) then allows us to apply large

deviation bounds for i.i.d. variables separately to each of these subsums. In fact,
the proof of (5) is a bit more subtle, since it also makes use of a positive association
property, but we do not go into the details here (see Remark 3 below).
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5.4. Proof of Proposition 16. Observe that, since for all u ∈ Z and k ≥ 0,
Iu ⊕ k = Iu+k, the subadditivity property (part (iii)) of Proposition 2 reads as:

for all n,m ≥ 0, T 0
I0

(n +m) ≤ T 0
I0

(n) + T 0
In

(m).

Now, let c > v−1. Thanks to subadditivity, for all m ≥ 1 we have that

P(T 0
I0

(n) ≥ cn) ≤ P





⌊n/m⌋
∑

j=0

T 0
Imj

(m(j + 1)) ≥ cn



 .

In Steps 1 and 2 below, m and ℓ denote fixed positive integers, while α denotes
a fixed real number 0 < α < 1. For the sake of readability, the dependence with
respect to these numbers is usually not mentioned explicitly in the notations. Only
in Step 3 have the values of m, ℓ and α to be specified.

5.4.1. Step 1: Comparison with a sum of i.i.d. random variables. Assume that the
probability space (Ω,F ,P) is such that we have access to an i.i.d. family of random
variables

[

(τ j
k(u, i), U j

k (u, i)); j ≥ 0, k ≥ 1, u ∈ Z, 1 ≤ i ≤ a
]

,

independent from

[(τk(u, i), Uk(u, i)); k ≥ 1, u ∈ Z, 1 ≤ i ≤ a] ,

and such that, for all (j, k, u, i), τ j
k(u, i) has an exponential(2) distribution, U j

k(u, i)

has the uniform distribution on (0, 1), and τ j
k(u, i) and U j

k(u, i) are independent.
Let

εjn(x, i) := 2(1(U j
n(x, i) ≤ 1/2)) − 1.

Now, for all ℓ ≥ 1 and j ∈ Z, define, for all u, v ∈ Z such that u < v, and 1 ≤ i ≤ a,

Bj(u, i, v) := inf

{

m
∑

k=1

τ j
k(u, i); u+

m
∑

k=1

εjk(u, i) = v, m ≥ 1

}

,

and let

Cj(u, i, v) :=

{

Bj(u, i, v) if u ≤ mj −mℓ
A0(u, i, v) if u > mj −mℓ

,

where A0 is defined in display (9) in Section 2. Then let

T
′

Imj
(m(j + 1)) := inf

L−1
∑

g=1

Cj(xg, ig, xg+1),

where the infimum is taken over all finite sequences with L ≥ 2, x1, . . . , xL ∈ Z

and i1, . . . , iL−1 such that x1 ≤ mj, mj < x2 < · · · < xL−1 < m(j + 1), xL =

m(j + 1), i1, i2, . . . , iL−1 ∈ {1, . . . , a}. Clearly, T
′

Imj
(m(j + 1)) and T 0

Imj
(m(j + 1))

have the same distribution. Moreover, we have the following lemma, whose proof is
immediate.
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Lemma 7. For every j ∈ Z, the family of random variables
(

T
′

Imj+pm(ℓ+1)(mj + pm(ℓ+ 1) +m)
)

p∈Z

is i.i.d.

We now study the event
{

T
′

Imj
(m(j + 1)) = T 0

Imj
(m(j + 1))

}

. To this end, let

Jj := inf
L−1
∑

g=1

Cj(xg, ig, xg+1), Kj := inf
L−1
∑

g=1

A0
j(xg, ig, xg+1),

where in both cases the infimum is taken over all finite sequences with L ≥ 2,
x1, . . . , xL ∈ Z and i1, . . . , iL−1 such that x1 ≤ mj −mℓ, mj < x2 < · · · < xL−1 <
m(j + 1), xL = m(j + 1), i1, i2, . . . , iL−1 ∈ {1, . . . , a}. Let also

Lj := inf
L−1
∑

g=1

A0
j(xg, ig, xg+1),

where the infimum is taken over all finite sequences with L ≥ 2, x1, . . . , xL ∈ Z and
i1, . . . , iL−1 such that mj−mℓ < x1 ≤ mj, mj < x2 < · · · < xL−1 < m(j+1), xL =
m(j + 1), i1, i2, . . . , iL−1 ∈ {1, . . . , a}.

Observe that, T
′

Imj
(m(j + 1)) = min(Jj , Lj) and that T

′

Imj
(m(j + 1)) =

min(Kj , Lj). As a consequence,

{min(Jj ,Kj) ≥ Lj} ⊂
{

T
′

Imj
(m(j + 1)) = T 0

Imj
(m(j + 1))

}

.

For α > 0, we now define

D(j) :=
{

min(Jj ,Kj) < α(mℓ)2
}

,

and

F (j) := {Lj ≥ α(mℓ)2},
so that

F (j)c ∩D(j)c ⊂
{

T
′

Imj
(m(j + 1)) = T 0

Imj
(m(j + 1))

}

. (45)

Lemma 8. There exist λ1(a) and λ2 > 0, not depending on m, ℓ, α, such that

P(D(j)) ≤ 4aα(mℓ)2Gα(mℓ)2(mℓ)) + λ1(a) exp
(

−λ2α(mℓ)2
)

=: λ.

Proof of Lemma 8. Consider the random walks born at sites (x, i) for x ≤ mj −
α(mℓ)2. By Lemma 1 choosing γ = 1 and θ > 0 small enough so that gγ(θ) > 0, we
obtain the existence of λ1(a) > 0 and λ2 > 0 such that the probability that any of
the walks born at a site (x, i) with x ≤ mj − α(mℓ)2 hits mj before time α(mℓ)2

is ≤ λ1(a) exp
(

−λ2α(mℓ)2
)

. On the other hand, for mj − α(mℓ)2 < x ≤ mj −mℓ,

the probability that a walk started at x hits mj before time α(mℓ)2 is less than the
corresponding probability for the walk started at mj−mℓ, that is, 1− Ḡα(mℓ)2(mℓ).
In turn, this probability is less than 2Gα(mℓ)2(mℓ). A union bound over all the
corresponding events yields the result.

�
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Lemma 9. There exist V1(m), V2(m) > 0, not depending on ℓ, α, such that for all
j,

P(F (j)) ≤ V1(m) exp
(

−V2(m)α1/2ℓ
)

.

Proof. By translation invariance, we can assume that j = 0. Let t = α(mℓ)2. Since
F (0) implies that no random walk born at a site −mℓ+1 ≤ x ≤ 0 hits 1 before time
α(mℓ)2, one has that P(F (0)) =

∏

−mℓ+1≤x≤0 Ḡt(1 − x)a. Since 0 ≤ α ≤ 1, we see

that t1/2 ≤ mℓ, so that P(F (0)) ≤ ∏

−⌊t1/2⌋+1≤x≤0 Ḡt(1 − x)a. Using monotonicity

of Ḡt, we deduce that P(F (0)) ≤ Ḡt(⌊t1/2⌋)a⌊t1/2⌋.

By the central limit theorem, limt→+∞Gt

(

⌊t1/2⌋
)

> 0, so that, since Ḡt ≤ 1−Gt,

lim supt→+∞ Ḡt

(

⌊t1/2⌋
)

< 1. As a consequence, we can find ρ > 0, and t0 ≥ 0 such

that, for all t ≥ t0, Ḡt

(

⌊t1/2⌋
)

≤ 1 − ρ. For t ≥ t0, we deduce that P (F (0)) ≤
(1 − ρ)a⌊t

1/2⌋. For t ≤ t0, we see that we can find a large enough V1 such that

P (F (0)) ≤ V1(1 − ρ)a⌊t
1/2⌋, using only the trivial bound P(F (0)) ≤ 1.

�

Lemma 10. For all t ≥ 0, the events
{

∑⌊n/m⌋
j=0 T 0

Imj
(m(j + 1)) ≥ cn

}

and
⋃⌊n/m⌋

j=0 D(j) are negatively associated.

Proof. For an integer K ≥ 1, let

A0(u, i, v,K) := inf

{

m
∑

k=1

τk(u, i); u+
m
∑

k=1

εk(u, i, ǫ) = v, 1 ≤ m ≤ K

}

.

Similarly, let

Bj(u, i, v,K) := inf

{

m
∑

k=1

τ j
k(u, i); u+

m
∑

k=1

εjk(u, i) = v, 1 ≤ m ≤ K

}

,

and let

Cj(u, i, v,K) :=

{

Bj(u, i, v,K) if u ≤ mj −mℓ
A0(u, i, v,K) if u > mj −mℓ

.

Now let

T ǫ
w(u,K) := inf

L−1
∑

j=1

Aǫ(xj , ij , xj+1,K)

where the infimum is taken over all finite sequences with L ≥ 2, x1, . . . , xL ∈ Z and
i1, . . . , iL−1 such that (x1, i1) ∈ A, x1 ≥ −K, r < x2 < · · · < xL−1 < u, xL = u,
i2, . . . , iL−1 ∈ {1, . . . , a}.

Similarly, let

Jj,K := inf

L−1
∑

g=1

Cj(xg, ig, xg+1,K), Kj,K := inf

L−1
∑

g=1

A0
j(xg, ig, xg+1,K),

where in both cases the infimum is taken over all finite sequences with L ≥ 2,
x1, . . . , xL ∈ Z and i1, . . . , iL−1 such that −K ≤ x1 ≤ mj −mℓ, mj < x2 < · · · <
xL−1 < m(j + 1), xL = m(j + 1), i1, i2, . . . , iL−1 ∈ {1, . . . , a}.
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Observe that P−almost surely, for all u < v, the sequence (T 0
Iu

(v,K))K≥1 is

ultimately stationary, and that its limiting value is T 0
Iu

(v). Similarly, P−almost
surely, the sequences (Jj,K)K≥1 and (Kj,K)K≥1 are ultimately stationary, and their
respective limits are Jj and Kj .

Then let Sq,K :=
∑q

p=0 T
0
Ipm(ℓ+1)(pm(ℓ+ 1) +m,K) and

D(j,K) :=
{

min(Jj,K ,Kj,K) < α(mℓ)2
}

.

Now let g1 := 1 (Sq ≥ t), g2 := 1
(

⋃q
p=0D(p(ℓ+ 1))

)

, and g1,K := 1 (Sq,K ≥ t) and

g2,K := 1
(

⋃q
p=0D(p(ℓ+ 1),K)

)

.

Note that (g1,K)K≥1 is a bounded sequence of random variables that is P−a.s.
ultimately stationary and converging to g1 as K goes to infinity. The same holds for
(g2,K)K≥1 and g2. Now, for every K, g1,K and g2,K are functions of a finite number

of the random variables (Un(x, i), U j
n(x, i), τ j(x, i), τ(x, i); n ≥ 1, x ∈ Z, 1 ≤ i ≤ a).

Moreover, it is easy to check from the definitions that, with respect to these random
variables, g1,K is non-increasing, while g2,K is non-decreasing. Since these random
variables are independent, we deduce that E(−g1,Kg2,K) ≥ E(−g1,K)E(g2,K) (see
e.g. [9]). Taking the limit as K → +∞, and using the dominated convergence
theorem, we obtain the result.

�

Now consider the following inclusion.







⌊n/m⌋
∑

j=0

T 0
Imj

(m(j + 1)) ≥ cn







⊆ X ∪ Y ∪ Z, (46)

where

X :=







⌊n/m⌋
∑

j=0

T 0
Imj

(m(j + 1)) ≥ cn







∩
⌊n/m⌋
⋃

j=0

D(j),

Y :=







⌊n/m⌋
∑

j=0

T 0
Imj

(m(j + 1)) ≥ cn







∩
⌊n/m⌋
⋂

j=0

(D(j)c ∩ F (j)c) ,

Z :=

⌊n/m⌋
⋃

j=0

F (j).

Let

f(n, c) := P





⌊n/m⌋
∑

j=0

T 0
Imj

(m(j + 1)) ≥ cn



 .

Then f(n, c) ≤ P(X) + P(Y ) + P(Z). Now, according to Lemmas 10, 8 we see that

P(X) ≤ f(n, c) × (⌊n/m⌋ + 1)λ.
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¿From (45), we see that

P(Y ) ≤ P





⌊n/m⌋
∑

j=0

T
′

Imj
(m(j + 1)) ≥ cn



 .

¿From Lemma 9, we see that,

P(Z) ≤ (⌊n/m⌋ + 1)V1(m) exp
(

−V2(m)α1/2ℓ
)

.

This leads to the following bound.

δ(n)f(n, c) ≤ P





⌊n/m⌋
∑

j=0

T
′

Imj
(m(j + 1)) ≥ cn



+(⌊n/m⌋+1)V1(m) exp
(

−V2(m)α1/2mℓ
)

.

(47)
where δ(n) := 1 − (⌊n/m⌋ + 1)λ.

Using the independence properties of the random variables T
′

Imj
(m(j + 1))

(Lemma 7), and the union bound, we see that the following inequality holds

P





⌊n/m⌋
∑

j=0

T
′

Imj
(m(j + 1)) ≥ cn



 ≤ (ℓ+ 1)F⊗k(n)
m

(

[cn(ℓ+ 1)−1,+∞)
)

,

where F⊗k
m denotes the distribution of the sum of k independent copies of T 0

I0
(m),

and where k(n) := 1 + ⌊n/m−1
ℓ+1 ⌋.

5.4.2. Step 2: Large deviations estimates for i.i.d. random variables. We start with
a general bound on the tail of T 0

w(0,m).

Lemma 11. There exist Am, cm > 0 such that, for all w = (F, 0, A) and t ≥ 0

P(T 0
w(0,m) ≥ t) ≤ Am exp

(

−cmHw(−⌊t1/2⌋)
)

.

Proof. Observe that the event T 0
w(m) ≥ t implies that none of the random walks born

at sites F (x, i), (x, i) ∈ A has hit m before time t. As a consequence, P(T 0
w(m) ≥

t) ≤∏−⌊t1/2⌋
x=0 Ḡt(−x+m)ηw(x). Using monotonicity of Ḡt, we deduce that P(T 0

w(m) ≥
t) ≤ Gt(m+ ⌊t1/2⌋)Hw(−⌊t1/2⌋). Re-using the notations of the proof of Lemma 9, we

see that, for all t ≥ t0, P(T 0
w(m) ≥ t) ≤ (1−ρ)Hw(−⌊t1/2⌋). Now, for t ≤ t0, we can find

Am such that, using only the trivial boundsHw(−⌊t1/2⌋) ≥ 0 and P(T 0
w(m) ≥ t) ≤ 1,

P(T 0
w(m) ≥ t) ≤ Am(1 − ρ)Hw(−⌊t1/2⌋) for all 0 ≤ t ≤ t0. �

Remark 1. The lower bound (4) shows that the upper bound of Lemma 11 yields
the right order of magnitude for the tail of Tw(m), at least when U(ηw) < 2.

The probabilities of large deviations for F⊗k
m are described by the following lemma,

whose proof is deferred to Appendix 6.
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Lemma 12. Let (Rj)j≥1 be a sequence of i.i.d. non-negative random variables with
common distribution µ. Let M :=

∫

xdµ(x). Assume that there exist A, c > 0 such
that for every x ≥ 0

µ([x,+∞)) ≤ A exp
(

−cx1/2
)

. (48)

Then M < +∞ and for all f > M , there exists h(f) > 0 and n(f) such that if
n ≥ n(f)

P
(

n−1(R1 + · · · +Rn) ≥ f
)

≤ exp
(

−h(f)n1/2
)

.

5.4.3. Step 3: Conclusion. Lemma 12 above can be applied to probabilities of large
deviations of the form F⊗k

m ([bk,+∞)), where b > E(TI0(m)), and our goal is to

control probabilities of the form F
⊗k(n)
m

(

[cn(ℓ+ 1)−1,+∞)
)

. It is easily checked
that

cn(ℓ+ 1)−1 ≥ k(n)cm
(

1 + m(ℓ+1)
n

)−1
. (49)

Now observe that Kingman’s subadditive ergodic theorem (see e.g. [14]) can be
applied to the sequence of random variables (T 0

Iu
(v))u≤v . Indeed, these variables

are non-negative, integrable (Lemma 11), and satisfy the required distributional
translation invariance properties. We deduce that

lim
m→+∞

m−1E(TI0(m)) = v−1. (50)

As a consequence, for all c > v−1, we can find m ≥ 1 large enough so that

cm > E(TI0(m)).

In the sequel, we assume that m is chosen such that this inequality holds. Now let
us choose ℓ := ℓn = n1/3. Taking into account Lemmas 11, 12, and (49), we see
that, as n goes to infinity, there exists a constant h1 > 0 such that

F⊗k(n)
m

(

[cn(ℓn + 1)−1,+∞)
)

= O
(

exp(−h1n
1/3)

)

. (51)

Now, for 0 < ζ < 1/2, let us choose α := αn = n−ζ , and consider Inequality (47).

With our definitions, α
1/2
n (mℓn) = mn1/3−ζ/2 whilemℓn = mn1/3. As a consequence,

a moderate deviations bound for the simple random walk (see e.g. [6]) yields that
Gαn(mℓn)2(mℓn + 1) = O

(

exp(−h2n
ζ)
)

for some constant h2 > 0, whence the fact
that δ(n) = 1 + o(1). Using (51), we see that Inequality (47) entails that, for large
n,

f(n, c) ≤ O
(

exp
(

−h3n
1/3−ζ/2

))

.

Since ζ can be taken arbitrarily small, the conclusion of Proposition 16 follows.

Remark 2. In view of (4) and (5), we see that our upper and lower bounds on slow-
down probabilities do not match. One may wonder whether it is possible to improve
upon either of these bounds so as to find the exact order of magnitude of slowdown
large deviations probabilities. What we can prove (the details are not given here)

is that the exp
(

−n1/3+o(1)
)

bound in Proposition 16 gives the best order of mag-
nitude that can be reached by following our proof strategy based on subadditivity.
Indeed, despite the fact that each T 0

Imj
(m(j + 1)) has a tail decaying roughly as
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exp
(

−t1/2
)

, so that the probabilities of large deviations above the mean would be of

order exp
(

−n−1/2
)

if these random variables were independent, the positive depen-
dence between these variables makes such large deviations much more likely, with
probabilities of order exp

(

−n1/3
)

.

Remark 3. One may wonder whether the use of association (see Lemma 10) is really
needed in the proof. Indeed, a simpler approach would be to bound the probability

of the event X in (46) above by P

(

⋃⌊n/m⌋
j=0 D(j)

)

. By properly choosing αn and

ℓn, we could make this probability of the order of exp
(

−n1/3+o(1)
)

, compared to

the exp
(

−h2n
−ζ
)

obtained in the proof of Proposition 16. However, such a choice
interferes with the other bounds used in the proof, (making αn smaller increases the
probability of F (j). The best order of magnitude we could obtain with that simpler

method is exp
(

−n2/7+o(1)
)

.

6. Appendix: large deviations of i.i.d. random variables with

exp(−t1/2) tails

Neither the result stated in Lemma 12 nor the idea of its proof are new, but we
failed in finding a reference providing both a statement suited to our purposes and
a short proof, so we chose to give a detailed exposition.

We refer to the paper [18] for a review of results concerning large deviations of
random variables with subexponential tails, and to Theorem 4.1 in [2] for an example
of a result from which Lemma 12 may be derived. See also the recent preprint [7].

Proof of Lemma 12. Let A and c be as in the statement of the lemma. And let G
be defined by G(x) := µ([x,+∞)).

Let An be the following event: An :=
⋂

1≤i≤n{Ri ≤ n}. By the union bound,

P (Ac
n) ≤ nµ([n,+∞)), so that, by Assumption (48) above and Lemma 13 below,

P (Ac
n) = O

[

n exp
(

−(c/2)n1/2
)]

. (52)

We now apply the Cramér bound for i.i.d. random variables possessing finite
exponential moments (see e.g. [6]) to the i.i.d. bounded random variables Ri,n

defined by Ri,n := min (Ri, n) . For every λ > 0, the following inequality holds.

P
(

n−1(R1,n + · · · +Rn,n) ≥ f
)

≤ exp [−nλf ] [E exp (λR1,n)]n . (53)

Let λn := (c/3)n−1/2 and Kn := n1/4. By definition E exp (λnR1,n) =
∫

[0,n) exp(λnx)dµ(x) + exp(λnn)µ([n,+∞)). Let us split the above integral into
∫

[0,n) =
∫

[0,Kn) +
∫

[Kn,n). Fix a real number α > 0. Since λnKn goes to zero as

n goes to infinity, we have, for all large enough n (depending on α), an inequality of
the following form: for every x ∈ [0,Kn), exp(λnx) ≤ 1 + (1 + α)λnx. Taking the
integral in this inequality, we obtain that, for all large enough n,

∫

[0,Kn)
exp(λnx)dµ(x) ≤ µ([0,Kn)) + (1 + α)λn

∫

[0,Kn)
xdµ(x).
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Since α is arbitrary in the above argument, we see that
∫

[0,Kn)
exp(λnx)dµ(x) ≤ µ([0,Kn)) + (1 + o(1))λn

∫

[0,Kn)
xdµ(x). (54)

By definition, M =
∫

[0,Kn) xdµ(x) +
∫

[Kn,+∞) xdµ(x). Integration by parts

yields that
∫

[Kn,+∞) xdµ(x) = − [xG(x)]+∞
Kn

+
∫

[Kn,+∞)G(x)dx. Assumption (48)

above says that G(x) ≤ A exp(−cx1/2). As a consequence, − [xG(x)]+∞
Kn

≤
AKn exp

(

−cK1/2
n

)

. Moreover, Lemma 13 yields that
∫

[Kn,+∞)G(x)dx =

O
[

exp
(

−(c/2)K
1/2
n

)]

.

Putting the above estimates together, and using the definitions of λn and
Kn, the above estimates clearly imply that

∫

[Kn,+∞) xdµ(x) = o(λn). Similarly,

µ([Kn,+∞)) = o(λn). As a consequence, Inequality (54) above yields that
∫

[0,Kn)
exp(λnx)dµ(x) ≤ 1 + (1 + o(1))Mλn.

We now study
∫

[Kn,n) exp(λnx)dµ(x). Integration by parts says that
∫

[Kn,n) exp(λnx)dµ(x) = − [exp (λnx)G(x)]nKn
+
∫ n
Kn

λn exp (λnx)G(x)dx. Observe

that, with our definitions of λn and Kn, for every 0 ≤ x ≤ n, λnx ≤ (c/3)x1/2.

As a consequence, exp (λnx)G(x) ≤ A exp
(

−(2c/3)x1/2
)

. This estimate, together

with Lemma (13), yields that, as n goes to infinity,
∫ n
Kn

exp (λnx)G(x)dx = o(1).

Similarly, [exp (λnx)G(x)]nKn
= o(λn). As a consequence, as n goes to infinity,

∫

[Kn,n) exp(λnx)dµ(x) = o(λn). Similarly, exp(λnn)µ([n,+∞)) = o(λn).

Finally, we obtain the following estimate: E exp (λnR1,n) = 1 + λnm(1 +
o(1)). As n goes to infinity, an expansion yields that [E exp (λnR1,n)]n =
exp (nMλn(1 + o(1))) . ¿From Cramér’s inequality (53), we obtain that

P
(

n−1(R1,n + · · · +Rn,n) ≥ f
)

≤ exp (−nλn(f −M)(1 + o(1)))) . (55)

Now, on the event An, Ri = Ri,n for all 1 ≤ i ≤ n.
As a consequence, P

(

n−1(R1 + · · · +Rn) ≥ f
)

≤ P
(

n−1(R1,n + · · · +Rn,n) ≥ f
)

+
P (Ac

n).
The statement of the Lemma now follows from the bound (52) on P (Ac

n) and the
large deviations bound (55) for R1,n + · · · +Rn,n.

�

Lemma 13. For every ν > 0, as x→ +∞,
∫ +∞

x
exp

(

−νu1/2
)

du = O
[

exp
(

−(ν/2)x1/2
)]

.

Proof of Lemma 13. Observe that there exists d1 > 0 such that, for every
u ≥ 1, u1/2 exp

(

−(ν/2)u1/2
)

≤ d1. As a consequence, exp
(

−νu1/2
)

≤
d1u

−1/2 exp
(

−(ν/2)u1/2
)

, so that
∫ +∞

x
exp

(

−νu1/2
)

du ≤ d1

∫ +∞

x
u−1/2 exp

(

−(ν/2)u1/2
)

du.
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The r.h.s. of the above inequality is then equal to d1(4/ν) exp
(

−(ν/2)x1/2
)

.
�

7. Appendix: Polynomial tail of renewal variables when ǫ = 0

That κ may have a polynomial tail is not necessarily an obstacle for proving an
exponential bound for speedup large deviations, as long as r̂κ has an exponential

tail. However, as we now prove, both κ and r̂κ have a polynomial tail under Q
0,θ
w

when w satisfies (G).
Let w be such that r × {1, . . . , a} ⊂ A, F (r, i) = r for all 1 ≤ i ≤ a and

φr−L(w) ≤ p. Let At := {U ≥ t}, so that At = {r̃u − r̂0 ≥ ⌊α2u⌋ for all u < t}. Let
Bt := {r̃t− r̂0 ≤ ⌊2α(0)t⌋}. Now choose K > 0 such that Kα2 > 2α(0) and consider
the event Ct that the (at most) aM random walks involved in the definition of νr̃t+1

remain below their position at time t during the time interval [t,Kt]. On Bt ∩ Ct,
r̃Kt − r̂0 ≤ 2α(0)t, so that, with our choice of K, for t large enough (non-random),
Bt ∩ Ct ⊂ {U ≤ Kt}.

Now, we know that Q
0,θ
w (At) ≥ Q

0,θ
w (U = +∞) ≥ δ2 > 0. Moreover, it is easily

checked that, by the law of large numbers, limt→+∞ Q
0,θ
w (Bc

t ) = 0 uniformly with
respect to all w such that F (r, i) = r for all 1 ≤ i ≤ a. As a consequence, for large

enough t (not depending on w), Q
0,θ
w (At ∩ Bt) ≥ δ2/2. Moreover, conditional on

At ∩Bt, Ct has a probability larger that ct−aM/2 for some c > 0. As a consequence,

there exists d > 0 such that, for large enough t (not depending on w), Q
0,θ
w (At ∩

Bt ∩ Ct) ≥ dt−aM/2, so that Q
0,θ
w (t ≤ U ≤ Kt) ≥ dt−aM/2. Since U , V and W

are independent and Q
0,θ
w (V = +∞) ≥ δ1 > 0 and Q

0,θ
w (W = +∞) ≥ δ3 > 0, we

deduce that Q
0,θ
w (t ≤ U < +∞, V = +∞, W = +∞) > dδ1δ3t

−aM/2. Then observe
that, on the event {t ≤ U < +∞, V = +∞, W = +∞}, one has that D ≥ t and
r̂D ≥ r̂t ≥ ⌊α2t⌋. Since κ ≥ D ◦ θS1 + S1 and r̂κ ≥ r̂D◦θS1

+S1 , this ends the proof.

8. Appendix: negligibility of remote particles

Proposition 17. For any w ∈ Lθ, 0 ≤ ǫ < 1/2, and any t ≥ 0, with P probability
one,

lim
K→−∞

sup
0≤s≤t

∑

(x,i)∈A;x≤r+K

exp(θ(F ǫ
s (x, i) − r)) = 0.

Proof. For all x, i, t, let Cx,i,t := exp(θ(F ǫ
t (x, i) − r)) and γ := [2(cosh θ − 1) +

4ǫ sinh θ]. Let also

HK,k(s) :=
∑

(x,i)∈A; r+K+k≤x≤r+K

Cx,i,s and HK,−∞(s) :=
∑

(x,i)∈A; x≤r+K

Cx,i,s.

Since for every (x, i), (Cx,i,s exp(−γs))s≥0 is a càdlàg martingale, so is
(HK,k(t) exp(−γt))t≥0, and we have the following inequality, valid for all λ > 0:

P

(

sup
0≤s≤t

HK,k(s) exp(−γs) > λ

)

≤ λ−1E (HK,k(0)) .
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Now E (HK,k(0)) =
∑

(x,i)∈A; r+K+k≤x≤r+K exp(θ(F ǫ(x, i) − r)). We deduce that

P

(

sup
0≤s≤t

HK,k(s) > λ

)

≤ λ−1 exp(γt)
∑

(x,i)∈A; r+K+k≤x≤r+K

exp(θ(F ǫ(x, i) − r)).

(56)
Now observe that, for every s, the sequence (HK,k(s))k=0,−1,··· is non-decreasing since
we are summing non-negative terms. As a consequence, P

(

sup0≤s≤tHK,−∞(s) > λ
)

equals P
(
⋃−∞

k=0 sup0≤s≤tHK,k(s) > λ
)

, which is the probability of the union of a non-

decreasing sequence of events, and so is equal to limk→−∞ P
(

sup0≤s≤tHK,k(s) > λ
)

.
As a consequence, by (56),

P

(

sup
0≤s≤t

HK,−∞(s) > λ

)

≤ λ−1 exp(γt)
∑

(x,i)∈A; x≤r+K

exp(θ(F ǫ(x, i) − r)). (57)

Now observe that, for every s, the sequence (
∑

(x,i)∈A;x≤r+K Cx,i,s)K=0,−1,··· is
non-increasing, since we are summing non-negative terms. As a consequence,
limK→−∞ sup0≤s≤tHK,−∞(s) exists, and P

(

limK→−∞ sup0≤s≤tHK,−∞(s) > λ
)

equals P

(

⋂

K≤0 sup0≤s≤tHK,−∞(s) > λ
)

, which is the probability of the intersec-

tion of a non-increasing sequence of events, and so is equal to limK→−∞ P(sup0≤s≤tHK,−∞(s)) >
λ). ¿From Inequality (57), we see that this last expression equals zero. �

9. Appendix: estimates on the renewal structure

In the sequel every constant Ci or δi appearing in the estimates is assumed to
depend on a, θ, ǫ0, α1, α2, p, L, ǫ, unless there is a special mention that dependence
with respect to some of these parameters is absent. The notation (ξǫ

s)s≥0 stands
for a nearest-neighbor random walk on Z with jump rate 2 and step distribution
(1/2 + ǫ)δ+1 + (1/2 − ǫ)δ−1, started at zero. The probability measure governing
(ξǫ

s)s≥0 is denoted by P . We use the shorthand M ′ := M/4 − 1, which is an integer
number according to (24). We also use the notation

L′
θ := {w = (F, r,A) ∈ Lθ; r × {1, . . . , a} ⊂ A, F (r, i) = r for all 1 ≤ i ≤ a}.

For every x ∈ Z, let Mt,x,i := sup0≤s≤tZs,x,i. Let also, for z ∈ Z,

ψz,t :=
∑

(x,i); x≤z, (x,i)∈At

exp(θ(Mt,x,i − r̂t)). (58)

Let µǫ := θα1 − 2(cosh θ − 1) − 4ǫ sinh θ. Now, for all 0 ≤ ǫ ≤ ǫ0, µǫ ≥ µǫ0, and,
according to (25), µǫ ≥ µǫ0 > 0 for all 0 ≤ ǫ ≤ ǫ0.

Lemma 14. There exists C1 < +∞ not depending on ǫ or L such that, for all
0 ≤ ǫ ≤ ǫ0 and all w = (F, r,A) ∈ Lθ,

Qǫ,θ
w (t < W < +∞) ≤ C1φr−L(w) exp(−µǫt).

Proof. Without loss of generality we assume r = 0. Let us first note that

Qǫ,θ
w [t < W <∞] ≤ Qǫ,θ

w

[

∪s≥t

{

φ−L(ws) ≥ eθ(⌊α1s⌋−r̂s)
}]

.
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By the fact that s 7→ Ms,x,i is nondecreasing, and the union bound, we deduce
that

Qǫ,θ
w [t < W <∞] ≤

+∞
∑

n=⌊t⌋

Qǫ,θ
w





∑

(x,i)∈A∩{...,−(L−1),−L}×{1,...,a}

eθMn+1,x,i ≥ eθ⌊α1n⌋



 .

Using the Markov inequality, we obtain that

Qǫ,θ
w [t < W <∞] ≤

+∞
∑

n=⌊t⌋

exp(−θ⌊α1n⌋)
∑

(x,i)∈A∩{...,−(L−1),−L}×{1,...,a}

Eǫ,θ
w

(

eθMn+1,x,i

)

.

(59)
For (x, i) ∈ A, write (Zs,x,i)s as the independent sum of a symmetric nearest

neighbor random walk on Z with rate 2 − 4ǫ and a Poisson process with rate 4ǫ.
Using the reflection principle to treat the symmetric part, and the fact that the
Poisson process part is non-decreasing, we deduce that

Eǫ,θ
w

(

eθMs,x,i

)

≤ 2 exp(θF (x, i)) exp (s [2(cosh θ − 1) + 4ǫ sinh θ]) .

Plugging the last identity into (59) and summing, we finish the proof of the
Lemma.

�

Define for t ≥ 0, and z ≤ r̂0,

Nt,z(w·) := eθr̂t−[2(cosh θ−1)−4ǫ sinh θ]tφz(wt). (60)

Lemma 15. For all 0 ≤ ǫ ≤ ǫ0, and all w = (F, r,A) ∈ Lθ, the family (Nt,z)t≥0 is

a càdlàg (F ǫ,θ
t )t≥0-martingale with respect to Q

ǫ,θ
w ,.

Proof. Let us remark that,

Nt,z =
∑

(x,i)∈A,x≤z

eθZt,x,i−[2(cosh θ−1)−4ǫ sinh θ]t.

Now, each one of the terms in the above sum is an (F ǫ,θ
t )t≥0-martingale Furthermore,

since φz(0) < +∞, the martingales
∑

(x,i)∈A,−n≤x≤z e
θZt,x,i−[2(cosh θ−1)−4ǫ sinh θ]t, con-

verge in L1(Qǫ,θ
w ) to Nt,z as n→ ∞. Thus, (Nt,z)t≥0 is an (F ǫ,θ

t )t≥0-martingale. That
the paths are càdlàg is an easy consequence of (ws)s≥0 being càdlàg.

�

Lemma 16. For every 0 ≤ ǫ ≤ ǫ0 and w = (F, r,A) ∈ Lθ,

Qǫ,θ
w [W <∞] ≤ exp(θ)φr−L(w).

Proof. See [4]. �

Lemma 17. There exist 0 < C2, C3 < +∞ not depending on ǫ or L such that, for
all 0 ≤ ǫ ≤ ǫ0, w = (F, r,A) ∈ Lθ and t ≥ 0,

Qǫ,θ
w [t < V <∞] ≤ LC2 exp(−C3t).
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Proof. Without loss of generality, assume that r = 0. Then Q
ǫ,θ
w (t < V < +∞)

is bounded above by the probability that one of the random walks born at a site
between −L+1 and −1 is at the right of ⌊α1s⌋ at some time s ≥ t. By coupling, we
see that the worst case is when all the walks start at zero, in which case, by the union
bound, the probability is less than aL times the probability for a single random walk
started at zero to exceed ⌊α1s⌋ at some time s ≥ t. Let τ := inf{s ≥ t; ξǫ

s ≥ ⌊α1s⌋}.
Using the fact that (exp(θξǫ

s − [2(cosh θ − 1) − 4ǫ sinh θ]s))s≥0 is a martingale,
and applying Doob’s stopping theorem, we obtain the bound P (τ < +∞) ≤
exp(θ) exp(−µǫt). The result follows.

�

Lemma 18. There exists δ1 > 0 not depending on ǫ such that, for all 0 ≤ ǫ ≤ ǫ0
and w = (F, r,A) ∈ Lθ,

Qǫ,θ
w [V <∞] ≤ 1 − δ1.

Proof. Without loss of generality we can assume that r = 0. Note that the

probability Q
ǫ,θ
w [V < ∞] is upper bounded by the probability that a random

walk within a group of aL independent ones all initially at site x = 0, at some
time t ≥ 0 is at the right of ⌊α1t⌋. But this probability is 1 − f(ǫ)aL, where
f(ǫ) := P (for all s ≥ 0, ξǫ

s ≤ ⌊α1s⌋). By coupling, observe that f is a non-increasing
function of ǫ. For ǫ = ǫ0, the asymptotic speed of the walk is 4ǫ0. Since, from (25)
α1 > 4ǫ0, an easy consequence of the law of large numbers is that f(ǫ0) > 0. This
ends the proof. �

Lemma 19. There exists 0 < C4 < +∞ not depending on ǫ or L such that for all
ǫ ≤ ǫ0 and w = (F, r,A) ∈ L′

θ, and all t > 0,

Qǫ,θ
w [t < U <∞] ≤ C4t

−M ′
.

Proof. The proof given in [5] for ǫ = 0 is based on tail estimates on the random

variables (νk)k≥0. By coupling, for all 0 ≤ ǫ < 1/2, and every s ≥ 0, Q
ǫ,θ
w (νk ≥ s) ≤

Q
0,θ
w (νk ≥ s). Thus, the estimate in [5] is in fact uniform over ǫ.

�

Lemma 20. There exists 0 < C45 < +∞ not depending on ǫ or L such that for all
ǫ ≤ ǫ0 and all t > 0,

Q
ǫ,θ
I0

[∪s≥tr̂s < ⌊α1s⌋] ≤ C45t
−M ′

.

Proof. Since we start with the initial condition I0, we can define a modified auxiliary
front (r̃′s)s≥0 by replacing the random variables (νk)k≥0 used in the definition of
(r̃s)s≥0 by the random variables (ν ′k)k≥0 defined as follows. Let ν ′0 := 0 and, for
k ≥ 1, ν ′k is the first time one of the random walks {(Gs,z,i)s≥0; (r̂0 + k−M) ≤ z ≤
r̂0 + k− 1, 1 ≤ i ≤ a}, hits the site r̂0 + k. With this definition, r̃′s ≤ r̂s for all s ≥ 0,
and, for each 1 ≤ j ≤ M − 1, the random variables {ν ′Mk+j : k ≥ 0} are i.i.d. with

finite moment of order M/2, whereas this is only true for {νMk+j : k ≥ 1}. The
argument of [5] used to prove Lemma 19 can then be easily adapted to prove the
present result. Alternatively, one can invoke Lemma 38. �
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Lemma 21. For every 0 < ǫ < 1/2,there exist 0 < C5(ǫ), C6(ǫ) < +∞ not depending
on L such that, for every w = (F, r,A) ∈ L′

θ, and every t > 0,

Qǫ,θ
w [t < U <∞] ≤ C5(ǫ) exp(−C6(ǫ)t).

Proof. We observe that, for a given ǫ > 0, νk has an exponentially decaying tail due
to the positive bias of the random walks (Gs,x,i)s≥0. Using standard large deviations
estimates rather than moment estimates in the proof of Lemma 19, we get the result.

�

Using a similar argument, we can prove the following Lemma.

Lemma 22. For all 0 < ǫ ≤ ǫ0, there exists 0 < C53(ǫ), C54(ǫ) < +∞ not depending
on L such that for all ǫ ≤ ǫ0 and all t > 0,

Q
ǫ,θ
I0

[∪s≥tr̂s < ⌊α1s⌋] ≤ C53(ǫ) exp(−C54(ǫ)t).

Lemma 23. There exists δ2 > 0 not depending on ǫ such that, for all 0 ≤ ǫ ≤ ǫ0,
w = (F, r,A) ∈ L′

θ, and t > 0,

Qǫ,θ
w [U <∞] ≤ 1 − δ2.

Proof. By coupling, we see that Q
ǫ,θ
w [U <∞] is a non-increasing function of ǫ. Thus

the estimate for ǫ = 0 proved in [5] is enough.
�

Lemma 24. Let β be such that 0 < β < α(0). Then there exists 0 < C7(β) < ∞
not depending on ǫ or L such that, for all 0 ≤ ǫ ≤ ǫ0, the following properties hold
for all w = (F, r,A) ∈ Lθ.

a) If r = 0 and w ∈ L′
θ, and n ≥ 1,

Qǫ,θ
w

[

T̂ (n) > n/β
]

≤ C7(β)n−a/2.

b) Assume that r = 0, m−⌊L1/4⌋,0(w) ≥ a⌊L1/4⌋/2 and n ≥ 1. Then,

Qǫ,θ
w

[

T̂ (n) > n/β
]

≤ (C7(β)⌊L1/4⌋n−1/2)a⌊L
1/4⌋/2 + C7(β)n−M ′

.

c) Assume that r = 0. For all k ≥M and n ≥ 1, we have,

Qǫ,θ
w

[

T̂ (n+ k) − T̂ (k) > n/β
]

≤ C7(β)n−M ′
.

Proof. The proof given in [4] for ǫ = 0 is based on tail estimates for the random
variables (νk)k≥0 and for hitting times of symmetric random walks, so that, by
coupling, the estimates proved in [4] are in fact uniform over ǫ.

�

Lemma 25. Let β be such that 0 < β < α(0). Then there exists 0 < C37(β) < ∞
not depending on ǫ or L such that, for all 0 ≤ ǫ ≤ ǫ0, for all w = (F, r,A) ∈ Lθ such

that r = 0 and m−⌊L1/4⌋,0(w) ≥ a⌊L1/4⌋/2, for all n ≥ 1,

Qǫ,θ
w

[

T̂ (nL) > nL/β
]

≤ C37(β)(nL1/2)−M ′
.
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Proof. Easy consequence of Lemma 24 b), using the first inequality in (26). �

Lemma 26. For all 0 < ǫ < 1/2 and β such that 0 < β < α(0), there exist 0 <
C8(ǫ, β), C9(ǫ, β) < ∞ not depending on L such that: for every w = (F, r,A) ∈ L′

θ,
and n ≥ 1,

Qǫ,θ
w

[

T̂ (n) > n/β
]

≤ C8(β, ǫ) exp(−C9(β, ǫ)n).

Proof. Stems from the exponential decay of the tail of νk, as in Lemma 21.
�

Corollary 4. There exists 0 < C10, C11 < ∞ not depending on ǫ or L such that,
for all ǫ ≤ ǫ0, all w = (F, r,A) ∈ L′

θ such that φr−L(w) ≤ p, and all t > 0,

Qǫ,θ
w (t < D <∞) ≤ C10(t

−M ′
+ L exp(−C11t)).

Corollary 5. For every 0 < ǫ < 1/2, there exist 0 < C12(β, ǫ), C13(β, ǫ) < ∞ not
depending on L such that, for all w = (F, r,A) ∈ L′

θ such that φr−L(w) ≤ p, and for
all t > 0,

Qǫ,θ
w (t < D <∞) ≤ LC12(β, ǫ) exp(−C13(β, ǫ)t).

Corollary 6. There exists 0 < δ3 < ∞ such that, for all 0 ≤ ǫ ≤ ǫ0, and all
w = (F, r,A) ∈ L′

θ such that φr−L(w) ≤ p,

Qǫ,θ
w (D <∞) ≤ 1 − δ3.

Proof of the corollaries 4, 5 and 6. See [4]. �

Lemma 27. There exists 0 < C14, C15 < +∞ not depending on ǫ or L such that,
for all 0 ≤ ǫ ≤ ǫ0, all w = (F, r,A) ∈ L′

θ such that φr−L(w) ≤ p, and all t > 0,

Qǫ,θ
w (r̂D − r > t,D < +∞) ≤ C14

(

t−M ′
+ L exp(−C15t)

)

.

Lemma 28. For every 0 < ǫ ≤ ǫ0, there exists 0 < C16(ǫ), C17(ǫ) < +∞ not
depending on L such that, for all w = (F, r,A) ∈ L′

θ such that φr−L(w) ≤ p, and for
all t > 0,

Qǫ,θ
w (r̂D − r > t,D < +∞) ≤ LC16(ǫ) exp(−C17(ǫ)t).

Proof of Lemmas 27 and 28. Consider γ0 > 0 large enough so that

cγ0(ǫ0, θ) > 0. (61)

Observe that then cγ0(ǫ, θ) ≥ cγ0(ǫ0, θ) for all 0 ≤ ǫ ≤ ǫ0.
Observe that by the union bound and the fact that (r̂s)s is non-decreasing,

Q
ǫ,θ
w (r̂D − r > t,D < +∞) ≤ Q

ǫ,θ
w (r̂tγ−1

0
− r > t,D ≤ tγ−1

0 )+ Q
ǫ,θ
w (tγ−1

0 < D < +∞).

Moreover, note that, by definition, φr(0) ≤ φr−L(0)+aL. Then apply Lemma 2 and
Corollaries 4 and 5.

�

Lemma 29. Consider w = (F, r,A) ∈ L′
θ such that φr−L(w) ≤ p. Then, for all

0 ≤ ǫ ≤ ǫ0, Q
ǫ,θ
w -a.s. on the event {D <∞} we have,

φr−L(D) ≤ eθ.
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Proof. See [4]. �

Corollary 7. There exists 0 < C18 < +∞ not depending on ǫ or L, such that, for
all 0 ≤ ǫ ≤ ǫ0, and all w = (F, r,A) ∈ L′

θ satisfying φr−L(w) ≤ p,

Eǫ,θ
w [φr̂D

(D),D <∞] ≤ C18L.

Proof. See [4]. �

Lemma 30. There is a constant 0 < C19 < +∞ not depending on ǫ or L, such
that, for all 0 ≤ ǫ ≤ ǫ0, and all w = (F, r,A) ∈ L′

θ:

a) Q
ǫ,θ
w

(

mr,r+⌊L1/4⌋(wT̂ (r+⌊L1/4⌋)) < a⌊L1/4⌋/2
)

≤ C19L
−a/8;

b) Q
ǫ,θ
w

(

mr̂D+L−⌊L1/4⌋,r̂D+L(wr̂D+L) < a⌊L1/4⌋/2
)

≤ C19L
−aM ′/8(M ′+1).

Proof. Without loss of generality, assume that r = 0. For the sake of readability, let
n := ⌊L1/4⌋. We start with the proof of a).

Choose 4ǫ0 < β < α(0). Then,

Qǫ,θ
w

[

m0,n(wT̂ (n)) <
an

2

]

≤ Qǫ,θ
w

[

m0,n(wT̂ (n)) <
an

2
, T̂ (n) ≤ n

β

]

+ Qǫ,θ
w

[

T̂ (n) >
n

β

]

.

(62)

Note that the event {m0,n(wT̂ )(n) < an/2, T̂ (n) ≤ n/β} is contained in the event

that at least one particle born at any of the sites ⌊n/2⌋, ⌊n/2⌋ + 1, . . . , n hits some
site x ≤ 0 in a time shorter than or equal to n/β. Hence, we can conclude that,

Qǫ,θ
w

[

m0,n(wT̂ (n)) <
an

2
, T̂ (n) ≤ n

β

]

≤ a(n+ 1 − ⌊n/2⌋)P [Λǫ
n/β ≤ −⌊n/2⌋], (63)

where and Λǫ
t := inf0≤s≤t ξ

ǫ
s.

Noting that, by coupling, P [Λǫ
n/β ≤ −n/2] is non-increasing as a function of ǫ, we

can assume that ǫ = 0.
Now, by the reflection principle, P [Λ0

n/β ≤ −n/2] ≤ 2P [ξ0n/β ≤ −n/2]. Hence,

from inequality (63), we see that Q
ǫ,θ
w

[

m0,n(T̂ (n)) < an/2, T̂ (n) ≤ n
β

]

is bounded

above by a(n + 1)P [ξ0n/β ≤ −n/2]. By a standard large deviations argument, for

every t ≥ 0 and positive integer x, P [ξ0t ≥ x] ≤ e−tg(x/t), where g(u) > 0 for all

u > 0. Hence, a(n + 1)P [ξ0n/β ≤ −n/2] ≤ a(n + 1) exp
{

−n
β g(β/2)

}

. Finally, using

part a) of Lemma 24 to bound the second term of inequality (62) and using the fact

that a(n + 1) exp
{

−n
βg(β/2)

}

≤ 1/na/2 for n large enough, we conclude the proof

of a).

Now for b), Pw[mr̂D+L−n,r̂D+L(T̂ (r̂D + L))(wT̂ (r̂D+L)) < an/2] is upper bounded

by,
∑

k:1≤k≤m Q
ǫ,θ
w [mk+L−n,k+L(wT̂ (k+L)) < an/2] + Q

ǫ,θ
w [r̂D > m,D <∞]
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Letting m := La/(8(M ′+1)), and using part a) and Lemma 27, we obtain the result.
�

Throughout the sequel, to simplify notation, we will define on the event {D <∞}
for each n ≥ 1,

Fn := T̂(r̂D + nL) −D, F ′
n := T̂ (r̂D + nL).

Lemma 31. For every 0 < β < α(0), there exist 0 < C20(β), C21(β) < ∞ not
depending on ǫ, L, such that for all 0 ≤ ǫ ≤ ǫ0, and all w = (F, r,A) ∈ Lθ such that
mr−⌊L1/4⌋,r(w) ≥ a⌊L1/4⌋/2, and φr−L(w) ≤ p, and for all natural n ≥ 1,

Qǫ,θ
w

[

Fn >
nL

β
,D <∞

]

≤ C20(β)(nL1/2)−M ′+1.

Proof. Without loss of generality we can assume that initially r = 0. Note that

Q
ǫ,θ
w

[

Fn >
nL
β ,D <∞

]

is upper-bounded by

∑

k:1≤k≤⌊L1/2⌋n

Qǫ,θ
w

[

Fn >
nL

β
, r̂D = k,D <∞

]

+ Qǫ,θ
w

[

r̂D > n⌊L1/2⌋,D <∞
]

. (64)

Now, on the event {D < ∞} we have that T̂ (r̂D) ≤ D so that Fn ≤ T̂ (r̂D + nL) −
T̂ (r̂D). Hence,

Qǫ,θ
w

[

Fn >
nL

β
, r̂D = k,D <∞

]

≤ Qǫ,θ
w

[

T̂ (k + nL) − T̂ (k) >
nL

β

]

.

Now, by part c) of Lemma 24, for all k ≥M we have Q
ǫ,θ
w

[

T̂ (k + nL) − T̂ (k) > nL
β

]

≤
C7(β)

(nL)M′ . On the other hand for 1 ≤ k ≤ M − 1, Q
ǫ,θ
w

[

T̂ (k + nL) − T̂ (k) > nL
β

]

≤
Q

ǫ,θ
w

[

T̂ (M + nL) > nL
β

]

.

Now let β < β′ < α(0). Observe that, when nL1/2 ≥ M(β′/β − 1)−1, (nL +

M)/β′ ≤ nL/β, so that Q
ǫ,θ
w

[

T̂ (M + nL) > nL
β

]

≤ Q
ǫ,θ
w

[

T̂ (M + nL) > nL+M
β′

]

.

Thus, by Lemma 25, since mr−⌊L1/4⌋,r(w) ≥ a⌊L1/4⌋/2, we know that

Qǫ,θ
w

[

T̂ (M + nL) >
nL+M

β′

]

≤ (C37(β)(nL1/2)−M ′
). (65)

When nL1/2 ≤ M(β′/β − 1)−1, the same bound holds, with a possibly larger con-

stant, using only the trivial inequality Q
ǫ,θ
w (·) ≤ 1. Using Lemma 27 to estimate the

second term of display (64), and combining with (65), we finish the proof. �

Lemma 32. For every 0 < ǫ ≤ ǫ0 and 0 < β < α(0), there exist 0 <
C22(β, ǫ), C23(β, ǫ) < ∞ not depending on L, such that for all w = (F, r,A) ∈ L′

θ
such that φr−L(w) ≤ p, for all natural n ≥ 1,

Qǫ,θ
w

[

Fn >
nL

β
,D <∞

]

≤ C22(β, ǫ) exp(−C23(β, ǫ)nL).



LARGE DEVIATIONS FOR A ONE DIMENSIONAL MODEL OF X + Y → 2X 43

Proof. Consider ℓ > 0 such that β(1 + ℓ) < α(0).

As in the proof of the previous lemma, Q
ǫ,θ
w

[

Fn >
nL
β ,D <∞

]

is upper-bounded

by

∑

k:1≤k≤⌊ℓnL⌋

Qǫ,θ
w

[

Fn >
nL

β
, r̂D = k,D <∞

]

+ Qǫ,θ
w [r̂D > ⌊ℓnL⌋,D <∞] . (66)

By Lemma 28, Q
ǫ,θ
w [r̂D > ⌊ℓnL⌋,D <∞] ≤ LC16(ǫ) exp(−C17(ǫ)⌊ℓnL⌋). On

the other hand, for 1 ≤ k ≤ ⌊ℓnL⌋, Q
ǫ,θ
w

[

T̂ (k + nL) − T̂ (k) > nL
β

]

≤
Q

ǫ,θ
w

[

T̂ (⌊nL(1 + ℓ)⌋) > nL
β

]

. By Lemma 26, Q
ǫ,θ
w

[

T̂ (⌊nL(1 + ℓ)⌋) > nL
β

]

≤ C8(β(1+

ℓ), ǫ) exp(−C9(β(1 + ℓ), ǫ)⌊nL(1 + ℓ)⌋).
�

Lemma 33. Consider w = (F, r,A) ∈ Lθ such that r = 0. Then for all 0 ≤ ǫ ≤ ǫ0,
the following properties hold.

a) For every h > 0, s > 0 and n ≥ 1 we have

Qǫ,θ
w

[

ψ0,T̂ (n) > h, T̂ (n) < s
]

≤ 2
φ0(w)

h
exp(s(2(cosh θ − 1) + 4ǫ sinh θ) − θn). (67)

b) For every h > 0, s > 0, k ≥ 1 and n ≥ k we have a.s.

Qǫ,θ
w

[

ψk,T̂ (n) − ψk−L,T̂ (n) > h, T̂ (n) − T̂ (k) < s
∣

∣

∣F ǫ,θ

T̂ (k)

]

≤ 2
aL

h
exp(s(2(cosh θ − 1) + 4ǫ sinh θ) − θ(n− k)).

Proof. See [4]. �

Corollary 8. There exists 0 < C24 < +∞ not depending on ǫ or L such that, for
all w = (F, r,A) ∈ Lθ, for all 0 ≤ ǫ ≤ ǫ0, λ > 0, n ≥ 1,

Qǫ,θ
w

[

ψr̂D ,F ′
n
> λ, Fn ≤ α−1

1 nL, D < +∞
]

≤ λ−1C24L exp(−α−1
1 nLµǫ0).

Proof. See [4]. �

Corollary 9. There exists 0 < C25 < +∞ not depending on ǫ or L such that, for
all 0 ≤ ǫ ≤ ǫ0, and all w = (F, r,A) ∈ L′

θ such that mr−⌊L1/4⌋,r(w) ≥ a⌊L1/4⌋/2,

Qǫ,θ
w

[

{ψr̂D
> p, T̂ (r̂D + L)} ∪ {mr̂D+L−⌊L1/4⌋,r̂D+L(wr̂D+L) < a⌊L1/4⌋/2}, D < +∞

]

≤ C25L
−aM ′/(8(M ′+1)).

Proof. See [4]. �

Lemma 34. Let q ≥ 1 be an integer. Consider two sequences (ak)k≥1 and (ck)k≥1

of non-negative real numbers such that
∑∞

k=1 ak < 1 and such that

c1 ≤ a1, (68)
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and for every m ≥ 2 we have that,

cm ≤ am +
m−1
∑

k=1

am−kck. (69)

For all integers q ≥ 0, let Aq :=
∑+∞

k=1 akk
q and Cq :=

∑+∞
k=1 ckk

q. For t ≥ 0,

let A(t) :=
∑+∞

k=1 ak exp(tk) and C(t) :=
∑+∞

k=1 ck exp(tk). The following properties
hold:

a) Assume that q ≥ 1 is such that Aq < +∞. Then Ck < +∞ for all 1 ≤ k ≤ q,
and

Cq ≤ (1 −A0)
−1

(

Aq +

q
∑

k=1

(

q

k

)

Cq−kAk

)

.

b) Assume that A(t0) < +∞ for some t0 > 0. Then A(t) < 1 for all small
enough t > 0 and, for all such t,

C(t) ≤ (1 −A(t))−1A(t).

Proof. Part a) is proved in [4]. As for part b), observe that the power series a(z) :=
∑+∞

k=1 akz
k has a convergence radius ≥ exp(t0). As a consequence, the map t 7→

a(exp(t)) is well-defined and continuous for t ≤ t0. For t = 0, a(exp(t)) =
∑+∞

k=1 ak <
1 by assumption. By continuity, a(exp(t)) < 1 for all t > 0 small enough.

Summing (68) and (69), we see that, for all m ≥ 1 and t ≥ 0,
∑m

i=1 ci exp(ti) ≤
a1 exp(t) +

∑m
i=2

(

ai exp(ti) +
∑i−1

k=1 ai−kck exp(ti)
)

, so that
∑m

i=1 ci exp(ti) ≤
∑m

i=1 ai exp(ti) +
∑m−1

k=1 ck exp(tk)
(
∑m

i=k+1 ai−k exp(t(i− k))
)

. As a consequence,
∑m−1

i=1 ci exp(ti) ≤ A(t) + A(t)
∑m−1

k=1 ck exp(tk)). When A(t) < 1, we deduce that
∑m−1

i=1 ci exp(ti) ≤ (1−A(t))−1A(t). Letting m go to infinity, we conclude the proof.
�

Lemma 35. Let (O,H,T) be a probability space, and (Hn)n≥1 be a non-decreasing
sequence of sub-σ−algebras of H. Let (Bn)n≥1, (An

k)n≥2, 0≤k≤n−1 and (B′
n)n≥2 be

sequences of events in H such that the following properties hold:

(i) for all n ≥ 1, Bn ∈ Hn

(ii) for all n ≥ 2, Bn ⊂ Bn−1 ∩
(

B′
n ∪An

0 ∪An
1 ∪ · · · ∪An

n−1

)

.

Now assume that we have defined a sequence (an)n≥1 of non-negative real numbers
enjoying the following properties:

(1) T(B1) ≤ a1;
(2) for all n ≥ 2, T(B′

n|Hn−1) ≤ a1 a.s.;
(3) for all n ≥ 3, T(An

n−1|Hn−2) ≤ a2 a.s.;
(4) for all n ≥ 2, T(An

0 ) ≤ an/2 a.s.;
(5) for all n ≥ 2, T(An

1 ) ≤ an/2 a.s.;
(6) for all n ≥ 4 and all 2 ≤ k ≤ n− 2, T(An

k |Hk−1) ≤ an−k+1 a.s.;

then, letting cn := T(Bn) for all n ≥ 1, the inequalities (68) and (69) are satisfied
by the two sequences (an)n≥1 and (cn)n≥1.
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Proof. First, observe that Inequality (68) is a mere consequence of assumption (1).
Assume now that n ≥ 2. By the union bound,

T (Bn) ≤
n−1
∑

k=0

T (An
k , Bn−1) + T

(

B′
n, Bn−1

)

. (70)

Now, since Bn−1 ∈ Hn−1, assumption (2) entails that T (B′
n, Bn−1) ≤ a1T(Bn−1).

On the other hand, (4) and (5) imply that T(An
0 ) + T(An

1 ) ≤ an.
When n = 2, we deduce from (70) that T(Bn) ≤ T(An

0 ) + T(An
1 ) + T (B′

n, Bn−1),
so that T(Bn) ≤ an + a1T(Bn−1), and so (69) is proved for n = 2.

Assume now that n ≥ 3. Since by assumption Bn−1 ⊂ Bn−2, T(An
n−1, Bn−1) ≤

T(An
n−1, Bn−2). Now, thanks to assumption (3) and to the fact that Bn−2 ∈ Hn−2,

T(An
n−1, Bn−2) ≤ a2T(Bn−2).

For n = 3, we deduce from (70) that T(Bn) ≤ T(An
0 ) + T(An

1 ) + T(An
n−1, Bn−1) +

T (B′
n, Bn−1), so that T(Bn) ≤ an + a2T(Bn−2) + a1T(Bn−1), and so (69) is proved

for n = 3.
Assume now that n ≥ 4. For 2 ≤ k ≤ n − 2, the fact that Bn−1 ⊂ Bk−1 implies

that T(An
k , Bn−1) ≤ T(An

k , Bk−2). Since Bk−1 ∈ Hk−1, assumption (6) entails that
T(An

k , Bk−1) ≤ an−k+1T(Bk−1).
As a consequence, plugging the previous estimates into Inequality (70), we obtain

that

T(Bn) ≤ an + a2T(Bn−2) + a1T(Bn−1) +

n−2
∑

k=2

an−k+1T(Bk−1),

which is exactly (69).
�

Lemma 36. There exists 0 < L0 < +∞ not depending on ǫ such that, for all L ≥ L0

there exists 0 < C26 < +∞ not depending on ǫ, such that for all 0 ≤ ǫ ≤ ǫ0, the
following properties hold.

a) For all n ≥ 1, Q
ǫ,θ
I0

(J0 ≥ n) ≤ C26n
3−M ′

.

b) For all w = (F, r,A) ∈ L′
θ such that mr−⌊L1/4⌋,r(w) ≥ a⌊L1/4⌋/2, and

φr−L(w) ≤ p, we have that, for all n ≥ 1, Q
ǫ,θ
w (Jr̂D

≥ n,D < +∞) ≤
C26n

3−M ′

c) For all n ≥ 1, Q
ǫ,θ
aδ0

(J0 ≥ n,U > T̂nL) ≤ C26n
3−M ′

.

In the sequel, we use the notation Ft instead of F ǫ,θ
t to alleviate notations.

Proof of part a). For all n ≥ 1, let

Bn := ∩n
i=1

{

ψ(i−1)L,T̂ (iL) > p
}

∪B′
i,

B′
i :=

{

miL−⌊L1/4⌋,iL(wT̂ (iL)) < a⌊L1/4⌋/2
}

.

Since φz(wt) ≤ ψz,t, the following inequality holds:

Q
ǫ,θ
I0

(J0 > n) ≤ Q
ǫ,θ
I0

(Bn). (71)
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For n ≥ 2 and 1 ≤ k ≤ n− 1, let

∆n
k := ψkL,T̂ (nL) − ψ(k−1)L,T̂ (nL),

and let

An
0 :=

{

ψ0,T̂ (nL) > p/2n−1
}

, An
k :=

{

∆n
k > p/2n−k

}

.

We now prove that the assumptions (i)-(ii) of Lemma 35 are satisfied, with (O,H)

being the space D(Lθ) equipped with the cylindrical σ-algebra, and probability Q
ǫ,θ
w ,

and Hn := FT̂ (nL) for all n ≥ 1.

Assumption (i) is immediate. Note that, for n ≥ 2, ψ(n−1)L,T̂ (nL) = ψ0,T̂ (nL) +
∑n−1

k=1 ∆n
k . Since 1

2n−1 +
∑n−1

k=1
1

2n−k = 1, we have that
{

ψ(n−1)L,T̂ (nL) > p
}

⊂
{

ψ0,T̂ (nL) > p/2n−1
}

∪
[

∪n−1
k=1

{

∆n
k > p/2n−k

}]

, (72)

so that (ii) is established.
We now look for a sequence (an)n≥1 such that assumptions (1)-(6) of Lemma 35

are satisfied. Assume that n ≥ 2. By the strong Markov property and Lemma 24
c), using the fact that, by (26), L ≥M , we have for any 1 ≤ k ≤ n− 1, a.s.

Q
ǫ,θ
I0

(

T̂ (nL) − T̂ (kL) ≥ (n − k)L/α1|FT̂ ((k−1)L)

)

≤ C7(α1)((n − k)L)−M ′
.

By the strong Markov property again, and Lemma 33 b), using the fact that µǫ ≥ µǫ0,
we have that a.s.

Q
ǫ,θ
I0

[

∆n
k > p/2n−k, T̂ (nL) − T̂ (kL) ≤ (n− k)L/α1|FT̂ ((k−1)L)

]

≤ 2aLp−12n−k exp(−µǫ0(n − k)L/α1).

We deduce that, for n ≥ 2, and 1 ≤ k ≤ n− 1, a.s.

Q
ǫ,θ
I0

(An
k |FT̂ ((k−1)L)) ≤ C7(α1)((n− k)L)−M ′

+ 2aLp−12n−k exp(−µǫ0(n− k)L/α1).

(73)

Similarly, using Lemma 25, which is possible since m−⌊L1/4⌋,0(I0) ≥ a⌊L1/4⌋/2, we
have that

Q
ǫ,θ
I0

(

T̂ (nL) ≥ nL/α1

)

≤ C37(α1)(nL
1/2)−M ′

.

On the other hand, by Lemma 33 a), we have that

Q
ǫ,θ
I0

[

ψ0,T̂nL
> p/2n, T̂ (nL) ≤ nL/α1

]

≤ 2p−12n−1φ0(I0) exp(−µǫ0nL/α1).

We deduce that

Q
ǫ,θ
I0

(An
0 ) ≤ C37(α1)(nL

1/2)−M ′
+ 2p−12n−1φ0(I0) exp(−µǫ0nL/α1). (74)

Now, for n ≥ 2, by part a) of Lemma 30, the strong Markov property, the fact
that (n− 1)L ≤ nL−⌊L1/4⌋ and that there are at least a particles at the rightmost

visited site at time T̂ (nL− ⌊L1/4⌋), a.s.

Q
ǫ,θ
I0

(B′
n|FT̂ ((n−1)L)) ≤ C19L

−a/8. (75)
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Finally, observe that, by the union bound, Q
ǫ,θ
I0

(B1) is upper bounded by

Q
ǫ,θ
I0

(ψ0,T̂ (L) > p, T̂ (L) ≤ L/α1) + Q
ǫ,θ
I0

(T̂ (L) > L/α1) + Q
ǫ,θ
I0

(mL−⌊L1/4⌋,L(wT̂ (L)) <

a⌊L1/4⌋/2).
Thanks to Lemma 24 a), Lemma 33 a) and Lemma 30 a), we obtain that

Q
ǫ,θ
I0

(B1) ≤ 2p−1φ0(I0) exp(−µǫ0L/α1) + C7(α1)L
−a/2 + C19L

−a/8. (76)

Now we see that, by Inequalities (75) and (76), (1) and (2) of Lemma 35 are
satisfied if we let

a1 := 2p−1φ0(I0) exp(−µǫ0L/α1) + C7(α1)L
−a/2 + C19L

−a/8.

Now, for m ≥ 2, let

am := 2
[

C7(α1)((m− 1)L)−M ′
+ 2aLp−12m−1 exp(−µǫ0(m− 1)L/α1)

]

+2
[

C37(α1)(mL
1/2)−M ′

+ 2p−12m−1φ0(I0) exp(−µǫ0mL/α1)
]

.

Inequalities (73) and (74) entail assumptions (3)-(4)-(5)-(6) of Lemma 35. Note
that the sequence (am)m≥1 depends on ǫ0 but not on ǫ. Moreover, observe that, for

large enough L (not depending on ǫ),
∑+∞

m=1 amm
M ′−3 < +∞. On the other hand,

as L goes to infinity,
∑+∞

m=1 am goes to zero, as can be checked by studying each
term in the definition of (am)m≥1. Part a) of Lemma 36 then follows from applying
Lemma 34.

�

Proof of part b). We use exactly the same strategy as for part a).
For all n ≥ 1, let

Bn := ∩n
i=1

{

ψr̂D+(i−1)L,T̂ (r̂D+iL) > p, D < +∞
}

∪B′
i,

B′
i :=

{

mr̂D+iL−⌊L1/4⌋,r̂D+iL(wT̂ (r̂D+iL)) < a⌊L1/4⌋/2, D < +∞
}

.

Since φz(wt) ≤ ψz,t, the following inequality holds:

Qǫ,θ
w (Jr̂D

> n, D < +∞) ≤ Qǫ,θ
w (Bn). (77)

For n ≥ 2 and 1 ≤ k ≤ n− 1, on {D < +∞}, let

∆n
k := ψr̂D+kL,T̂ (r̂D+nL) − ψr̂D+(k−1)L,T̂ (r̂D+nL),

and let

An
0 :=

{

ψr̂D ,T̂ (r̂D+nL) > p/2n−1, D < +∞
}

, An
k :=

{

∆n
k > p/2n−k, D < +∞

}

,

for 1 ≤ k ≤ n− 1.
We now prove that the assumptions (i)-(ii) of Lemma 35 are satisfied, with

(O,H,T) being the space D(Lθ) equipped with the cylindrical σ−algebra, and prob-

ability Q
ǫ,θ
w , and Hn := FT̂ (r̂D+nL) for all n ≥ 1.
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Assumptions (i) is immediate. Note that, for n ≥ 2, on {D < +∞}
ψr̂D+(n−1)L,T̂ (r̂D+nL) = ψr̂D,T̂ (r̂D+nL) +

∑n−1
k=1 ∆n

k . Since 1
2n−1 +

∑n−1
k=1

1
2n−k = 1,

we have that
{

ψr̂D+(n−1)L,T̂ (r̂D+nL) > p, D < +∞
}

⊂
{

ψr̂D ,T̂ (r̂D+nL) > p/2n−1, D < +∞
}

∪
[

∪n−1
k=1

{

∆n
k > p/2n−k, D < +∞

}]

,

so that (ii) is established.
We now look for a sequence (an)n≥1 such that assumptions (1)-(6) of Lemma 35

are satisfied. Assume that n ≥ 2. By the strong Markov property and Lemma 24
c), using the fact that, by (26), L ≥M , we have for any 1 ≤ k ≤ n− 1, on the event
{D < +∞}, a.s.

Qǫ,θ
w

(

T̂ (r̂D + nL) − T̂ (r̂D + kL) ≥ (n− k)L/α1|FT̂ (r̂D+(k−1)L)

)

≤ C7(α1)((n − k)L)−M ′
.

By the strong Markov property again, and Lemma 33 b), using the fact that µǫ ≥ µǫ0,
we have that, on {D < +∞}, a.s.

Qǫ,θ
w

[

∆n
k > p/2n−k, T̂ (r̂D + nL) − T̂ (r̂D + kL) ≤ (n− k)L/α1|FT̂ (r̂D+(k−1)L)

]

≤ 2aLp−12n−k exp(−µǫ0(n− k)L/α1).

We deduce that, for n ≥ 2, and 1 ≤ k ≤ n− 1, on {D < +∞}, a.s.

Qǫ,θ
w (An

k |FT̂ (r̂D+(k−1)L)) ≤ C7(α1)((n−k)L)−M ′
+2aLp−12n−k exp(−µǫ0(n−k)L/α1).

(78)

Similarly, using Lemma 31, which is possible since m−⌊L1/4⌋,0(w) ≥ a⌊L1/4⌋/2 and

φr−L(w) ≤ p, we have that

Qǫ,θ
w

(

T̂ (r̂D + nL)−D ≥ nL/α1, D < +∞
)

≤ C20(α1)(nL
1/2)−M ′+1.

On the other hand, by Corollary 8, we have that

Qǫ,θ
w

[

ψr̂D,T̂r̂D
+nL > p/2n−1, T̂ (nL) −D ≤ nL/α1

]

≤ p−12n−1C24L exp(−α−1nLµǫ0).

We deduce that

Qǫ,θ
w (An

0 ) ≤ C20(α1)(nL
1/2)−M ′+1 + p−12n−1C24L exp(−α−1

1 nLµǫ0). (79)

Now, for n ≥ 2, by part a) of Lemma 30, the strong Markov property, the fact

that (n− 1)L ≤ nL−⌊L1/4⌋, and that there are at least a particles at the rightmost

visited site at time T̂ (r̂D + nL− ⌊L1/4⌋), on {D < +∞}, a.s.

Qǫ,θ
w (B′

n|FT̂ (r̂D+(n−1)L)) ≤ C19L
−a/8. (80)

Finally, observe that, by Corollary 9,

Qǫ,θ
w (B1) ≤ C25L

−aM ′/(8(M ′+1)). (81)
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Now we see that, by Inequalities (80) and (81), (1) and (2) of Lemma 35 are
satisfied if we let

a1 := C19L
−a/8 + C25L

−aM ′/(8(M ′+1)).

Now, for m ≥ 2, let

am := 2
[

C7(α1)((m− 1)L)−M ′
+ 2aLp−12m−1 exp(−µǫ0(m− 1)L/α1)

]

+2
[

C20(α1)(mL
1/2)−M ′+1 + p−12m−1C24L exp(−α−1

1 mLµǫ0)
]

.

Inequalities (78) and (79) entail assumptions (3)-(4)-(5)-(6) of Lemma 35.
Note that the sequence (am)m≥1 depends on ǫ0 but not on ǫ. Moreover, observe

that, for large enough L (not depending on ǫ),
∑+∞

m=1 amm
M ′−3 < +∞. On the other

hand, as L goes to infinity,
∑+∞

m=1 am goes to zero, as can be checked by studying
each term in the definition of (am)m≥1. Part b) of Lemma 36 then follows from
applying Lemma 34. �

Proof of part c). For all n ≥ 1, let

Bn := ∩n
i=1

{

ψ(i−1)L,T̂ (iL) > p, U > T̂ (iL)
}

∪B′
i,

B′
i :=

{

miL−⌊L1/4⌋,iL(wT̂ (iL)) < a⌊L1/4⌋/2, U > T̂ (iL)
}

.

Since φz(wt) ≤ ψz,t, the following inequality holds:

Qǫ,θ
w (J0 > n,U > T̂nL) ≤ Q

ǫ,θ
I0

(Bn). (82)

For n ≥ 2 and 1 ≤ k ≤ n− 1, let

∆n
k := ψkL,T̂ (nL) − ψ(k−1)L,T̂ (nL),

and let

An
0 :=

{

ψ0,T̂ (nL) > p/2n−1, U > T̂ (nL)
}

, An
k :=

{

∆n
k > p/2n−k, U > T̂ (nL)

}

,

for 1 ≤ k ≤ n− 1.
We now prove that the assumptions (i)-(ii) of Lemma 35 are satisfied, with (O,H)

being the space D(Lθ) equipped with the cylindrical σ−algebra and probability Q
ǫ,θ
aδ0

,

and Hn := FT̂ (nL). Assumption (i) is immediate. Assumption (ii) is proved as in a).

We now look for a sequence (an)n≥1 such that assumptions (1)-(6) of Lemma 35
are satisfied.

Assume that n ≥ 2. Exactly as in part a), we can prove that, for n ≥ 2, and
1 ≤ k ≤ n− 1, a.s.

Q
ǫ,θ
aδ0

(An
k |FT̂ ((k−1)L)) ≤ C7(α1)((n − k)L)−M ′

+ 2aLp−12n−k exp(−µǫ0(n− k)L/α1).

(83)

Now, note that, on An
0 , one has T̂ (nL) ≤ (nL+ 1)/α2 since U > T̂ (nL), whence

T̂ (nL) ≤ nL/α1 when L ≥ α1/(α2 − α1).
On the other hand, by Lemma 33 a), we have that

Q
ǫ,θ
aδ0

[

ψ0,T̂nL
> p/2n−1, T̂ (nL) ≤ nL/α1

]

≤ 2p−12n−1φ0(aδ0) exp(−µǫ0nL/α1).
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We deduce that

Q
ǫ,θ
aδ0

(An
0 ) ≤ 2p−12n−1φ0(aδ0) exp(−µǫ0nL/α1). (84)

Exactly as in a), a.s.

Q
ǫ,θ
aδ0

(B′
n|FT̂ ((n−1)L)) ≤ C19L

−a/8. (85)

Finally, observe that, by the union bound, Q
ǫ,θ
aδ0

(B1) is upper bounded by

Q
ǫ,θ
aδ0

(ψ0,T̂ (L) > p, T̂ (L) ≤ L/α1) + Q
ǫ,θ
aδ0

(T̂ (L) > L/α1) + Q
ǫ,θ
I0

(mL−⌊L1/4⌋,L(wT̂ (L)) <

a⌊L1/4⌋/2).
Thanks to Lemma 33 a) and Lemma 30 a) and Lemma 24, we obtain that

Q
ǫ,θ
aδ0

(B1) ≤ 2p−1φ0(aδ0) exp(−µǫ0L/α1) + C7(α1)L
−a/2 + C19L

−a/8. (86)

Now we see that, by Inequalities (85) and (86), (1) and (2) of Lemma 35 are
satisfied if we let

a1 := 2p−1φ0(aδ0) exp(−µǫ0L/α1) +C7(α1)L
−a/2 + C19L

−a/8.

Now, for m ≥ 2, let

am := 2
[

C7(α1)((m− 1)L)−M ′
+ 2aLp−12m−1 exp(−µǫ0(m− 1)L/α1)

]

+2
[

2p−1φ0(aδ0)2
m−1 exp(−µǫ0mL/α1)

]

.

Inequalities (83) and (84) entail assumptions (3)-(4)-(5)-(6) of Lemma 35.
Note that the sequence (am)m≥1 depends on ǫ0 but not on ǫ. Moreover, observe

that, for large enough L (not depending on ǫ),
∑+∞

m=1 amm
M ′−3 < +∞. On the other

hand, as L goes to infinity,
∑+∞

m=1 am goes to zero, as can be checked by studying
each term in the definition of (am)m≥1. Part c) of Lemma 36 then follows from
applying Lemma 34.

�

Lemma 37. For every ǫ > 0, there exists L1(ǫ) < +∞ such that, for all L ≥ L1(ǫ),
there exists 0 < C27(ǫ), C28(ǫ) < +∞ such that the following properties hold.

a) For all n ≥ 1, Q
ǫ,θ
I0

(J0 ≥ n) ≤ C27(ǫ) exp(−C28(ǫ)n).

b) For all w ∈ L′
θ such that mr−⌊L1/4⌋,r(w) ≥ a⌊L1/4⌋/2, and φr−L(w) ≤ p, we

have that, for all n ≥ 1, Q
ǫ,θ
w (Jr̂D

≥ n,D < +∞) ≤ C27(ǫ) exp(−C28(ǫ)n).

c) For all n ≥ 1, Q
ǫ,θ
aδ0

(J0 ≥ n,U > T̂nL) ≤ C27(ǫ) exp(−C28(ǫ)n).

Proof of part a). We use exactly the same definitions as in the proof of part a) of
Lemma 36, except that we look for a different sequence (an)n≥1 such that assump-
tions (1)-(6) of Lemma 35 are satisfied. Assume that n ≥ 2. By the strong Markov
property and Lemma 26, we have that, for any 1 ≤ k ≤ n− 1, a.s.

Q
ǫ,θ
I0

(

T̂ (nL) − T̂ (kL) ≥ (n− k)L/α1|FT̂ ((k−1)L)

)

≤ C8(α1, ǫ) exp(−C9(α1, ǫ)(n−k)L).
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As in the proof of Lemma 36, a.s.

Q
ǫ,θ
I0

[

∆n
k > p/2n−k, T̂ (nL) − T̂ (kL) ≤ (n− k)L/α1|FT̂ ((k−1)L)

]

≤ 2aLp−12n−k exp(−µǫ0(n − k)L/α1).

We deduce that, for n ≥ 2, and 1 ≤ k ≤ n− 1, a.s.

Q
ǫ,θ
I0

(An
k |FT̂ ((k−1)L)) ≤ C8(α1, ǫ) exp(−C9(α1, ǫ)(n − k)L)

+2aLp−12n−k exp(−µǫ0(n− k)L/α1). (87)

By Lemma 26 again,

Q
ǫ,θ
I0

(

T̂ (nL) ≥ nL/α1

)

≤ C8(α1, ǫ) exp(−C9(α1, ǫ)nL).

On the other hand, as in the proof of Lemma 36,

Q
ǫ,θ
I0

[

ψ0,T̂nL
> p/2n−1, T̂ (nL) ≤ nL/α1

]

≤ 2p−12n−1φ0(I0) exp(−µǫ0nL/α1).

We deduce that

Q
ǫ,θ
I0

(An
0 ) ≤ C8(α1, ǫ) exp(−C9(α1, ǫ)nL) + 2p−12n−1φ0(I0) exp(−µǫ0nL/α1). (88)

Now, for n ≥ 2, as in the proof of Lemma 36, a.s.

Q
ǫ,θ
I0

(B′
n|FT̂ ((n−1)L)) ≤ C19L

−a/8. (89)

Similarly,

Q
ǫ,θ
I0

(B1) ≤ 2p−1φ0(I0) exp(−µǫ0L/α1) + C7(α1)L
−a/2 + C19L

−a/8. (90)

Now we see that, by Inequalities (89) and (90), (1) and (2) of Lemma 35 are
satisfied if we let

a1 := 2p−1φ0(I0) exp(−µǫ0L/α1) + C7(α1)L
−a/2 + C19L

−a/8.

Now, for m ≥ 2, let

am := 2
[

C8(α1, ǫ) exp(−C9(α1, ǫ)(m− 1)L) + 2aLp−12m−1 exp(−µǫ0(m− 1)L/α1)
]

+2
[

C8(α1, ǫ) exp(−C9(α1, ǫ)mL) + 2p−12m−1φ0(I0) exp(−µǫ0mL/α1)
]

.

Inequalities (87) and (88) entail assumptions (3)-(4)-(5)-(6) of Lemma 35. Now
observe that, for L large enough,

∑+∞
n=1 an exp(tn) < +∞ for t > 0 small enough.

As L goes to infinity,
∑+∞

n=1 an goes to zero, as can be checked by studying each term
in the definition of (am)m≥1. Part a) then follows from applying Lemma 34.

�

Proof of part b). We re-use exactly the same definitions as in the proof of part b) of
Lemma 36, except that we look for a different sequence (an)n≥1 such that assump-
tions (1)-(6) of Lemma 35 are satisfied. Assume that n ≥ 2. By the strong Markov
property and Lemma 26, we have for any 1 ≤ k ≤ n− 1, on {D < +∞} a.s.

Qǫ,θ
w

(

T̂ (r̂D + nL) − T̂ (r̂D + kL) ≥ (n− k)L/α1|FT̂ (r̂D+(k−1)L)

)

≤ C8(α1, ǫ) exp(−C9(α1, ǫ)(n− k)L).
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As in Lemma 36, we have that, on {D < +∞} a.s.

Qǫ,θ
w

[

∆n
k > p/2n−k, T̂ (r̂D + nL) − T̂ (r̂D + kL) ≤ (n− k)L/α1|FT̂ (r̂D+(k−1)L)

]

≤ 2aLp−12n−k exp(−µǫ0(n− k)L/α1).

We deduce that, for n ≥ 2, and 1 ≤ k ≤ n− 1, on {D < +∞}, a.s.

Qǫ,θ
w (An

k |FT̂ (r̂D+(k−1)L)) ≤ C8(α1, ǫ) exp(−C9(α1, ǫ)(n − k)L)

+2aLp−12n−k exp(−µǫ0(n− k)L/α1). (91)

Similarly, using Lemma 32, which is possible since φr−L(w) ≤ p, we have that

Qǫ,θ
w

(

T̂ (r̂D + nL) ≥ nL/α1, D < +∞
)

≤ C22(α1, ǫ)L exp(−C23(α1, ǫ)nL).

As in the proof of Lemma 36, we have that

Qǫ,θ
w

[

ψr̂D ,T̂r̂D+nL
> p/2n−1, T̂ (nL) ≤ nL/α1

]

≤ p−12n−1C24L exp(−α−1nLµǫ0).

We deduce that

Qǫ,θ
w (An

0 ) ≤ C22(α1, ǫ)L exp(−C23(α1, ǫ)nL) + p−12n−1C24L exp(−α−1
1 nLµǫ0). (92)

Now, for n ≥ 2, as in Lemma 36 a.s.

Qǫ,θ
w (B′

n|FT̂ (r̂D+(n−1)L)) ≤ C19L
−a/8, (93)

and

Qǫ,θ
w (B1) ≤ C25L

−aM/(16(M+1)). (94)

Now we see that, by Inequalities (93) and (94), (1) and (2) of Lemma 35 are
satisfied if we let

a1 := C19L
−a/8 + C25L

−aM/(16(M+1)).

Now, for m ≥ 2, let

am := 2
[

C8(α1, ǫ) exp(−C9(α1, ǫ)(m− 1)L) + 2aLp−12m−1 exp(−µǫ0(m− 1)L/α1)
]

+2
[

C22(α1, ǫ)L exp(−C23(α1, ǫ)nL) + p−12m−1C24L exp(−α−1
1 mLµǫ0)

]

.

Inequalities (91) and (92) entail assumptions (3)-(4)-(5)-(6) of Lemma 35. Now
observe that, for L large enough,

∑+∞
n=1 an exp(tn) < +∞ for t > 0 small enough.

As L goes to infinity,
∑+∞

n=1 an goes to zero, as can be checked by studying each term
in the definition of (am)m≥1. Part b) then follows from applying Lemma 34. �

Proof of part c). We use exactly the same definitions as in the proof 36 c), ex-
cept that we look for a different sequence (an)n≥1 such that assumptions (1)-(6) of
Lemma 35 are satisfied.

Assume that n ≥ 2. Exactly as in the proof of part a) of the present lemma, we
can prove that, for n ≥ 2, and 1 ≤ k ≤ n− 1, a.s.

Q
ǫ,θ
I0

(An
k |FT̂ ((k−1)L)) ≤ C8(α1, ǫ) exp(−C9(α1, ǫ)(n − k)L)

+2aLp−12n−k exp(−µǫ0(n− k)L/α1). (95)
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As in the proof of Lemma 36 c),

Q
ǫ,θ
aδ0

(An
0 ) ≤ 2p−12n−1φ0(aδ0) exp(−µǫ0nL/α1). (96)

Similarly, a.s.

Q
ǫ,θ
aδ0

(B′
n|FT̂ ((n−1)L)) ≤ C19L

−a/8, (97)

and

Q
ǫ,θ
aδ0

(B1) ≤ 2p−1φ0(aδ0) exp(−µǫ0L/α1) + C7(α1)L
−a/2 + C19L

−a/8. (98)

Now we see that, by Inequalities (97) and (98), (1) and (2) of Lemma 35 are satisfied
if we let

a1 := 2p−1φ0(aδ0) exp(−µǫ0L/α1) +C7(α1)L
−a/2 + C19L

−a/8.

Now, for m ≥ 2, let

am := 2
[

C8(α1, ǫ) exp(−C9(α1, ǫ)(m− 1)L) + 2aLp−12m−1 exp(−µǫ0(m− 1)L/α1)
]

+2
[

2p−12m−1φ0(aδ0) exp(−µǫ0mL/α1)
]

.

Inequalities (95) and (96) entail assumptions (3)-(4)-(5)-(6) of Lemma 35. Now
observe that, for L large enough,

∑+∞
n=1 an exp(tn) < +∞ for t > 0 small enough.

As L goes to infinity,
∑+∞

n=1 an goes to zero, as can be checked by studying each term
in the definition of (am)m≥1. Part c) then follows from applying Lemma 34. �

Lemma 38. Let (Yi)i≥1 be a sequence of random variables on a probability space
(O,H,T), and (Hi)i≥0 an non-decreasing sequence of sub-σ−algebras of H such that
H0 = {∅, O}. Assume that the following properties hold:

• for all i ≥ 1, Yi is measurable with respect to Hi;
• there exists an integer q ≥ 1 and a constant 0 < c1(q) < +∞ such that a.s.

ET(Y 2q
i |Hi−1) ≤ c1(q).

Then there exists a constant 0 < c2(q) < +∞, depending only on q and c1(q), such
that for all t ≥ 0 and n ≥ 1,

T

(

sup
k≥n

k−1

∣

∣

∣

∣

∣

Y1 + · · ·Yk −
k
∑

i=1

ET(Yi|Hi−1)

∣

∣

∣

∣

∣

≥ t

)

≤ c2(q)n
−qt−2q.

Proof. Observe that ET(Yi|Hi−1) exists and is finite for all i since ET(Y 2q
i |Hi−1) <

+∞. Now let Zi := Yi − ET(Yi|Hi−1). Observe that, with our assumptions,

ET(Zi|Hi−1) = 0 a.s. Moreover, thanks e.g. to Jensen’s inequality, ET(Z2q
i |Hi−1) ≤

c3(q), where c3(q) depends only on q and c1(q).
We now prove by induction on ℓ that, for all 0 ≤ ℓ ≤ q there exists a constant

0 < c4(ℓ) < +∞, depending only on ℓ, q and c1(q), such that, for all n ≥ 1,

ET((Z1 + · · · + Zn)2ℓ) ≤ c4(ℓ)n
ℓ. (99)

For ℓ = 0, the result is trivially true for all n ≥ 1. Now consider 0 ≤ ℓ ≤ q − 1,
assume that the result holds for ℓ, and let us prove that it holds for ℓ + 1. For all
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n ≥ 1,

ET((Z1 + · · · + Zn+1)
2ℓ+2) =

2ℓ+2
∑

k=0

(

2ℓ+ 2

k

)

ET((Z1 + · · · + Zn)2ℓ+2−kZk
n+1).

With our assumptions, ET((Z1 + · · · + Zn)2ℓ+1Zn+1) = 0. Now, by Jensen’s in-

equality, ET(Z2
n+1|Hn) ≤ c3(q + 1)1/(q+1) a.s. By our induction hypothesis, we see

that ET((Z1 + · · · + Zn)2ℓ) ≤ c4(ℓ)n
ℓ, with c4(ℓ) depending only on q, ℓ, and c1(q).

As a consequence, ET((Z1 + · · · + Zn)2ℓZ2
n+1) ≤ c4(ℓ)c3(q)

1/(q+1)nq. On the other

hand, by Jensen’s inequality, for k ≥ 3, ET

∣

∣(Z1 + · · · + Zn)2ℓ+2−k
∣

∣ ≤ ET((Z1 + · · ·+
Zn)2ℓ)(2ℓ+2−k)/2ℓ ≤ (c4(ℓ)n

ℓ)(2ℓ+2−k)/2ℓ. Similarly, ET

(∣

∣Zk
n+1

∣

∣ |Hn

)

≤ c3(q)
k/2q a.s.,

so that
∣

∣ET((Z1 + · · · + Zn)2ℓ+2−kZk
n+1)

∣

∣ ≤ c3(q)
k/2q)(c4(ℓ)n

ℓ)(2ℓ+2−k)/2ℓ. Putting
these estimates together, we obtain that

ET((Z1 + · · · + Zn+1)
2ℓ+2) − ET((Z1 + · · · + Zn)2ℓ+2) ≤

(

2ℓ+ 2

2

)

c4(ℓ)c3(q)
1/qnℓ

+

2ℓ
∑

k=3

(

2ℓ+ 2

2ℓ+ 2 − k

)

c3(q)
k/2q(c4(ℓ)n

ℓ)(2ℓ+2−k)/2ℓ.

Since the are only terms of order nℓ or less in the r.h.s. of the above inequality,
summing, we easily deduce that ET((Z1 + · · · + Zn)2ℓ+2) ≤ c4(ℓ + 1)nℓ+1 for all
n ≥ 1, with a constant c4(ℓ+ 1) depending only on ℓ, q, and c1(q), so the induction
step from q to q + 1 is complete.

Now observe that the sequence (Mk)k≥0 defined by M0 := 0 and Mk := k−1(Z1 +
· · · + Zk) is a martingale with respect to (Hk)k≥0. As a consequence, using the
maximal inequality for martingales and Inequality (99), we see that, for all integers
n ≥ 1 and ℓ ≥ 0,

T

(

sup
2ℓn≤k≤2ℓ+1n

|Mk| ≥ t

)

≤ c4(q)
(

2ℓ+1n
)−q

t−2q.

By the union bound,

T

(

sup
k≥n

k−1

∣

∣

∣

∣

∣

Y1 + · · ·Yk −
k
∑

i=1

ET(Yi|Hi−1)

∣

∣

∣

∣

∣

≥ t

)

is bounded above by
+∞
∑

ℓ=0

T

(

sup
2ℓn≤k≤2ℓ+1n

|Mk| ≥ t

)

and so by
+∞
∑

ℓ=0

c4(q)
(

2ℓ+1n
)−q

t−2q.

The conclusion follows. �
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Lemma 39. Let (Yi)i≥1 be a sequence of non-negative integer-valued random vari-
ables on a probability space (O,H,T), and (Hi)i≥0 an non-decreasing sequence of
sub-σ−algebras of H such that H0 = {∅, O}. Assume that the following properties
hold:

• for all i ≥ 1, Yi is measurable with respect to Hi;
• there exists 0 < c1, c2 < +∞ such that for all i ≥ 1 and k ≥ 0, T(Yi ≥
t|Hi−1) ≤ c1 exp(−c2k).

Then there exists c3 depending only on c1, c2 such that, for all t > c3, there exist
0 < c5, c6 < +∞ such that, for all 1 ≤ n ≤ m, T(Y1+· · ·+Yn ≥ mt) ≤ c5 exp(−c6m).

Proof. For 0 < λ < c2, one has a.s.

ET(exp(λYi)|Hi−1) ≤ 1 +

+∞
∑

k=1

(eλk − eλ(k−1))T(Yi ≥ k|Hi−1)

≤ 1 + c1(1 − e−λ)
eλ−c2

1 − eλ−c2
.

Letting j(λ) := c1(1 − e−λ) eλ−c2

1−eλ−c2
, we deduce that

ET(exp(λ(Y1 + · · · + Ym))) ≤ (1 + j(λ))m .

Then, by Markov’s inequality,

T(Y1 + · · · + Ym ≥ mt) ≤ exp(−mλt)ET(exp(λ(Y1 + · · · + Ym)),

so that

T(Y1 + · · · + Ym ≥ mt) ≤ exp [−m (λt+ log(1 + j(λ)))] . (100)

As λ goes to zero, we see that j(λ) = c3λ + o(λ), with c3 := e−c2

1−e−c2
. Choosing λ

small enough in (100) yields the result when n = m. For n ≤ m, observe that by
assumption Y1 + · · · + Yn ≤ Y1 + . . .+ Ym.

�

Lemma 40. For L ≥ L0, there exists 0 < C74, C75 < +∞ such that, for all 0 ≤ ǫ ≤
ǫ0, and all k ≥ 1,

a) Q
ǫ,θ
I0

(r̂Sk
> kC75 + u, K > k) ≤ C74k

2u−4;

b) Q
ǫ,θ
aδ0

(r̂Sk
> kC75 + u, U = +∞, K > k) ≤ C74k

2u−4.

Proof. Fix L ≥ L0. Observe that, for any k ≥ 1, on {K > k},

r̂Sk
= r̂0 + (r̂S1 − r̂0) +

k−1
∑

j=1

(

r̂Sj+1 − r̂Dj + r̂Dj − r̂Sj

)

1(K ≥ j). (101)

Observe that, for w = wr̂Sj
with 1 ≤ j ≤ K, denoting w = (F, r,A), the three

conditions w ∈ L′
θ, φr−L(w) ≤ p, and mr−⌊L1/4⌋,r(w) ≥ a⌊L1/4⌋/2 are satisfied. As

a consequence, by Lemma 27 and the strong Markov property, for all 1 ≤ j ≤ k− 1,

and all t > 0, a.s. Q
ǫ,θ
I0

(r̂Dj − r̂Sj > t, K ≥ j|FSj ) ≤ C14

(

t−M ′
+ L exp(−C15t)

)

.
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Now letting, for j ≥ 1, Yj :=
(

r̂Dj − r̂Sj

)

1(K ≥ j), and Hj := FSj+1 , we see that
the assumptions of Lemma 38 are satisfied with q = 2, since M ′ = a+ 8.

Thanks to the above observation on w = wr̂Sj
, and to the fact that, on {K ≥ j},

r̂Sj+1 − r̂Dj = LJr̂Dj
, we see that, by Lemma 36 b) and the strong Markov property,

for all 1 ≤ j ≤ k − 1, and all t > 0, a.s. Q
ǫ,θ
I0

(r̂Sj+1 − r̂Dj > t, K ≥ j|FSj ) ≤
C26(⌊L−1t⌋)3−M ′

. Similarly, thanks to Lemma 36 a), one also has that, for all t > 0,

a.s. Q
ǫ,θ
I0

(r̂S1 − r̂0 > t, K ≥ j|FSj ) ≤ C26(⌊L−1t⌋)3−M ′
.

Now letting Y1 := r̂S1 − r̂0, and, for j ≥ 2, Yj :=
(

r̂Sj − r̂Dj−1

)

1(K ≥ j), and
Hj := FSj , we see that the assumptions of Lemma 38 are again satisfied with
q = 2. Applying Lemma 38, we deduce the existence of two constants C751, C741 not
depending on ǫ such that for all k ≥ 1 and u > 0,

Q
ǫ,θ
I0





k−1
∑

j=1

(

r̂Dj − r̂Sj

)

1(K ≥ j) > kC751 + u, K > k



 ≤ C741k
2u−4,

and

Q
ǫ,θ
I0



r̂S1 − r̂0 +

k−1
∑

j=1

(

r̂Sj+1 − r̂Dj

)

1(K ≥ j) > kC751 + u, K > k



 ≤ C741k
2u−4.

Part a) of the lemma then follows from the two above inequalities, (101), and the
union bound.

To prove part b), we note that, for all k ≥ 1, on {K > k, U = +∞},

r̂Sk
= r̂0 + (r̂S1 − r̂0)1(U = +∞) +

k−1
∑

j=1

(

r̂Sj+1 − r̂Dj + r̂Dj − r̂Sj

)

1(K ≥ j). (102)

We can use the same argument as in the proof of part a) to deal with
∑k−1

j=1

(

r̂Dj − r̂Sj

)

1(K ≥ j) and
∑k−1

j=1

(

r̂Sj+1 − r̂Dj

)

1(K ≥ j). To deal with the

remaining term (r̂S1 − r̂0)1(U = +∞), observe that r̂S1 − r̂0 = LJ0, and apply
Lemma 36 c). �

Lemma 41. For all 0 ≤ ǫ ≤ ǫ0, and L ≥ L1(ǫ), there exist 0 <
C97(ǫ), C98(ǫ), C99(ǫ) < +∞ such that, for all k ≤ m,

a) Q
ǫ,θ
I0

(r̂Sk
> mC97(ǫ), K > k) ≤ C98(ǫ) exp(−C99(ǫ)m); and

b) Q
ǫ,θ
aδ0

(r̂Sk
> mC97(ǫ), U = +∞, K > k) ≤ C98(ǫ) exp(−C99(ǫ)m).

Proof. Adapt the proof of Lemma 40, using Lemma 39 instead of Lemma 38, and
Lemma 37 instead of Lemma 36. �

Proposition 18. For all L ≥ L0, there exists 0 < C29 < +∞ not depending on ǫ
such that, for all 0 ≤ ǫ ≤ ǫ0,

a) E
ǫ,θ
I0

(κ2) ≤ C29, E
ǫ,θ
I0

((r̂κ)2) ≤ C29;

b) E
ǫ,θ
aδ0

(κ2|U = +∞) ≤ C29, E
ǫ,θ
aδ0

((r̂κ)2|U = +∞) ≤ C29.
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Proof of Proposition 18. Observe that, for any integer ℓ ≥ 1,

{κ > t} ⊂ {K > ℓ} ∪
ℓ
⋃

k=1

{K = k, Sk > t},

whence

{κ > t} ⊂ {K > ℓ} ∪
ℓ
⋃

k=1

{K = k, r̂Sk
≥ ⌊α1t⌋} ∪ {∪s≥tr̂s < ⌊α1s⌋}. (103)

By the union bound,

Q
ǫ,θ
I0

(κ > t) ≤ Q
ǫ,θ
I0

(K > ℓ) +
ℓ
∑

k=1

Q
ǫ,θ
I0

(r̂Sk
≥ ⌊α1t⌋,K = k) + Q

ǫ,θ
I0

(∪s≥tr̂s < ⌊α1s⌋).

(104)
Now remember δ3 defined in Corollary 6 and let ℓ := −4 log

(

(1 − δ3)
−1⌈t⌉

)

.

By (26), φr−L(I0) ≤ p so that Q
ǫ,θ
I0

(D < +∞) ≤ 1 − δ3. Moreover, for all

j ≥ 1, on K ≥ j, φr−L(wr̂Sj
), so that, by the strong Markov property, we have

a.s. Q
ǫ,θ
I0

(D < +∞|FSj ) ≤ 1 − δ3. We deduce that

Q
ǫ,θ
I0

(K > ℓ) ≤ (1 − δ3)
ℓ ≤ t−4. (105)

Now observe that, for large enough t (not depending on ǫ), ⌊α1t⌋ ≥ ℓC75 +α1t/2.
Using Lemma 40 a), we deduce that, for all 1 ≤ k ≤ ℓ,

Q
ǫ,θ
I0

(r̂Sk
> ⌊α1t⌋, K > k) ≤ C74k

2(α1t/2)
−4. (106)

Finally, by Lemma 20,

Q
ǫ,θ
I0

[∪s≥tr̂s < ⌊α1s⌋] ≤ C45t
−M ′

. (107)

Plugging (105), (106) and (107) into (104), we deduce the conclusion of part

a) regarding E
ǫ,θ
I0

(κ2). The conclusion for E
ǫ,θ
I0

((r̂κ)2) follows by an application of
Lemma 2.

As for part b), observe that the estimate in (105) is still valid when I0 is replaced
by aδ0. On the other hand, the estimate obtained in (106) follows from Lemma 40
b). Then, by definition, the event U = +∞ rules out the event ∪s≥tr̂s < ⌊α1s⌋.
Part b) is then proved exactly as part a), noting that, Qaδ0(U = +∞) ≥ 1 − δ2.

�

Proposition 19. For all 0 < ǫ ≤ ǫ0, and L ≥ L1(ǫ), there exists 0 <
C30(ǫ), C31(ǫ) < +∞ such that

a) E
ǫ,θ
I0

(exp(−C30(ǫ)κ)) ≤ C31(ǫ), E
ǫ,θ
I0

(exp(−C30(ǫ)r̂κ) ≤ C31(ǫ);

b) E
ǫ,θ
aδ0

(exp(−C30(ǫ)κ|U = +∞) ≤ C31(ǫ), E
ǫ,θ
aδ0

(exp(−C30(ǫ)r̂κ|U = +∞) ≤
C31(ǫ).

Proof of Proposition 19. The proof is very similar to the proof of Proposition 18,
but this time, we use ℓ := ⌊(1/2)C97(ǫ)

−1α1t⌋, so that the r.h.s. of (105) now decays
exponentially as t→ +∞.



58 JEAN BÉRARD1 AND ALEJANDRO RAMÍREZ1,2

We then use Lemma 41 instead of Lemma 40, noting that, for large enough t,
⌊α1t⌋ ≥ ℓC97(ǫ). Finally, we use Lemma 22 instead of Lemma 20, and the conclusion
follows as in the proof of Proposition 18.

�
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Moscou Sér. Int. Sect. A Math. Mécan., 1(6):1–25, 1937.
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